
Citation: Zhao, H.; Zhao, S.; Shang,

X.; Wang, G. A Fast Algorithm for

VVC Intra Coding Based on the Most

Probable Partition Pattern List. Appl.

Sci. 2023, 13, 10381. https://doi.org/

10.3390/app131810381

Academic Editor: Christos Bouras

Received: 26 June 2023

Revised: 16 August 2023

Accepted: 6 September 2023

Published: 17 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Fast Algorithm for VVC Intra Coding Based on the Most
Probable Partition Pattern List
Haiwu Zhao, Shuai Zhao, Xiwu Shang * and Guozhong Wang

School of Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
zhao.hw@avsgm.com (H.Z.)
* Correspondence: dxsxw@126.com; Tel.: +86-021-6779-1084

Abstract: Compared with High-Efficiency Video Coding (HEVC), Versatile Video Coding (VVC)
has more flexible division and higher compression efficiency, but it also has higher computational
complexity. In order to reduce the coding complexity, a fast algorithm based on the most probable
partition pattern list (MPPPL)and pixel content similarity is proposed. Firstly, the MPPPL is con-
structed by using the average texture complexity difference of the sub-coding unit under different
partition modes. Then, the sub-block pixel mean difference is used to decide the best partition mode
or shorten the MPPPL. Finally, the selection rules of the reference lines in the intra prediction process
are counted and the unnecessary reference lines are skipped by using the pixel content similarity. The
experimental results show that compared with VTM-13.0, the proposed algorithm can save 52.26% of
the encoding time, and the BDBR (Bjontegarrd delta bit rate) only increases by 1.23%.

Keywords: versatile video coding; fast algorithm; coding unit partition; intra prediction

1. Introduction

Rapid advancements in information technology have led to the rapid development of
multimedia technologies such as 4K ultra-high-definition videos, 360-degree immersive
multimedia, and high dynamic range videos. Consequently, there has been a significant
surge in data volume, placing immense pressure on data storage and transmission. Existing
coding standards such as High-Efficiency Video Coding [1] have difficulty in meeting this
requirement.

To address these challenges, the Joint Video Coding Expert Group embarked on the
development of the next-generation video standard and introduced a novel video coding
standard known as Versatile Video Coding (VVC) [2]. The primary objective of VVC is to
achieve a compression efficiency improvement of over 50% while maintaining comparable
video quality to HEVC. VVC incorporates a new segmentation technique called Quadtree
with Nested Multi-Type Tree (QTMT) [3]. In addition to the QT partition structure, VVC
encompasses four other multi-type tree (MTT) partition structures: vertical binary tree
(VBT), horizontal binary tree (HBT), vertical ternary tree (VTT), and horizontal ternary
tree (HTT). By introducing QTMT, a coding unit’s (CU) shape becomes more flexible
and diverse, thereby increasing the number of CUs that necessitate recursive traversal
during the rate-distortion optimization (RDO) process. Figure 1 illustrates an example of
the partition structure obtained after recursive traversal, along with the corresponding
tree structure. Flexible partition structures, while enhancing compression efficiency, also
increase computational complexity. Under the condition of an all-intra configuration, the
average complexity of VVC is 18 times higher than that of HEVC [4]. This has hindered
the widespread adoption of VVC (Versatile Video Coding) and its application in real-time
scenarios.
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Figure 1. Example of the CU partition structure in VVC:(a) CU division results, ad (b) corresponding
tree structure.

To solve the problem of the high computational complexity in the intra coding of VVC,
a fast partition method is proposed. The main contributions of the proposed method are as
follows:

(1) The concept of an MPPPL is proposed, and the method for constructing the MPPPL is
provided. In the decision-making process of the partition mode, the partition mode
in the MPPPL is sequentially tested, and the optimal partition mode is decided in
advance according to the calculation results.

(2) According to the influence of the partition mode distribution in the MPPPL on the
partition mode selection, the pixel mean value difference is used to shorten the MPPPL
or to decide the optimal partition mode in advance.

(3) Using the pixel content similarity, the calculation of reference line three is skipped in
the intra prediction process, which reduces the computational complexity of the intra
prediction.

2. Related Work

Currently, studies on fast algorithms for VVC can be divided into two parts: artificial
intelligence-based methods and coding content-based methods.

