
Citation: Zhao, H.; Zhao, S.; Shang,

X.; Wang, G. A Fast Algorithm for

VVC Intra Coding Based on the Most

Probable Partition Pattern List. Appl.

Sci. 2023, 13, 10381. https://doi.org/

10.3390/app131810381

Academic Editor: Christos Bouras

Received: 26 June 2023

Revised: 16 August 2023

Accepted: 6 September 2023

Published: 17 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Fast Algorithm for VVC Intra Coding Based on the Most
Probable Partition Pattern List
Haiwu Zhao, Shuai Zhao, Xiwu Shang * and Guozhong Wang

School of Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
zhao.hw@avsgm.com (H.Z.)
* Correspondence: dxsxw@126.com; Tel.: +86-021-6779-1084

Abstract: Compared with High-Efficiency Video Coding (HEVC), Versatile Video Coding (VVC)
has more flexible division and higher compression efficiency, but it also has higher computational
complexity. In order to reduce the coding complexity, a fast algorithm based on the most probable
partition pattern list (MPPPL)and pixel content similarity is proposed. Firstly, the MPPPL is con-
structed by using the average texture complexity difference of the sub-coding unit under different
partition modes. Then, the sub-block pixel mean difference is used to decide the best partition mode
or shorten the MPPPL. Finally, the selection rules of the reference lines in the intra prediction process
are counted and the unnecessary reference lines are skipped by using the pixel content similarity. The
experimental results show that compared with VTM-13.0, the proposed algorithm can save 52.26% of
the encoding time, and the BDBR (Bjontegarrd delta bit rate) only increases by 1.23%.

Keywords: versatile video coding; fast algorithm; coding unit partition; intra prediction

1. Introduction

Rapid advancements in information technology have led to the rapid development of
multimedia technologies such as 4K ultra-high-definition videos, 360-degree immersive
multimedia, and high dynamic range videos. Consequently, there has been a significant
surge in data volume, placing immense pressure on data storage and transmission. Existing
coding standards such as High-Efficiency Video Coding [1] have difficulty in meeting this
requirement.

To address these challenges, the Joint Video Coding Expert Group embarked on the
development of the next-generation video standard and introduced a novel video coding
standard known as Versatile Video Coding (VVC) [2]. The primary objective of VVC is to
achieve a compression efficiency improvement of over 50% while maintaining comparable
video quality to HEVC. VVC incorporates a new segmentation technique called Quadtree
with Nested Multi-Type Tree (QTMT) [3]. In addition to the QT partition structure, VVC
encompasses four other multi-type tree (MTT) partition structures: vertical binary tree
(VBT), horizontal binary tree (HBT), vertical ternary tree (VTT), and horizontal ternary
tree (HTT). By introducing QTMT, a coding unit’s (CU) shape becomes more flexible
and diverse, thereby increasing the number of CUs that necessitate recursive traversal
during the rate-distortion optimization (RDO) process. Figure 1 illustrates an example of
the partition structure obtained after recursive traversal, along with the corresponding
tree structure. Flexible partition structures, while enhancing compression efficiency, also
increase computational complexity. Under the condition of an all-intra configuration, the
average complexity of VVC is 18 times higher than that of HEVC [4]. This has hindered
the widespread adoption of VVC (Versatile Video Coding) and its application in real-time
scenarios.

Appl. Sci. 2023, 13, 10381. https://doi.org/10.3390/app131810381 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810381
https://doi.org/10.3390/app131810381
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app131810381
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810381?type=check_update&version=1

Appl. Sci. 2023, 13, 10381 2 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 16

Figure 1. Example of the CU partition structure in VVC:(a) CU division results, ad (b) correspond-
ing tree structure.

To solve the problem of the high computational complexity in the intra coding of
VVC, a fast partition method is proposed. The main contributions of the proposed method
are as follows:
(1) The concept of an MPPPL is proposed, and the method for constructing the MPPPL

is provided. In the decision-making process of the partition mode, the partition mode
in the MPPPL is sequentially tested, and the optimal partition mode is decided in
advance according to the calculation results.

(2) According to the influence of the partition mode distribution in the MPPPL on the
partition mode selection, the pixel mean value difference is used to shorten the
MPPPL or to decide the optimal partition mode in advance.

(3) Using the pixel content similarity, the calculation of reference line three is skipped in
the intra prediction process, which reduces the computational complexity of the intra
prediction.

2. Related Work
Currently, studies on fast algorithms for VVC can be divided into two parts: artificial

intelligence-based methods and coding content-based methods.
For artificial intelligence-based methods, in [5], a fast algorithm based on machine

learning was proposed, and it used texture complexity to determine the division direction
and a lightweight neural network to determine the division mode. Fu et al. [6] proposed
a fast decision binary partition algorithm based on Bayesian rules by utilizing the correla-
tion between the current CU and the sub-CU after horizontal binary partition, and it used
the correlation between the current CU and the sub-CU after horizontal binary segmenta-
tion to terminate the vertical binary segmentation. In [7], a deep learning method was
proposed to predict the CU partition, and a multi-stage exit CNN model was also pro-
posed for fast CU partition in multiple stages while using an early exit mechanism to skip
redundant CUs. Zhang et al. [8] divided a CTU into four parts to train the neural network
and to calculate the probability of various partition modes in the CTU. Once the probabil-
ity of the partition mode exceeded the threshold, it was skipped to achieve complexity
reduction. In [9], the proposed algorithm was formed by five binary Light Gradient Boost-
ing Machine (LightGBM) classifiers. In [10], a random forest classifier was used to make
an early decision about the partition mode by utilizing the texture features of the image
and the intra-frame prediction process was optimized based on the image content. Yang
et al. [11] transformed the QTMT partition process into multiple binary classification prob-
lems for each decision layer, which were processed by a decision tree classifier. Although
this method saved coding time, the BDBR (Bjøntegaard Delta Bit Rate) losses were high.

Figure 1. Example of the CU partition structure in VVC:(a) CU division results, ad (b) corresponding
tree structure.

To solve the problem of the high computational complexity in the intra coding of VVC,
a fast partition method is proposed. The main contributions of the proposed method are as
follows:

(1) The concept of an MPPPL is proposed, and the method for constructing the MPPPL is
provided. In the decision-making process of the partition mode, the partition mode
in the MPPPL is sequentially tested, and the optimal partition mode is decided in
advance according to the calculation results.

(2) According to the influence of the partition mode distribution in the MPPPL on the
partition mode selection, the pixel mean value difference is used to shorten the MPPPL
or to decide the optimal partition mode in advance.

(3) Using the pixel content similarity, the calculation of reference line three is skipped in
the intra prediction process, which reduces the computational complexity of the intra
prediction.

2. Related Work

Currently, studies on fast algorithms for VVC can be divided into two parts: artificial
intelligence-based methods and coding content-based methods.