For artificial intelligence-based methods, in [5], a fast algorithm based on machine
learning was proposed, and it used texture complexity to determine the division direction
and a lightweight neural network to determine the division mode. Fu et al. [6] proposed a
fast decision binary partition algorithm based on Bayesian rules by utilizing the correlation
between the current CU and the sub-CU after horizontal binary partition, and it used the
correlation between the current CU and the sub-CU after horizontal binary segmentation
to terminate the vertical binary segmentation. In [7], a deep learning method was proposed
to predict the CU partition, and a multi-stage exit CNN model was also proposed for fast
CU partition in multiple stages while using an early exit mechanism to skip redundant
CUs. Zhang et al. [8] divided a CTU into four parts to train the neural network and to
calculate the probability of various partition modes in the CTU. Once the probability of the
partition mode exceeded the threshold, it was skipped to achieve complexity reduction.
In [9], the proposed algorithm was formed by five binary Light Gradient Boosting Machine
(LightGBM) classifiers. In [10], a random forest classifier was used to make an early decision
about the partition mode by utilizing the texture features of the image and the intra-frame
prediction process was optimized based on the image content. Yang et al. [11] transformed
the QTMT partition process into multiple binary classification problems for each decision
layer, which were processed by a decision tree classifier. Although this method saved
coding time, the BDBR (Bjøntegaard Delta Bit Rate) losses were high. In [12], a hierarchical
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grid fully convolutional network (HG-FCN) framework was proposed to predict a specific
level of partition structure, achieving a certain degree of complexity reduction. Saldanha
et al. [13] used a classifier to make early decisions about the DC mode and the Planar mode
during the prediction process, and they used the pixel variances of the sub-blocks to decide
whether to use intra-frame sub-block partition technology. In [14], a convolutional neural
network was trained to predict partition modes by training a probability vector. In [15],
a neural network model was trained using cross-entropy, and it was used to terminate
the partitioning process early. In [16], a fast CU-partitioning decision algorithm based on
texture complexity and convolutional neural networks (CNN) was used, and this algorithm
used symmetric convolution kernels to extract features and redesign the loss function.
In [17], a novel feature based on Statistical Oriented Gradient (SOG) was proposed to
extract the feature information of a coding block, and it used SOG to speed up the intra
prediction mode decision process. In [18], a fast QTMT partition algorithm based on a
CNN-binary tree horizontal (CNN-BTH) network was developed to predict the BTH mode
decision at 32 × 32 coding units (CUs). The BTV decision tree algorithm was also predicted
at this level by a CNN-binary tree vertical (CNN-BTV).

For coding content-based methods, in [19], a latitude-based preprocessing was in-
troduced for the early termination of the coding unit (CU) partition in the polar region.
In [20], the factor of an average background luminance for just-noticeable-distortion was
applied to identify the visually distinguishable (VD) pixels within a coding unit (CU).
Zhang et al. [21] proposed a fast partition scheme based on adjacent sub-regions, and it
skipped unnecessary partition modes in advance based on the similarity of the adjacent
sub-regions in the horizontal and vertical directions. In [22], a CU partition was determined
early by the use of texture information, and the residual coefficient distribution of the
CUs were used to skip unnecessary partition modes. In [23], Li et al. used the gradient of
the Scharr operator to describe texture information, and they used the edge differences
of the sub-blocks to describe structural information. On this basis, they proposed a fast
algorithm based on texture features. In [24], Shang et al. created rapid decisions in the
CU partition process by utilizing the partition mode and the size distribution of adjacent
CUs, and they optimized the decision-making process of inter-frame prediction modes.
In [25], Zhang et al. used corner features and average color brightness differences to classify
screen content. Then, for different screen contents, they exploited different strategies to
predict the coding modes. In [26], Fan et al. used the Sobel operator to calculate the
gradient of the CU and terminate the QT partition based on the gradient. Then, texture
information was used to measure the differences between the partition structures based
on which partition patterns were determined. Shang et al. [27] predicted the quadtree
division depth of a current CU in advance by analyzing the correlations between adjacent
CUs. In addition, image texture features were utilized to make early decisions about the
MTT division process. Zhang et al. [21] proposed a fast partition scheme based on adjacent
sub-regions, and it skipped unnecessary partition modes in advance based on the similarity
between adjacent sub-regions in the horizontal and vertical directions. In [5], Zhang et al.
determined whether to split decisions using CU texture information, and they skipped
unnecessary partition modes according to the distribution of the residual coefficients.

Although the above methods have achieved some complexity reductions, they have
not achieved a good balance between the complexity reduction and the compression
performance loss. Complexity reductions that maintain good compression performance
are limited, and the improvement in the application of VVC in real-time scenarios is not
significant. A compression performance with a higher complexity reduction has a greater
loss, and this cannot meet coding requirements.

3. Proposed Method
3.1. Principle

Figure 2 shows schematic diagrams of the CU partition results of the QTMT structure
of the coding sequence in VVC. Upon examining Figure 2, it becomes evident that as the
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partition depth increases, the CU progressively becomes smoother, resulting in a gradual
reduction in texture complexity. Additionally, the partition mode decision tends to favor
partition modes that minimize the texture complexity of the sub-CUs.
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Figure 2. The partition results under QP = 32: (a) BQSquare, and (b) BlowingBubbles.

We selected five video sequences with different resolutions and texture complexities
under JVET general test conditions [24], including FoodMarket4, Kimono1, BasketballPass,
BQMall, and BQSquare. The relationship between the decision of the CU partition mode
in the coding process and the texture complexity of the sub-CUs after different coding
sequences was counted. The experimental results are shown in Figure 3. The partition
mode with the largest average texture complexity of the sub-CU was recorded as Modemax,
and the partition mode with the smallest average texture complexity of the sub-CU was
recorded as Modemin. Texture complexity was used to describe the local texture features
of the image, and the more complex the texture of the local image, the higher the texture
complexity.
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Figure 3. The relationship between the optimal partition mode of VVC and the average value of the
sub-CU texture complexity.
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Based on the statistical data in Figure 3, it is not difficult to find that the VVC par-
tition mode decision has a strong correlation with the average texture complexity of the
partitioned sub-CUs. The smaller the average texture complexity of the divided sub-CUs,
the greater the possibility of the partition mode being selected as the optimal partition
mode, accounting for an average of 75%. The average texture complexity of the divided
sub-CUs reflects the probability of the current partition mode being selected as the optimal
partitioning mode, but it cannot be used as the basis for the final partition mode decision
because there are still some partition modes that are selected as the optimal partition mode,
even though their sub-CU average texture complexity is not the lowest.

3.2. Construct the Most Probable Partition Pattern List

As shown in Figure 4, there are five partition modes in the VVC intra-frame coding
partition process, namely, Quad-tree (QT), vertical binary tree (VBT), horizontal binary tree
(HBT), vertical ternary tree (VTT), and horizontal ternary tree (HTT), where HBT and VBT
are collectively referred to as binary tree (BT) and VTT and HTT are collectively referred to
as ternary tree (TT).
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The most probable partition pattern list (MPPPL) initially included these five parti-
tion modes. We calculated the average texture complexity of sub-CUs under these five
partitioning modes. The formula used for calculating the texture complexity is as follows:

f T (p, q, m, n) =
√

1
m× n∑p+m

i=p ∑q+n
j=q [pix(i, j)− pave(p, q, m, n)]2 , (1)

where p and q represent the starting coordinates of the CU, m and n represent the end
coordinates of the CU, and pave(p, q, m, n) represents the CU whose starting coordinates are
p and q, the end coordinates are represented by m, and n is the inner pixel average. pave(p, q,
m, n) is calculated as follows:

pave(p, q, m, n) =
1

m× n∑p+m
i=p ∑q+n

j=q pix(i, j). (2)

The average texture complexity of the sub-CUs after horizontal binary partition is
denoted as Thbt, and its calculation formula is shown below, where x and y are the starting
coordinates of the current CU and w and h are the width and height of the current CU.