For artificial intelligence-based methods, in [5], a fast algorithm based on machine
learning was proposed, and it used texture complexity to determine the division direction
and a lightweight neural network to determine the division mode. Fu et al. [6] proposed a
fast decision binary partition algorithm based on Bayesian rules by utilizing the correlation
between the current CU and the sub-CU after horizontal binary partition, and it used the
correlation between the current CU and the sub-CU after horizontal binary segmentation
to terminate the vertical binary segmentation. In [7], a deep learning method was proposed
to predict the CU partition, and a multi-stage exit CNN model was also proposed for fast
CU partition in multiple stages while using an early exit mechanism to skip redundant
CUs. Zhang et al. [8] divided a CTU into four parts to train the neural network and to
calculate the probability of various partition modes in the CTU. Once the probability of the
partition mode exceeded the threshold, it was skipped to achieve complexity reduction.
In [9], the proposed algorithm was formed by five binary Light Gradient Boosting Machine
(LightGBM) classifiers. In [10], a random forest classifier was used to make an early decision
about the partition mode by utilizing the texture features of the image and the intra-frame
prediction process was optimized based on the image content. Yang et al. [11] transformed
the QTMT partition process into multiple binary classification problems for each decision
layer, which were processed by a decision tree classifier. Although this method saved
coding time, the BDBR (Bjøntegaard Delta Bit Rate) losses were high. In [12], a hierarchical

Appl. Sci. 2023, 13, 10381 3 of 15

grid fully convolutional network (HG-FCN) framework was proposed to predict a specific
level of partition structure, achieving a certain degree of complexity reduction. Saldanha
et al. [13] used a classifier to make early decisions about the DC mode and the Planar mode
during the prediction process, and they used the pixel variances of the sub-blocks to decide
whether to use intra-frame sub-block partition technology. In [14], a convolutional neural
network was trained to predict partition modes by training a probability vector. In [15],
a neural network model was trained using cross-entropy, and it was used to terminate
the partitioning process early. In [16], a fast CU-partitioning decision algorithm based on
texture complexity and convolutional neural networks (CNN) was used, and this algorithm
used symmetric convolution kernels to extract features and redesign the loss function.
In [17], a novel feature based on Statistical Oriented Gradient (SOG) was proposed to
extract the feature information of a coding block, and it used SOG to speed up the intra
prediction mode decision process. In [18], a fast QTMT partition algorithm based on a
CNN-binary tree horizontal (CNN-BTH) network was developed to predict the BTH mode
decision at 32 × 32 coding units (CUs). The BTV decision tree algorithm was also predicted
at this level by a CNN-binary tree vertical (CNN-BTV).

For coding content-based methods, in [19], a latitude-based preprocessing was in-
troduced for the early termination of the coding unit (CU) partition in the polar region.
In [20], the factor of an average background luminance for just-noticeable-distortion was
applied to identify the visually distinguishable (VD) pixels within a coding unit (CU).
Zhang et al. [21] proposed a fast partition scheme based on adjacent sub-regions, and it
skipped unnecessary partition modes in advance based on the similarity of the adjacent
sub-regions in the horizontal and vertical directions. In [22], a CU partition was determined
early by the use of texture information, and the residual coefficient distribution of the
CUs were used to skip unnecessary partition modes. In [23], Li et al. used the gradient of
the Scharr operator to describe texture information, and they used the edge differences
of the sub-blocks to describe structural information. On this basis, they proposed a fast
algorithm based on texture features. In [24], Shang et al. created rapid decisions in the
CU partition process by utilizing the partition mode and the size distribution of adjacent
CUs, and they optimized the decision-making process of inter-frame prediction modes.
In [25], Zhang et al. used corner features and average color brightness differences to classify
screen content. Then, for different screen contents, they exploited different strategies to
predict the coding modes. In [26], Fan et al. used the Sobel operator to calculate the
gradient of the CU and terminate the QT partition based on the gradient. Then, texture
information was used to measure the differences between the partition structures based
on which partition patterns were determined. Shang et al. [27] predicted the quadtree
division depth of a current CU in advance by analyzing the correlations between adjacent
CUs. In addition, image texture features were utilized to make early decisions about the
MTT division process. Zhang et al. [21] proposed a fast partition scheme based on adjacent
sub-regions, and it skipped unnecessary partition modes in advance based on the similarity
between adjacent sub-regions in the horizontal and vertical directions. In [5], Zhang et al.
determined whether to split decisions using CU texture information, and they skipped
unnecessary partition modes according to the distribution of the residual coefficients.

Although the above methods have achieved some complexity reductions, they have
not achieved a good balance between the complexity reduction and the compression
performance loss. Complexity reductions that maintain good compression performance
are limited, and the improvement in the application of VVC in real-time scenarios is not
significant. A compression performance with a higher complexity reduction has a greater
loss, and this cannot meet coding requirements.

3. Proposed Method
3.1. Principle

Figure 2 shows schematic diagrams of the CU partition results of the QTMT structure
of the coding sequence in VVC. Upon examining Figure 2, it becomes evident that as the

Appl. Sci. 2023, 13, 10381 4 of 15

partition depth increases, the CU progressively becomes smoother, resulting in a gradual
reduction in texture complexity. Additionally, the partition mode decision tends to favor
partition modes that minimize the texture complexity of the sub-CUs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 16

3. Proposed Method
3.1. Principle

Figure 2 shows schematic diagrams of the CU partition results of the QTMT structure
of the coding sequence in VVC. Upon examining Figure 2, it becomes evident that as the
partition depth increases, the CU progressively becomes smoother, resulting in a gradual
reduction in texture complexity. Additionally, the partition mode decision tends to favor
partition modes that minimize the texture complexity of the sub-CUs.

(a) (b)

Figure 2. The partition results under QP = 32: (a) BQSquare, and (b) BlowingBubbles.

We selected five video sequences with different resolutions and texture complexities
under JVET general test conditions [24], including FoodMarket4, Kimono1, Basketball-
Pass, BQMall, and BQSquare. The relationship between the decision of the CU partition
mode in the coding process and the texture complexity of the sub-CUs after different cod-
ing sequences was counted. The experimental results are shown in Figure 3. The partition
mode with the largest average texture complexity of the sub-CU was recorded as Mo-
demax, and the partition mode with the smallest average texture complexity of the sub-
CU was recorded as Modemin. Texture complexity was used to describe the local texture
features of the image, and the more complex the texture of the local image, the higher the
texture complexity.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FoodMarket4 Kimono1 BasketballPass BQMall BQSquare

se
le

ct
io

n
pr

ob
ab

ili
ty

(%
)

Modemin Modemax others

Figure 2. The partition results under QP = 32: (a) BQSquare, and (b) BlowingBubbles.

We selected five video sequences with different resolutions and texture complexities
under JVET general test conditions [24], including FoodMarket4, Kimono1, BasketballPass,
BQMall, and BQSquare. The relationship between the decision of the CU partition mode
in the coding process and the texture complexity of the sub-CUs after different coding
sequences was counted. The experimental results are shown in Figure 3. The partition
mode with the largest average texture complexity of the sub-CU was recorded as Modemax,
and the partition mode with the smallest average texture complexity of the sub-CU was
recorded as Modemin. Texture complexity was used to describe the local texture features
of the image, and the more complex the texture of the local image, the higher the texture
complexity.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 16

3. Proposed Method
3.1. Principle

Figure 2 shows schematic diagrams of the CU partition results of the QTMT structure
of the coding sequence in VVC. Upon examining Figure 2, it becomes evident that as the
partition depth increases, the CU progressively becomes smoother, resulting in a gradual
reduction in texture complexity. Additionally, the partition mode decision tends to favor
partition modes that minimize the texture complexity of the sub-CUs.

(a) (b)

Figure 2. The partition results under QP = 32: (a) BQSquare, and (b) BlowingBubbles.

We selected five video sequences with different resolutions and texture complexities
under JVET general test conditions [24], including FoodMarket4, Kimono1, Basketball-
Pass, BQMall, and BQSquare. The relationship between the decision of the CU partition
mode in the coding process and the texture complexity of the sub-CUs after different cod-
ing sequences was counted. The experimental results are shown in Figure 3. The partition
mode with the largest average texture complexity of the sub-CU was recorded as Mo-
demax, and the partition mode with the smallest average texture complexity of the sub-
CU was recorded as Modemin. Texture complexity was used to describe the local texture
features of the image, and the more complex the texture of the local image, the higher the
texture complexity.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FoodMarket4 Kimono1 BasketballPass BQMall BQSquare

se
le

ct
io

n
pr

ob
ab

ili
ty

(%
)

Modemin Modemax others

Figure 3. The relationship between the optimal partition mode of VVC and the average value of the
sub-CU texture complexity.