Thbt =
1
2
[ fT(x, y, x + w, y +

h
2
) + fT(x, y +

h
2

, x + w, y + h)]. (3)

The average value of the sub-CU texture complexity after horizontal ternary partition
is denoted as Thtt, and its calculation formula is as follows:

Thtt =
1
3
[ fT(x, y, x + w, y +

h
4
) + fT(x, y +

h
4

, x + w, y +
3h
2
) + fT(x, y +

3h
4

, x + w, y + h)]. (4)
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The average value of the sub-CU texture complexity after vertical binary partition is
recorded as Tvbt, and its calculation formula is as follows:

Tvbt =
1
2
[ fT(x, y, x +

w
2

, y + h) + fT(x +
w
2

, y, x + w, y + h)]. (5)

The average value of the sub-CU texture complexity after vertical ternary partition is
recorded as Tvht, and its calculation formula is as follows:

Tvtt =
1
3
[ fT(x, y, x +

w
4

, y + h) + fT(x +
w
4

, y + h, x +
3w
4

, y + h) + fT(x +
3w
4

, y + h, x + w, y + h)]. (6)

The average value of the sub-CU texture complexity after QT partition is recorded as Tqt,
and its calculation formula is as follows:

Tqt =
1
4
[ fT(x, y, x +

w
2

, y +
h
2
) + fT(x +

w
2

, y, x + w, y +
h
2
) + fT(x, y +

h
2

, x +
w
2

, y + h) + fT(x +
w
2

, y +
h
2

, x + w, y + h)]. (7)

After obtaining the average texture complexity of the sub-CUs under the five partition
modes, we used this as a reference to update the MPPPL. The larger the average texture
complexity of the sub-CUs, the lower the probability of that partition mode being selected
as the optimal partition mode. Therefore, we used the reciprocal of the average texture
complexity of the sub-CUs after division to calculate the probability that the partition mode
was the optimal partition mode. The formula used is as follows:

Pmode =
1

Tmode
1

Tqt +
1

Tvtt +
1

Tvbt +
1

Thtt +
1

Thbt
, (8)

where mode represents one of the QT partitions, vertical ternary partitions, vertical binary
partitions, horizontal ternary partitions, and horizontal binary partitions.

After obtaining the probability of each partition mode being selected as the optimal
partition mode, the MPPPL was sorted from large to small according to the probability
of the partition mode being selected as the optimal partition mode, and the MPPPL was
updated. At this time, the MPPPL was expressed as follows:

MPPPL = {Mode− a , Mode− b, Mode− c, Mode− d, Mode− e}. (9)

In addition to the five partition modes, VVC also has the possibility of adopting a non-
partition strategy. Considering the spatial continuity of an image’s content, we considered
whether to include the non-partition mode in the MPPPL. First, we obtained the partition
sizes of adjacent CUs. If the partition sizes of the adjacent CUs were all larger than the
current CU, based on spatial correlation, the current CU had a possibility of not being
partitioned. Further, we compared the difference value (d) between the average texture
complexity of the sub-CUs corresponding to partition mode Mode-a (Ta) and the average
texture complexity of the sub-CUs corresponding to partition mode Mode-e (Te). The
comparison formula used is as follows:

d =
Ta

Te
, (10)

where if the two values Ta and Te are very close, then d will be close to 1. This indicates that
the texture complexity of the current CU has already approached smoothness, and further
partition will not effectively reduce the texture complexity of the CU. Based on practical
experience, when d is less than 1.1 and greater than 0.9, we can include the non-partitioning
strategy in the MPPPL and place it at the first position, and then the remaining partition
modes are shifted back in order.

To avoid redundant partitioning, VVC has partitioning condition limitations. After the
MPPPL construction was completed, we modified the MPPPL according to the limitations
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of the partitioning rules, and we deleted the partitioning modes that were not allowed in
the MPPPL.

3.3. Partition Mode Decision

After the construction of the MPPPL was completed, the partition mode was decided
in advance on this basis or the length of the MPPPL was reduced. We conducted a statistical
analysis on the probability of a particular direction being selected as the final partition
direction when the first two partition modes in the MPPPL were of the same direction,
and the results are shown in Table 1. When both Mode-a and Mode-b in the MPPPL were
either horizontal partition modes or vertical partition modes, it indicates that the current
CU exhibits strong directional texture and is more inclined towards either horizontal or
vertical partition. In such cases, the MPPPL can be modified by removing all partition
modes except for Mode-a and Mode-b.

Table 1. Mode-a and Mode-b partition mode selection probability in the same direction.

Coding Sequence Both Vertical Both Horizontal

Campfire 85% 79%
Cactus 94% 83%

BasketballPass 83% 85%
BQSquare 86% 87%

In the partition process of VVC, the probability of a TT partition being adopted is very
small (no more than 20%) [25]. Therefore, when determining the direction of a CU partition,
further consideration is given as to whether to skip TT partition and decide the optimal
partition mode. If Mode-a is a TT partition at this time, it indicates that in the previous
calculation, the TT partition had a high probability of being the optimal partition mode,
and the TT partition is not skipped at this time. If Mode-a is a BT partition, we would
consider skipping the TT partition directly at this time. It is not difficult to determine from
Figure 5 that when the texture structure in a CU is mainly concentrated on the left and
right sides or at the upper and lower sides of a CU boundary, the TT division structure is
used. At this time, there was a significant difference in the average pixel values between
the sub-CUs, and so we used the pixel mean difference between the sub-CUs to decide
whether to skip the TT partition.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16 
 

3.3. Partition Mode Decision 
After the construction of the MPPPL was completed, the partition mode was decided 

in advance on this basis or the length of the MPPPL was reduced. We conducted a statis-
tical analysis on the probability of a particular direction being selected as the final parti-
tion direction when the first two partition modes in the MPPPL were of the same direction, 
and the results are shown in Table 1. When both Mode-a and Mode-b in the MPPPL were 
either horizontal partition modes or vertical partition modes, it indicates that the current 
CU exhibits strong directional texture and is more inclined towards either horizontal or 
vertical partition. In such cases, the MPPPL can be modified by removing all partition 
modes except for Mode-a and Mode-b. 

Table 1. Mode-a and Mode-b partition mode selection probability in the same direction. 

Coding Sequence Both Vertical Both Horizontal 
Campfire 85% 79% 

Cactus 94% 83% 
BasketballPass 83% 85% 

BQSquare 86% 87% 

In the partition process of VVC, the probability of a TT partition being adopted is 
very small (no more than 20%) [25]. Therefore, when determining the direction of a CU 
partition, further consideration is given as to whether to skip TT partition and decide the 
optimal partition mode. If Mode-a is a TT partition at this time, it indicates that in the 
previous calculation, the TT partition had a high probability of being the optimal partition 
mode, and the TT partition is not skipped at this time. If Mode-a is a BT partition, we 
would consider skipping the TT partition directly at this time. It is not difficult to deter-
mine from Figure 5 that when the texture structure in a CU is mainly concentrated on the 
left and right sides or at the upper and lower sides of a CU boundary, the TT division 
structure is used. At this time, there was a significant difference in the average pixel values 
between the sub-CUs, and so we used the pixel mean difference between the sub-CUs to 
decide whether to skip the TT partition. 

  
(a) (b) 

Figure 5. Schematic diagram of the TT division structure: (a) HTT, and (b) VTT. 

The pixel mean difference of the horizontal binary partition (PHBT) was calculated as 
follows: 

P
2 2

HBT ave ave
h hp x, y,x+ w y+ p x, y ,x+ w y+h= +（ ， ）- （ ， ）. (11)

The pixel mean difference of the horizontal ternary partition (PHTT) was calculated as 
follows: 

Figure 5. Schematic diagram of the TT division structure: (a) HTT, and (b) VTT.

The pixel mean difference of the horizontal binary partition (PHBT) was calculated as
follows:

PHBT = pave(x, y, x + w, y +
h
2
)− pave(x, y +

h
2

, x + w, y + h). (11)

The pixel mean difference of the horizontal ternary partition (PHTT) was calculated as
follows:
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PHTT = pave(x, y +
h
4

, x + w, y +
3h
4
)−min(pave(x, y, x + w, y +

h
4
), pave(x, y +

3h
4

, x + w, y + h)). (12)

Similarly, the formulas used for calculating the pixel mean difference of the vertical
binary partition (PVBT) and the pixel mean difference of the vertical ternary partition (PVTT)
are as follows:

PVBT = pave(x, y, x +
w
2

, y + h)− pave(x +
w
2

, y, x + w, y + h) and (13)

PVTT = pave(x +
w
4

, y, x +
3w
4

, y + h)−min(pave(x, y, x +
w
4

, y), pave(x +
3w
4

, y, x + w, y + h)). (14)

We selected different coding sequences and conducted a statistical analysis on the
relationship between the selection of partition modes in the MTT partition process and the
difference in the pixel mean values. The statistical results are shown in Table 2.