Appl. Sci. 2023, 13, 10381 5 of 15

Based on the statistical data in Figure 3, it is not difficult to find that the VVC par-
tition mode decision has a strong correlation with the average texture complexity of the
partitioned sub-CUs. The smaller the average texture complexity of the divided sub-CUs,
the greater the possibility of the partition mode being selected as the optimal partition
mode, accounting for an average of 75%. The average texture complexity of the divided
sub-CUs reflects the probability of the current partition mode being selected as the optimal
partitioning mode, but it cannot be used as the basis for the final partition mode decision
because there are still some partition modes that are selected as the optimal partition mode,
even though their sub-CU average texture complexity is not the lowest.

3.2. Construct the Most Probable Partition Pattern List

As shown in Figure 4, there are five partition modes in the VVC intra-frame coding
partition process, namely, Quad-tree (QT), vertical binary tree (VBT), horizontal binary tree
(HBT), vertical ternary tree (VTT), and horizontal ternary tree (HTT), where HBT and VBT
are collectively referred to as binary tree (BT) and VTT and HTT are collectively referred to
as ternary tree (TT).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 16

Figure 3. The relationship between the optimal partition mode of VVC and the average value of the
sub-CU texture complexity.

Based on the statistical data in Figure 3, it is not difficult to find that the VVC partition
mode decision has a strong correlation with the average texture complexity of the parti-
tioned sub-CUs. The smaller the average texture complexity of the divided sub-CUs, the
greater the possibility of the partition mode being selected as the optimal partition mode,
accounting for an average of 75%. The average texture complexity of the divided sub-CUs
reflects the probability of the current partition mode being selected as the optimal parti-
tioning mode, but it cannot be used as the basis for the final partition mode decision be-
cause there are still some partition modes that are selected as the optimal partition mode,
even though their sub-CU average texture complexity is not the lowest.

3.2. Construct the Most Probable Partition Pattern List
As shown in Figure 4, there are five partition modes in the VVC intra-frame coding

partition process, namely, Quad-tree (QT), vertical binary tree (VBT), horizontal binary
tree (HBT), vertical ternary tree (VTT), and horizontal ternary tree (HTT), where HBT and
VBT are collectively referred to as binary tree (BT) and VTT and HTT are collectively re-
ferred to as ternary tree (TT).

(a) (b) (c) (d) (e)

Figure 4. VVC partition structures: (a) QT, (b) HBT, (c) VBT, (d) HTT, and (e) VTT.

The most probable partition pattern list (MPPPL) initially included these five parti-
tion modes. We calculated the average texture complexity of sub-CUs under these five
partitioning modes. The formula used for calculating the texture complexity is as follows: 𝑓𝑇 𝑝, 𝑞, 𝑚, 𝑛 = ∑ ∑ 𝑝𝑖𝑥 𝑖, 𝑗 𝑝 𝑝, 𝑞, 𝑚, 𝑛 , (1)

where p and q represent the starting coordinates of the CU, m and n represent the end
coordinates of the CU, and pave(p, q, m, n) represents the CU whose starting coordinates are
p and q, the end coordinates are represented by m, and n is the inner pixel average.
pave(p, q, m, n) is calculated as follows: 𝑝 𝑝, 𝑞, 𝑚, 𝑛 = ∑ ∑ 𝑝𝑖𝑥 𝑖, 𝑗 . (2)

The average texture complexity of the sub-CUs after horizontal binary partition is
denoted as Thbt, and its calculation formula is shown below, where x and y are the starting
coordinates of the current CU and w and h are the width and height of the current CU.

1 [() ()]
2 2 2

hbt T T
h hT = f x, y,x+ w, y+ + f x, y+ ,x+ w, y+h . (3)

The average value of the sub-CU texture complexity after horizontal ternary partition
is denoted as Thtt, and its calculation formula is as follows:

1 h h 3h 3h[() () (h)]
3 4 4 2 4

htt T T TT = f x, y,x+ w, y+ + f x, y+ ,x+ w, y+ + f x, y+ ,x+ w, y+ . (4)

The average value of the sub-CU texture complexity after vertical binary partition is
recorded as Tvbt, and its calculation formula is as follows:

Figure 4. VVC partition structures: (a) QT, (b) HBT, (c) VBT, (d) HTT, and (e) VTT.

The most probable partition pattern list (MPPPL) initially included these five parti-
tion modes. We calculated the average texture complexity of sub-CUs under these five
partitioning modes. The formula used for calculating the texture complexity is as follows:

f T (p, q, m, n) =
√

1
m× n∑p+m

i=p ∑q+n
j=q [pix(i, j)− pave(p, q, m, n)]2 , (1)

where p and q represent the starting coordinates of the CU, m and n represent the end
coordinates of the CU, and pave(p, q, m, n) represents the CU whose starting coordinates are
p and q, the end coordinates are represented by m, and n is the inner pixel average. pave(p, q,
m, n) is calculated as follows:

pave(p, q, m, n) =
1

m× n∑p+m
i=p ∑q+n

j=q pix(i, j). (2)

The average texture complexity of the sub-CUs after horizontal binary partition is
denoted as Thbt, and its calculation formula is shown below, where x and y are the starting
coordinates of the current CU and w and h are the width and height of the current CU.

Thbt =
1
2
[fT(x, y, x + w, y +

h
2
) + fT(x, y +

h
2

, x + w, y + h)]. (3)

The average value of the sub-CU texture complexity after horizontal ternary partition
is denoted as Thtt, and its calculation formula is as follows:

Thtt =
1
3
[fT(x, y, x + w, y +

h
4
) + fT(x, y +

h
4

, x + w, y +
3h
2
) + fT(x, y +

3h
4

, x + w, y + h)]. (4)

Appl. Sci. 2023, 13, 10381 6 of 15

The average value of the sub-CU texture complexity after vertical binary partition is
recorded as Tvbt, and its calculation formula is as follows:

Tvbt =
1
2
[fT(x, y, x +

w
2

, y + h) + fT(x +
w
2

, y, x + w, y + h)]. (5)

The average value of the sub-CU texture complexity after vertical ternary partition is
recorded as Tvht, and its calculation formula is as follows:

Tvtt =
1
3
[fT(x, y, x +

w
4

, y + h) + fT(x +
w
4

, y + h, x +
3w
4

, y + h) + fT(x +
3w
4

, y + h, x + w, y + h)]. (6)

The average value of the sub-CU texture complexity after QT partition is recorded as Tqt,
and its calculation formula is as follows:

Tqt =
1
4
[fT(x, y, x +

w
2

, y +
h
2
) + fT(x +

w
2

, y, x + w, y +
h
2
) + fT(x, y +

h
2

, x +
w
2

, y + h) + fT(x +
w
2

, y +
h
2

, x + w, y + h)]. (7)

After obtaining the average texture complexity of the sub-CUs under the five partition
modes, we used this as a reference to update the MPPPL. The larger the average texture
complexity of the sub-CUs, the lower the probability of that partition mode being selected
as the optimal partition mode. Therefore, we used the reciprocal of the average texture
complexity of the sub-CUs after division to calculate the probability that the partition mode
was the optimal partition mode. The formula used is as follows:

Pmode =
1

Tmode
1

Tqt +
1

Tvtt +
1

Tvbt +
1

Thtt +
1

Thbt
, (8)

where mode represents one of the QT partitions, vertical ternary partitions, vertical binary
partitions, horizontal ternary partitions, and horizontal binary partitions.

After obtaining the probability of each partition mode being selected as the optimal
partition mode, the MPPPL was sorted from large to small according to the probability
of the partition mode being selected as the optimal partition mode, and the MPPPL was
updated. At this time, the MPPPL was expressed as follows:

MPPPL = {Mode− a , Mode− b, Mode− c, Mode− d, Mode− e}. (9)

In addition to the five partition modes, VVC also has the possibility of adopting a non-
partition strategy. Considering the spatial continuity of an image’s content, we considered
whether to include the non-partition mode in the MPPPL. First, we obtained the partition
sizes of adjacent CUs. If the partition sizes of the adjacent CUs were all larger than the
current CU, based on spatial correlation, the current CU had a possibility of not being
partitioned. Further, we compared the difference value (d) between the average texture
complexity of the sub-CUs corresponding to partition mode Mode-a (Ta) and the average
texture complexity of the sub-CUs corresponding to partition mode Mode-e (Te). The
comparison formula used is as follows:

d =
Ta

Te
, (10)

where if the two values Ta and Te are very close, then d will be close to 1. This indicates that
the texture complexity of the current CU has already approached smoothness, and further
partition will not effectively reduce the texture complexity of the CU. Based on practical
experience, when d is less than 1.1 and greater than 0.9, we can include the non-partitioning
strategy in the MPPPL and place it at the first position, and then the remaining partition
modes are shifted back in order.

To avoid redundant partitioning, VVC has partitioning condition limitations. After the
MPPPL construction was completed, we modified the MPPPL according to the limitations

Appl. Sci. 2023, 13, 10381 7 of 15

of the partitioning rules, and we deleted the partitioning modes that were not allowed in
the MPPPL.

3.3. Partition Mode Decision

After the construction of the MPPPL was completed, the partition mode was decided
in advance on this basis or the length of the MPPPL was reduced. We conducted a statistical
analysis on the probability of a particular direction being selected as the final partition
direction when the first two partition modes in the MPPPL were of the same direction,
and the results are shown in Table 1. When both Mode-a and Mode-b in the MPPPL were
either horizontal partition modes or vertical partition modes, it indicates that the current
CU exhibits strong directional texture and is more inclined towards either horizontal or
vertical partition. In such cases, the MPPPL can be modified by removing all partition
modes except for Mode-a and Mode-b.

Table 1. Mode-a and Mode-b partition mode selection probability in the same direction.

Coding Sequence Both Vertical Both Horizontal

Campfire 85% 79%
Cactus 94% 83%

BasketballPass 83% 85%
BQSquare 86% 87%

In the partition process of VVC, the probability of a TT partition being adopted is very
small (no more than 20%) [25]. Therefore, when determining the direction of a CU partition,
further consideration is given as to whether to skip TT partition and decide the optimal
partition mode. If Mode-a is a TT partition at this time, it indicates that in the previous
calculation, the TT partition had a high probability of being the optimal partition mode,
and the TT partition is not skipped at this time. If Mode-a is a BT partition, we would
consider skipping the TT partition directly at this time. It is not difficult to determine from
Figure 5 that when the texture structure in a CU is mainly concentrated on the left and
right sides or at the upper and lower sides of a CU boundary, the TT division structure is
used. At this time, there was a significant difference in the average pixel values between
the sub-CUs, and so we used the pixel mean difference between the sub-CUs to decide
whether to skip the TT partition.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16

3.3. Partition Mode Decision
After the construction of the MPPPL was completed, the partition mode was decided

in advance on this basis or the length of the MPPPL was reduced. We conducted a statis-
tical analysis on the probability of a particular direction being selected as the final parti-
tion direction when the first two partition modes in the MPPPL were of the same direction,
and the results are shown in Table 1. When both Mode-a and Mode-b in the MPPPL were
either horizontal partition modes or vertical partition modes, it indicates that the current
CU exhibits strong directional texture and is more inclined towards either horizontal or
vertical partition. In such cases, the MPPPL can be modified by removing all partition
modes except for Mode-a and Mode-b.

Table 1. Mode-a and Mode-b partition mode selection probability in the same direction.

Coding Sequence Both Vertical Both Horizontal
Campfire 85% 79%

Cactus 94% 83%
BasketballPass 83% 85%

BQSquare 86% 87%

In the partition process of VVC, the probability of a TT partition being adopted is
very small (no more than 20%) [25]. Therefore, when determining the direction of a CU
partition, further consideration is given as to whether to skip TT partition and decide the
optimal partition mode. If Mode-a is a TT partition at this time, it indicates that in the
previous calculation, the TT partition had a high probability of being the optimal partition
mode, and the TT partition is not skipped at this time. If Mode-a is a BT partition, we
would consider skipping the TT partition directly at this time. It is not difficult to deter-
mine from Figure 5 that when the texture structure in a CU is mainly concentrated on the
left and right sides or at the upper and lower sides of a CU boundary, the TT division
structure is used. At this time, there was a significant difference in the average pixel values
between the sub-CUs, and so we used the pixel mean difference between the sub-CUs to
decide whether to skip the TT partition.

(a) (b)

Figure 5. Schematic diagram of the TT division structure: (a) HTT, and (b) VTT.

The pixel mean difference of the horizontal binary partition (PHBT) was calculated as
follows:

P
2 2

HBT ave ave
h hp x, y,x+ w y+ p x, y ,x+ w y+h= +（ ， ）- （ ， ）. (11)

The pixel mean difference of the horizontal ternary partition (PHTT) was calculated as
follows:

Figure 5. Schematic diagram of the TT division structure: (a) HTT, and (b) VTT.

The pixel mean difference of the horizontal binary partition (PHBT) was calculated as
follows:

PHBT = pave(x, y, x + w, y +
h
2
)− pave(x, y +

h
2

, x + w, y + h). (11)

The pixel mean difference of the horizontal ternary partition (PHTT) was calculated as
follows:

Appl. Sci. 2023, 13, 10381 8 of 15

PHTT = pave(x, y +
h
4

, x + w, y +
3h
4
)−min(pave(x, y, x + w, y +

h
4
), pave(x, y +

3h
4

, x + w, y + h)). (12)

Similarly, the formulas used for calculating the pixel mean difference of the vertical
binary partition (PVBT) and the pixel mean difference of the vertical ternary partition (PVTT)
are as follows:

PVBT = pave(x, y, x +
w
2

, y + h)− pave(x +
w
2

, y, x + w, y + h) and (13)

PVTT = pave(x +
w
4

, y, x +
3w
4

, y + h)−min(pave(x, y, x +
w
4

, y), pave(x +
3w
4

, y, x + w, y + h)). (14)

We selected different coding sequences and conducted a statistical analysis on the
relationship between the selection of partition modes in the MTT partition process and the
difference in the pixel mean values. The statistical results are shown in Table 2.

Table 2. Effect of pixel mean difference on the selection of the division mode.

Coding Sequence BT (%) TT (%)

(a) FoodMarket4
PHBT > PHTT 94 6
PVBT > PVTT 97 3
(b) Kimono1
PHBT > PHTT 91 9
PVBT > PVTT 95 5

(c) BasketballPass
PHBT > PHTT 99 1
PVBT > PVTT 92 8
(d) BQMall

PHBT > PHTT 96 4
PVBT > PVTT 89 11
(e) BQSquare
PHBT > PHTT 90 10
PVBT > PVTT 93 7

It can be observed that when the pixel mean difference of the horizontal binary
partition is greater than that of the horizontal ternary partition, there is a stronger preference
for selecting the horizontal binary partition. Similarly, when the pixel mean difference of
the vertical binary partition is greater than that of the vertical ternary partition, there is a
stronger preference for selecting the vertical binary partition. Therefore, when both Mode-a
and Mode-b in the MPPPL are either horizontal partition modes or vertical partition modes,
an early decision on the optimal partition mode is considered. If Mode-a is a horizontal
binary partition, then we would calculate the pixel mean difference of the horizontal binary
partition (PHBT) and the pixel mean difference of the horizontal ternary partition (PHTT),
and if PHBT is greater than PHTT, then this indicates that the horizontal binary partition has
a high probability of being the optimal partition mode at this time. We would then skip
the RDC test of the horizontal ternary tree partition and set the horizontal binary partition
as the optimal partition mode for the current CU. Similarly, if the pixel mean difference of
the vertical binary partition (PVBT) is greater than PVTT in the vertical direction, then the
vertical binary partition is set as the optimal partition mode.