Table 2. Effect of pixel mean difference on the selection of the division mode.

Coding Sequence BT (%) TT (%)

(a) FoodMarket4
PHBT > PHTT 94 6
PVBT > PVTT 97 3
(b) Kimono1
PHBT > PHTT 91 9
PVBT > PVTT 95 5

(c) BasketballPass
PHBT > PHTT 99 1
PVBT > PVTT 92 8
(d) BQMall

PHBT > PHTT 96 4
PVBT > PVTT 89 11
(e) BQSquare
PHBT > PHTT 90 10
PVBT > PVTT 93 7

It can be observed that when the pixel mean difference of the horizontal binary
partition is greater than that of the horizontal ternary partition, there is a stronger preference
for selecting the horizontal binary partition. Similarly, when the pixel mean difference of
the vertical binary partition is greater than that of the vertical ternary partition, there is a
stronger preference for selecting the vertical binary partition. Therefore, when both Mode-a
and Mode-b in the MPPPL are either horizontal partition modes or vertical partition modes,
an early decision on the optimal partition mode is considered. If Mode-a is a horizontal
binary partition, then we would calculate the pixel mean difference of the horizontal binary
partition (PHBT) and the pixel mean difference of the horizontal ternary partition (PHTT),
and if PHBT is greater than PHTT, then this indicates that the horizontal binary partition has
a high probability of being the optimal partition mode at this time. We would then skip
the RDC test of the horizontal ternary tree partition and set the horizontal binary partition
as the optimal partition mode for the current CU. Similarly, if the pixel mean difference of
the vertical binary partition (PVBT) is greater than PVTT in the vertical direction, then the
vertical binary partition is set as the optimal partition mode.

If the partition modes in the MPPPL do not follow any clear rules, then the RDC
(rate-distortion cost) is first calculated for the Mode-a and Mode-b partition modes in the
order specified by the MPPPL. In the MPPPL, Mode-a has the highest probability of being
the optimal partition mode. If the RDC of Mode-b is greater than the RDC of the Mode-a,
then we would stop calculating the RDCs of the other partition modes, and the optimal
mode would be the partition mode corresponding to Mode-a. If the RDC of the Mode-b
partition mode is smaller than the RDC of the Mode-a partition mode, then we would
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calculate the RDC of the Mode-c partition mode at this time and compare it with the RDC
of the Mode-b partition mode. If the RDC of the Mode-b partition mode is smaller than
that of Mode-c, then Mode-b would be the optimal partition mode at this time; otherwise,
this process is repeated until the optimal partition mode is found. The algorithm flow chart
is shown in Figure 6.
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3.4. Reference Line for Quick Decision

VVC has increased the number of intra prediction modes to 65, and it introduced
the multiple reference line (MRL). The traditional intra prediction mode only refers to the
reference pixels in the adjacent left column and the upper row when completing predictions.
MRL extends this to three rows and three columns. In MRL, in order to obtain the optimal
intra prediction angle, MRL references line 0, line 1, and line 3. Line 0 and line 1 can
provide reference information for nearby pixels and line 3 provides reference information
for distant pixels. Line 2 is difficult but provides useful information, and so no reference
is made. In the calculation process, the three lines are tested in turn, and then the line or
column with a smaller RDC is selected as the reference line or reference column, which
increases the computational complexity of the intra prediction.

We randomly selected the reference sequence in the VVC standard and counted the
proportion of different reference lines or columns selected as the optimal reference lines
during the intra prediction process. The statistical results are shown in Figure 7, where FO,
BQ, KI, BA, and JO correspond to the coding sequences FoodMarket4, BQMall, Kimono1,
BasketballPass, and Johnny, respectively. Based on the statistical data shown in Figure 7, it
is not difficult to determine that line 0 was selected as the reference pixel for prediction in
most cases while the probability of reference line 3 being selected as the reference pixel was
very small, with an average of approximately 8%, and so reference line 3 was skipped in
the vast majority of cases.
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Figure 7. Reference line ratios of the different partition sequences.