If the partition modes in the MPPPL do not follow any clear rules, then the RDC
(rate-distortion cost) is first calculated for the Mode-a and Mode-b partition modes in the
order specified by the MPPPL. In the MPPPL, Mode-a has the highest probability of being
the optimal partition mode. If the RDC of Mode-b is greater than the RDC of the Mode-a,
then we would stop calculating the RDCs of the other partition modes, and the optimal
mode would be the partition mode corresponding to Mode-a. If the RDC of the Mode-b
partition mode is smaller than the RDC of the Mode-a partition mode, then we would

Appl. Sci. 2023, 13, 10381 9 of 15

calculate the RDC of the Mode-c partition mode at this time and compare it with the RDC
of the Mode-b partition mode. If the RDC of the Mode-b partition mode is smaller than
that of Mode-c, then Mode-b would be the optimal partition mode at this time; otherwise,
this process is repeated until the optimal partition mode is found. The algorithm flow chart
is shown in Figure 6.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16

optimal partition mode. If the RDC of Mode-b is greater than the RDC of the Mode-a, then
we would stop calculating the RDCs of the other partition modes, and the optimal mode
would be the partition mode corresponding to Mode-a. If the RDC of the Mode-b partition
mode is smaller than the RDC of the Mode-a partition mode, then we would calculate the
RDC of the Mode-c partition mode at this time and compare it with the RDC of the Mode-
b partition mode. If the RDC of the Mode-b partition mode is smaller than that of Mode-
c, then Mode-b would be the optimal partition mode at this time; otherwise, this process
is repeated until the optimal partition mode is found. The algorithm flow chart is shown
in Figure 6.

Build the
MPPPl

Mode-a and Mode-b are in the
same direction

MPPPL
modification

Mode-a is
BVorTV

PHBT>PHT
T

The optimal division
mode is Mode-a

Y Y Y

 Mode-a RDC < Mode-b
RDC

N

N

The optimal division
mode is Mode-b

YThe optimal division
mode is Mode-a

N

Decision optimal
partitioning mode

Start

End

 Mode-a RDC < Mode-b
RDC

N

N

The optimal
division mode is

Mode-b

NThe optimal
division mode is

Mode-a

N

Figure 6. The flowchart of the proposed algorithm.

3.4. Reference Line for Quick Decision
VVC has increased the number of intra prediction modes to 65, and it introduced the

multiple reference line (MRL). The traditional intra prediction mode only refers to the ref-
erence pixels in the adjacent left column and the upper row when completing predictions.
MRL extends this to three rows and three columns. In MRL, in order to obtain the optimal
intra prediction angle, MRL references line 0, line 1, and line 3. Line 0 and line 1 can pro-
vide reference information for nearby pixels and line 3 provides reference information for
distant pixels. Line 2 is difficult but provides useful information, and so no reference is
made. In the calculation process, the three lines are tested in turn, and then the line or
column with a smaller RDC is selected as the reference line or reference column, which
increases the computational complexity of the intra prediction.

We randomly selected the reference sequence in the VVC standard and counted the
proportion of different reference lines or columns selected as the optimal reference lines
during the intra prediction process. The statistical results are shown in Figure 7, where
FO, BQ, KI, BA, and JO correspond to the coding sequences FoodMarket4, BQMall, Ki-
mono1, BasketballPass, and Johnny, respectively. Based on the statistical data shown in
Figure 7, it is not difficult to determine that line 0 was selected as the reference pixel for

Figure 6. The flowchart of the proposed algorithm.

3.4. Reference Line for Quick Decision

VVC has increased the number of intra prediction modes to 65, and it introduced
the multiple reference line (MRL). The traditional intra prediction mode only refers to the
reference pixels in the adjacent left column and the upper row when completing predictions.
MRL extends this to three rows and three columns. In MRL, in order to obtain the optimal
intra prediction angle, MRL references line 0, line 1, and line 3. Line 0 and line 1 can
provide reference information for nearby pixels and line 3 provides reference information
for distant pixels. Line 2 is difficult but provides useful information, and so no reference
is made. In the calculation process, the three lines are tested in turn, and then the line or
column with a smaller RDC is selected as the reference line or reference column, which
increases the computational complexity of the intra prediction.

We randomly selected the reference sequence in the VVC standard and counted the
proportion of different reference lines or columns selected as the optimal reference lines
during the intra prediction process. The statistical results are shown in Figure 7, where FO,
BQ, KI, BA, and JO correspond to the coding sequences FoodMarket4, BQMall, Kimono1,
BasketballPass, and Johnny, respectively. Based on the statistical data shown in Figure 7, it
is not difficult to determine that line 0 was selected as the reference pixel for prediction in
most cases while the probability of reference line 3 being selected as the reference pixel was
very small, with an average of approximately 8%, and so reference line 3 was skipped in
the vast majority of cases.

Appl. Sci. 2023, 13, 10381 10 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 16

prediction in most cases while the probability of reference line 3 being selected as the ref-
erence pixel was very small, with an average of approximately 8%, and so reference line 3
was skipped in the vast majority of cases.

Figure 7. Reference line ratios of the different partition sequences.

Reference line 3 was added to the reference line as we hoped that it could provide
different reference information from lines 0 and 1. The difference in this reference infor-
mation was directly reflected in the difference between the reference pixel contents. We
measured this difference by comparing the pixel content similarity (PCS) of reference line
3 and reference line 2. The calculation formulas used are shown below, where PCSH is the
content similarity between reference line 3 and reference line 2, PSHV is the content simi-
larity between reference column 3 and reference column 2, (x, y) is the starting coordinate
of the current prediction block, and w and h are its width and height.

H

+

+

(, 2) (, 1)[(, 4)]
2

PCS =
(, 2) (, 1)[(, 3)]

2

x w

i x
x w

i x

p i y p i yp i y

p i y p i yp i y

=

=

− + −− −

− + −− −

 and (15)

V

+

+

(2,) (1,)[(4,)]
2

PCS =
(2,) (1,)[(3,)]

2

y h

i y
y h

i y

p x i p x ip x i

p x i p x ip x i

=

=

− + −− −

− + −− −

. (16)

In Formulas (15) and (16), if reference line 3 is similar to reference line 2, the differ-
ence between them and other reference lines is closer. If the pixel content similarity be-
tween reference line 3 and reference line 2 is between Re and 1/Re, this means that refer-
ence line 3 and reference line 2 have a high degree of similarity in pixel content. At this
time, reference line 3 was difficult to use for providing useful reference information com-
pared to reference line 2, and the calculation for reference line 3 was skipped in subse-
quent calculations. In order to determine the optimal threshold m, we counted the accu-
racy rate (Ac) of reference line 3 as the final reference line under the different thresholds.
The calculation formula used for Ac is as follows:

cvvmAc = Z / Z , (17)

0

10

20

30

40

50

60

70

80

FO BQ KI BA JO

R
ef

er
en

ce
 li

ne
 r

at
io
（

%
）

line 0 line 1 line 3

Figure 7. Reference line ratios of the different partition sequences.

Reference line 3 was added to the reference line as we hoped that it could provide dif-
ferent reference information from lines 0 and 1. The difference in this reference information
was directly reflected in the difference between the reference pixel contents. We measured
this difference by comparing the pixel content similarity (PCS) of reference line 3 and
reference line 2. The calculation formulas used are shown below, where PCSH is the content
similarity between reference line 3 and reference line 2, PSHV is the content similarity
between reference column 3 and reference column 2, (x, y) is the starting coordinate of the
current prediction block, and w and h are its width and height.

PCSH =

x+w
∑

i=x
[p(i, y− 4)− p(i,y−2)+p(i,y−1)

2]

x+w
∑

i=x
[p(i, y− 3)− p(i,y−2)+p(i,y−1)

2]

and (15)

PCSV =

y+h
∑

i=y
[p(x− 4, i)− p(x−2,i)+p(x−1,i)

2]

y+h
∑

i=y
[p(x− 3, i)− p(x−2,i)+p(x−1,i)

2]

. (16)

In Formulas (15) and (16), if reference line 3 is similar to reference line 2, the difference
between them and other reference lines is closer. If the pixel content similarity between
reference line 3 and reference line 2 is between Re and 1/Re, this means that reference line 3
and reference line 2 have a high degree of similarity in pixel content. At this time, reference
line 3 was difficult to use for providing useful reference information compared to reference
line 2, and the calculation for reference line 3 was skipped in subsequent calculations. In
order to determine the optimal threshold m, we counted the accuracy rate (Ac) of reference
line 3 as the final reference line under the different thresholds. The calculation formula
used for Ac is as follows:

Ac = Zm/Zvvc, (17)

where Zm is the probability that reference line 3 will be selected as the final reference line
under the Re threshold and Zvvc is the probability that reference line 3 will be selected as
the final reference line in the original VVC. The experimental results are shown in Figure 8,
where T, M, B, P, and F represent the coding sequences Tango2, MarkPlace, BQTerrace,

Appl. Sci. 2023, 13, 10381 11 of 15

PartyScene, and FourPeople, respectively. Observing Figure 8, it is not difficult to determine
that the accuracy rate gradually increased with the increase in the threshold, and it reached
its highest when the threshold was 1, but at this time, the judgment condition was too strict
and it was difficult to reduce the complexity. It had a better accuracy rate when the value
of Re was 0.8, and so we set the final value of Re as 0.8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16

where Zm is the probability that reference line 3 will be selected as the final reference line
under the Re threshold and Zvvc is the probability that reference line 3 will be selected as
the final reference line in the original VVC. The experimental results are shown in Figure
8, where T, M, B, P, and F represent the coding sequences Tango2, MarkPlace, BQTerrace,
PartyScene, and FourPeople, respectively. Observing Figure 8, it is not difficult to deter-
mine that the accuracy rate gradually increased with the increase in the threshold, and it
reached its highest when the threshold was 1, but at this time, the judgment condition was
too strict and it was difficult to reduce the complexity. It had a better accuracy rate when
the value of Re was 0.8, and so we set the final value of Re as 0.8.

Figure 8. Reference line of Ac under the different thresholds.

4. Experimental Results
In order to assess the performance of our method, we conducted experiments using

the reference software VVC VTM-13.0. These experiments involved testing 21 sequences
which were selected from six sequences with different resolutions as recommended by the
JVET common test conditions. Our proposed algorithm was evaluated using the following
four different quantization parameters (QPs): 22, 27, 32, and 37. The performance of the
algorithm was measured by Ts and BDBR, where Ts was calculated as follows:

}{22 27 32 37
1 To 100%
4 ToQpi

Qpi Tp QpiTs
Qpi∈
−= × ， ， ，

（ ） （ ）

（ ）
. (18)

In the context of our evaluation, the total encoding time of the original VVC standard
was represented by To while the total encoding time of our proposed method was denoted
as Tp. Additionally, BDBR was used to measure the degree of loss in the encoding perfor-
mance. A smaller BDBR value indicated a lesser loss in compression performance. By con-
ducting these experiments and utilizing the aforementioned metrics, our aim was to eval-
uate and analyze the effectiveness of the proposed algorithm in terms of saving encoding
time and increasing compression efficiency.

We tested the coding performances of the two individual algorithms, and the results
are shown in Table 3. As shown in Table 3, the proposed fast partition algorithm saved
49.77% of the encoding time, and the reference line fast decision algorithm saved 5.43% of
the encoding time, with a negligible loss in encoding performance.

Ac
(%

)

Re
T M B P F

Figure 8. Reference line of Ac under the different thresholds.

4. Experimental Results

In order to assess the performance of our method, we conducted experiments using
the reference software VVC VTM-13.0. These experiments involved testing 21 sequences
which were selected from six sequences with different resolutions as recommended by the
JVET common test conditions. Our proposed algorithm was evaluated using the following
four different quantization parameters (QPs): 22, 27, 32, and 37. The performance of the
algorithm was measured by Ts and BDBR, where Ts was calculated as follows:

Ts =
1
4 ∑Qpi∈{22,27,32,37}

To(Qpi)− Tp(Qpi)
To(Qpi)

× 100% (18)

In the context of our evaluation, the total encoding time of the original VVC stan-
dard was represented by To while the total encoding time of our proposed method was
denoted as Tp. Additionally, BDBR was used to measure the degree of loss in the encoding
performance. A smaller BDBR value indicated a lesser loss in compression performance.
By conducting these experiments and utilizing the aforementioned metrics, our aim was
to evaluate and analyze the effectiveness of the proposed algorithm in terms of saving
encoding time and increasing compression efficiency.

We tested the coding performances of the two individual algorithms, and the results
are shown in Table 3. As shown in Table 3, the proposed fast partition algorithm saved
49.77% of the encoding time, and the reference line fast decision algorithm saved 5.43% of
the encoding time, with a negligible loss in encoding performance.

In Table 4, we present the experimental results, comparing our proposed method with
the original VTM-13.0 platform as well as other fast algorithms. Our method demonstrated
significant improvements in terms of encoding time and compression performance. Com-
pared to VTM-13.0, our proposed method achieved an average reduction in encoding time
of 52.26% compared to the BDBR loss of 1.23%. This indicated that our method significantly

Appl. Sci. 2023, 13, 10381 12 of 15

improved the efficiency of the encoding process while maintaining a high compression
performance.

Table 3. Experimental results of the different algorithms for the different test sequences.

Coding Sequence
Fast Partition Skip Reference Line 3 Decision

BDBR (%) Ts (%) BDBR (%) Ts (%)

Tango2 1.11 47.12 0.04 5.75
Campfire 0.99 50.25 0.06 6.72
CatRobot 1.35 51.11 0.08 4.11

DatLightRoat2 1.16 47.25 0.11 7.25
ParkRunning3 1.05 50.11 0.09 3.21

MarkPlace 1.23 49.32 0.09 6.42
Cactus 1.01 48.75 0.11 5.21

BasketballDrive 0.88 50.42 0.21 7.32
BQTerrace 0.71 52.31 0.33 4.11

RaceHorses 0.91 45.15 0.12 6.21
BasketballDrill 1.02 49.03 0.09 4.32

BQMall 1.22 50.62 0.04 7..21
PartyScene 1.11 49.32 0.12 4.21
RaceHorses 0.87 48.01 0.09 5.01

BasketballPass 0.96 52.01 0.14 6.02
BQSquare 0.93 51.04 0.13 6.45

BlowingBubbles 1.11 49.21 0.06 4.66
FourPeople 0.94 50.22 0.21 5.23

Johnny 0.92 47.42 0.21 6.69
KristenAndSara 1.08 50.32 0.09 4.24

average 1.02 49.77 0.12 5.43

Table 4. Comparison of the algorithm results.

Coding
Sequence

Reference [11] Reference [16] Algorithm in This
Paper

BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%)

Tango2 0.74 37.01 1.59 51.85 1.34 55.97
Campfire 0.66 34.05 1.61 50.11 1.43 50.96
CatRobatl 0.54 29.91 1.55 50.59 1.21 51.41

DatLightRoat2 0.71 32.12 1.77 47.92 1.16 53.25
ParkRunning3 0.68 32.11 1.39 54.33 1.41 51.07

MarkPlace 0.55 34.15 1.46 48.11 1.19 55.11
Cactus 0.61 30.73 1.31 44.95 1.32 50.07

BasketballDrive 0.74 34.48 0.94 48.33 1.26 49.61
BQTerrace 0.62 30.85 1.49 46.16 1.02 49.01

RaceHorses 0.46 27.83 0.98 51.04 1.35 54.27
BasketballDrill 0.41 26.55 1.05 51.18 1.28 53.21

BQMall 0.65 33.79 0.81 46.95 1.14 53.02
PartyScene 0.42 31.62 0.83 45.88 1.22 52.65
RaceHorses 0.55 30.17 1.24 48.33 1.19 57.21

BasketballPass 0.7 30.53 1.18 45.17 1.07 48.95
BQSquare 0.29 29.97 1.41 40.04 1.11 53.35

BlowingBubbles 0.43 29.34 0.99 43.86 1.36 51.15
FourPeople 0.78 35.63 0.89 46.68 1.29 53.77

Johnny 0.69 30.65 1.27 39.21 1.05 51.57
KristenAndSara 0.59 31.38 1.63 49.82 1.38 50.91

average 0.59 31.44 1.29 47.91 1.23 52.26

Compared to the method described in reference [11], our approach saved more encod-
ing time. Compared with the method in reference [16], our method was superior for both
the time savings and the BDBR. The method in [16] required a large amount of data to train

Appl. Sci. 2023, 13, 10381 13 of 15

the model, and the performance of the method may have been affected if the training data
were insufficient or not comprehensive enough.

We plotted the corresponding curve graph for the data in Table 3, as shown in Figure 9.
By observing Figure 9, it is evident that the proposed algorithm in this paper significantly
saved encoding time compared to the method proposed in reference [11]. Furthermore,
when compared to reference [16], the curve corresponding to the saved encoding time in
the proposed algorithm is smoother, indicating that the proposed algorithm was stable
for various coding sequences. The method presented in reference [16] showed significant
variation in its encoding results for different coding sequences, indicating lower stability
compared to our proposed algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16

BasketballPass 0.7 30.53 1.18 45.17 1.07 48.95
BQSquare 0.29 29.97 1.41 40.04 1.11 53.35

BlowingBubbles 0.43 29.34 0.99 43.86 1.36 51.15
FourPeople 0.78 35.63 0.89 46.68 1.29 53.77

Johnny 0.69 30.65 1.27 39.21 1.05 51.57
KristenAndSara 0.59 31.38 1.63 49.82 1.38 50.91

average 0.59 31.44 1.29 47.91 1.23 52.26

We plotted the corresponding curve graph for the data in Table 3, as shown in Figure
9. By observing Figure 9, it is evident that the proposed algorithm in this paper signifi-
cantly saved encoding time compared to the method proposed in reference [11]. Further-
more, when compared to reference [16], the curve corresponding to the saved encoding
time in the proposed algorithm is smoother, indicating that the proposed algorithm was
stable for various coding sequences. The method presented in reference [16] showed sig-
nificant variation in its encoding results for different coding sequences, indicating lower
stability compared to our proposed algorithm.

Figure 9. Encoding time savings curves for the different algorithms [11,16].

In Figure 10, we present the rate-distortion (RD) curves for the sequences Basketball-
Pass and BlowingBubbles, comparing the performance of our proposed method (repre-
sented by the red curve) with that of the original encoder (represented by the black curve).
Figure 10a,b shows the RD curves for BasketballPass and BlowingBubbles, respectively.
For BlowingBubbles, the RD curve of the proposed method is slightly lower than that of
the original encoder. For BasketballPass, the RD curve of our proposed method nearly
coincides with that of the original encoder. Therefore, our algorithm effectively saved en-
coding time while maintaining a high RD performance.

Figure 9. Encoding time savings curves for the different algorithms [11,16].

In Figure 10, we present the rate-distortion (RD) curves for the sequences Basketball-
Pass and BlowingBubbles, comparing the performance of our proposed method (repre-
sented by the red curve) with that of the original encoder (represented by the black curve).
Figure 10a,b shows the RD curves for BasketballPass and BlowingBubbles, respectively.
For BlowingBubbles, the RD curve of the proposed method is slightly lower than that of
the original encoder. For BasketballPass, the RD curve of our proposed method nearly
coincides with that of the original encoder. Therefore, our algorithm effectively saved
encoding time while maintaining a high RD performance.

Figure 11 shows a subjective quality comparison for BasketballDrill. As we can see
in Figure 11, the reconstructed frame of the proposed algorithm is nearly the same as
that of the original encoder. Other sequences had similar situations, which verified the
effectiveness of the proposed algorithm.

Appl. Sci. 2023, 13, 10381 14 of 15
Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 16

(a) (b)

Figure 10. Comparison of the RD performances between the proposed algorithm and the original
encoder: (a) RD performance of BasketballPass, and (b) RD performance of BlowingBubbles.

Figure 11 shows a subjective quality comparison for BasketballDrill. As we can see in
Figure 11, the reconstructed frame of the proposed algorithm is nearly the same as that of
the original encoder. Other sequences had similar situations, which verified the effective-
ness of the proposed algorithm.

(a) (b)

Figure 11. Subjective quality comparison: (a) the reconstructed frame of the original encoder, and
(b) the reconstructed frame of the proposed algorithm.

5. Conclusions
We have proposed a low-complexity algorithm for VVC intra coding which exploits

the effect of the sub-block texture complexity on the selection of partitioning modes to
construct the MPPPL, and it decides the optimal mode on this basis. At the same time,
unnecessary reference lines are skipped by using the pixel content similarity between the
reference lines. The algorithm was tested on the reference software VVC VTM-13.0 and
achieved an average coding time savings of 52.26%, with a BDBR increase of 1.23%.

Author Contributions: Methodology, X.S.; Software, S.Z.; Resources, H.Z.; Data curation, S.Z.; Writ-
ing – original draft, S.Z.; Funding acquisition, G.W. All authors have read and agreed to the pub-
lished version of the manuscript.

38

39

40

41

42

43

44

10 15 20 25 30 35 40 45 50 55

y-
PS

NR
/d

B

Bitrate/kbps

VTM13.0
Propsed

30

32

34

36

38

40

42

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

y-
PS

NR
/d

B

Bitrate/kbps

VTM13.0
Propsed

Figure 10. Comparison of the RD performances between the proposed algorithm and the original
encoder: (a) RD performance of BasketballPass, and (b) RD performance of BlowingBubbles.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 16

(a) (b)

Figure 10. Comparison of the RD performances between the proposed algorithm and the original
encoder: (a) RD performance of BasketballPass, and (b) RD performance of BlowingBubbles.

Figure 11 shows a subjective quality comparison for BasketballDrill. As we can see in
Figure 11, the reconstructed frame of the proposed algorithm is nearly the same as that of
the original encoder. Other sequences had similar situations, which verified the effective-
ness of the proposed algorithm.

(a) (b)

Figure 11. Subjective quality comparison: (a) the reconstructed frame of the original encoder, and
(b) the reconstructed frame of the proposed algorithm.

5. Conclusions
We have proposed a low-complexity algorithm for VVC intra coding which exploits

the effect of the sub-block texture complexity on the selection of partitioning modes to
construct the MPPPL, and it decides the optimal mode on this basis. At the same time,
unnecessary reference lines are skipped by using the pixel content similarity between the
reference lines. The algorithm was tested on the reference software VVC VTM-13.0 and
achieved an average coding time savings of 52.26%, with a BDBR increase of 1.23%.

Author Contributions: Methodology, X.S.; Software, S.Z.; Resources, H.Z.; Data curation, S.Z.; Writ-
ing – original draft, S.Z.; Funding acquisition, G.W. All authors have read and agreed to the pub-
lished version of the manuscript.

38

39

40

41

42

43

44

10 15 20 25 30 35 40 45 50 55

y-
PS

NR
/d

B

Bitrate/kbps

VTM13.0
Propsed

30

32

34

36

38

40

42

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

y-
PS

NR
/d

B

Bitrate/kbps

VTM13.0
Propsed

Figure 11. Subjective quality comparison: (a) the reconstructed frame of the original encoder, and
(b) the reconstructed frame of the proposed algorithm.

5. Conclusions

We have proposed a low-complexity algorithm for VVC intra coding which exploits
the effect of the sub-block texture complexity on the selection of partitioning modes to
construct the MPPPL, and it decides the optimal mode on this basis. At the same time,
unnecessary reference lines are skipped by using the pixel content similarity between the
reference lines. The algorithm was tested on the reference software VVC VTM-13.0 and
achieved an average coding time savings of 52.26%, with a BDBR increase of 1.23%.

Author Contributions: Methodology, X.S.; Software, S.Z.; Resources, H.Z.; Data curation, S.Z.;
Writing – original draft, S.Z.; Funding acquisition, G.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by [National Natural Science Foundation of China] grant number
[62001283].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, H.; Guo, C.; Liu, J.; Wang, X.; Kwong, S. Motion-homogeneous-based fast transcoding method from H. 264/AVC to HEVC.

IEEE Trans. Multimed. 2017, 19, 1416–1430. [CrossRef]
2. Hamidouche, W.; Biatek, T.; Abdoli, M.; Francois, E.; Pescador, F.; Radosavljevic, M.; Menard, D.; Raulet, M. Versatile video

coding standard: A review from coding tools to consumers deployment. IEEE Consum. Electron. Mag. 2022, 11, 10–24. [CrossRef]

https://doi.org/10.1109/TMM.2017.2669858
https://doi.org/10.1109/MCE.2022.3144545

Appl. Sci. 2023, 13, 10381 15 of 15

3. Tissier, A.; Mrecat, A.; Amestoy, T. Complexity reduction opportunities in the future VVC intra encoder. In Proceedings of the
International Workshop on Multimedia Signal Processing, Kuala Lumpur, Malaysia, 27–29 September 2019; pp. 27–29.

4. Pakdamaf, F.; Adelimanesh, M.; Gabbouj, M. Complexity analysis of next-generation VVC encoding and decoding. In Proceedings
of the International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 25–28.

5. Amna, M.; Imen, W.; Fatma, E.S. Fast multi-type tree partitioning for versatile video coding using machine learning. Signal Image
Video Process. 2023, 17, 67–74. [CrossRef]

6. Fu, T.; Zhang, H.; Mu, F. Fast CU partition algorithm for H. 266/VVC intra-frame coding. In Proceedings of the 2019 IEEE
International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 55–60.

7. Li, T.; Xu, M.; Tang, R.; Chen, Y.; Xing, Q. Deep QTMT: A deep learning approach for fast QTMT-based CU partition of intra-mode
VVC. IEEE Trans. Image Process. 2021, 30, 5377–5390. [CrossRef] [PubMed]

8. Zhang, Q.; Guo, R.; Jiang, B. Fast CU decision-making algorithm based on DenseNet network for VVC. IEEE Access 2021, 9,
119289–119297. [CrossRef]

9. Taabane, I.; Menard, D.; Mansouri, A. Machine learning based fast QTMTT partitioning strategy for VVenC encoder in intra
coding. Electronics 2023, 12, 1338. [CrossRef]

10. Zhang, Q.; Wang, Y.; Huang, L. Fast CU partition and intra mode decision method for H. 266/VVC. IEEE Access 2020, 8,
117539–117550. [CrossRef]

11. Yang, H.; Shen, L.; Dong, X.; Ding, Q.; An, P.; Jiang, G. Low-complexity CTU partition structure decision and fast intra mode
decision for versatile video coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1668–1682. [CrossRef]

12. Wu, S.; Shi, J.; Chen, Z. HG-FCN: Hierarchical Grid Fully Convolutional Network for Fast VVC Intra Coding. IEEE Trans. Circuits
Syst. Video Technol. 2022, 8, 5638–5649. [CrossRef]

13. Saldanha, M.; Sanchez, G.; Marcon, C. Learning-based complexity reduction scheme for VVC intra-frame prediction. In
Proceedings of the 2021 International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany,
5–8 December 2021; pp. 1–5.

14. Tissier, A.; Hamidouche, W.; Vanne, J. CNN oriented complexity reduction of VVC intra encoder. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 3139–3143.

15. Hoangvan, X.; NguyenQuang, S.; DinhBao, M. Fast QTMT for H. 266/VVC intra prediction using early-terminated hierarchical
CNN model. In Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi
Minh City, Vietnam, 14–16 October 2021; pp. 195–200.

16. Li, H.; Zhang, P.; Jin, B. Fast CU Decision Algorithm Based on Texture Complexity and CNN for VVC. IEEE Access 2023, 11,
35808–35817. [CrossRef]

17. Yao, Y.; Wang, J.; Du, C. A support vector machine based fast planar prediction mode decision algorithm for versatile video
coding. Multimed. Tools Appl. 2022, 81, 17205–17222. [CrossRef]

18. Abdallah, B.; Belghith, F.; Ben Ayed, M.A. Fast QTMT decision tree for Versatile Video Coding based on deep neural network.
Multimed. Tools Appl. 2022, 81, 42731–42747. [CrossRef]

19. Zheng, J.S.; Zong, J.P.; Gang, Y.J. Fast intra partition and mode prediction for equirectangular projection 360-degree video coding.
IET Image Process. 2023, 17, 558–569. [CrossRef]

20. Tsai, Y.H.; Lu, C.R.; Chen, M.J. Visual Perception Based Intra Coding Algorithm for H. 266/VVC. Electronics 2023, 12, 2079.
[CrossRef]

21. Zhang, S.; Zhang, R.; Jing, X. A fast Multi-Type-Tree split decision algorithm of intra coding unit in VVC. In Proceedings of the IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain, 15–17 June 2022; pp. 1–5.

22. Zhang, D.; Li, Q. An Efficient CU Partition Algorithm for VVC Intra Coding. J. Phys. Conf. Ser. 2021, 1815, 012006. [CrossRef]
23. Li, Q.; Meng, H.; Li, Y. Texture-based fast QTMT partition algorithm in VVC intra coding. Signal Image Video Process. 2022, 17,

1581–1589. [CrossRef]
24. Shang, X.; Li, G.; Zhao, X. Low complexity inter coding scheme for Versatile Video Coding (VVC). J. Vis. Commun. Image Represent.

2023, 90, 103683. [CrossRef]
25. Zhang, Q.; Zhao, Y.; Jiang, B. Fast CU partition decision method based on texture characteristics for H. 266/VVC. IEEE Access

2020, 8, 203516–203524. [CrossRef]
26. Fan, Y.; Sun, H.; Katto, J. A fast QTMT partition decision strategy for VVC intra prediction. IEEE Access 2020, 8, 107900–107911.

[CrossRef]
27. Shang, X.; Li, G.; Zhao, X. Fast CU size decision algorithm for VVC intra coding. Multimed. Tools Appl. 2023, 82, 28301–28322.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11760-022-02204-4
https://doi.org/10.1109/TIP.2021.3083447
https://www.ncbi.nlm.nih.gov/pubmed/34057892
https://doi.org/10.1109/ACCESS.2021.3108238
https://doi.org/10.3390/electronics12061338
https://doi.org/10.1109/ACCESS.2020.3004580
https://doi.org/10.1109/TCSVT.2019.2904198
https://doi.org/10.1109/TCSVT.2022.3146061
https://doi.org/10.1109/ACCESS.2023.3266002
https://doi.org/10.1007/s11042-022-12582-z
https://doi.org/10.1007/s11042-022-13479-7
https://doi.org/10.1049/ipr2.12655
https://doi.org/10.3390/electronics12092079
https://doi.org/10.1088/1742-6596/1815/1/012006
https://doi.org/10.1007/s11760-022-02367-0
https://doi.org/10.1016/j.jvcir.2022.103683
https://doi.org/10.1109/ACCESS.2020.3036858
https://doi.org/10.1109/ACCESS.2020.3000565
https://doi.org/10.1007/s11042-023-14691-9

	Introduction
	Related Work
	Proposed Method
	Principle
	Construct the Most Probable Partition Pattern List
	Partition Mode Decision
	Reference Line for Quick Decision

	Experimental Results
	Conclusions
	References