Reference line 3 was added to the reference line as we hoped that it could provide dif-
ferent reference information from lines 0 and 1. The difference in this reference information
was directly reflected in the difference between the reference pixel contents. We measured
this difference by comparing the pixel content similarity (PCS) of reference line 3 and
reference line 2. The calculation formulas used are shown below, where PCSH is the content
similarity between reference line 3 and reference line 2, PSHV is the content similarity
between reference column 3 and reference column 2, (x, y) is the starting coordinate of the
current prediction block, and w and h are its width and height.

PCSH =

x+w
∑

i=x
[p(i, y− 4)− p(i,y−2)+p(i,y−1)

2 ]

x+w
∑

i=x
[p(i, y− 3)− p(i,y−2)+p(i,y−1)

2 ]

and (15)

PCSV =

y+h
∑

i=y
[p(x− 4, i)− p(x−2,i)+p(x−1,i)

2 ]

y+h
∑

i=y
[p(x− 3, i)− p(x−2,i)+p(x−1,i)

2 ]

. (16)

In Formulas (15) and (16), if reference line 3 is similar to reference line 2, the difference
between them and other reference lines is closer. If the pixel content similarity between
reference line 3 and reference line 2 is between Re and 1/Re, this means that reference line 3
and reference line 2 have a high degree of similarity in pixel content. At this time, reference
line 3 was difficult to use for providing useful reference information compared to reference
line 2, and the calculation for reference line 3 was skipped in subsequent calculations. In
order to determine the optimal threshold m, we counted the accuracy rate (Ac) of reference
line 3 as the final reference line under the different thresholds. The calculation formula
used for Ac is as follows:

Ac = Zm/Zvvc, (17)

where Zm is the probability that reference line 3 will be selected as the final reference line
under the Re threshold and Zvvc is the probability that reference line 3 will be selected as
the final reference line in the original VVC. The experimental results are shown in Figure 8,
where T, M, B, P, and F represent the coding sequences Tango2, MarkPlace, BQTerrace,
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PartyScene, and FourPeople, respectively. Observing Figure 8, it is not difficult to determine
that the accuracy rate gradually increased with the increase in the threshold, and it reached
its highest when the threshold was 1, but at this time, the judgment condition was too strict
and it was difficult to reduce the complexity. It had a better accuracy rate when the value
of Re was 0.8, and so we set the final value of Re as 0.8.
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4. Experimental Results

In order to assess the performance of our method, we conducted experiments using
the reference software VVC VTM-13.0. These experiments involved testing 21 sequences
which were selected from six sequences with different resolutions as recommended by the
JVET common test conditions. Our proposed algorithm was evaluated using the following
four different quantization parameters (QPs): 22, 27, 32, and 37. The performance of the
algorithm was measured by Ts and BDBR, where Ts was calculated as follows:

Ts =
1
4 ∑Qpi∈{22,27,32,37}

To(Qpi)− Tp(Qpi)
To(Qpi)

× 100% (18)

In the context of our evaluation, the total encoding time of the original VVC stan-
dard was represented by To while the total encoding time of our proposed method was
denoted as Tp. Additionally, BDBR was used to measure the degree of loss in the encoding
performance. A smaller BDBR value indicated a lesser loss in compression performance.
By conducting these experiments and utilizing the aforementioned metrics, our aim was
to evaluate and analyze the effectiveness of the proposed algorithm in terms of saving
encoding time and increasing compression efficiency.

We tested the coding performances of the two individual algorithms, and the results
are shown in Table 3. As shown in Table 3, the proposed fast partition algorithm saved
49.77% of the encoding time, and the reference line fast decision algorithm saved 5.43% of
the encoding time, with a negligible loss in encoding performance.

In Table 4, we present the experimental results, comparing our proposed method with
the original VTM-13.0 platform as well as other fast algorithms. Our method demonstrated
significant improvements in terms of encoding time and compression performance. Com-
pared to VTM-13.0, our proposed method achieved an average reduction in encoding time
of 52.26% compared to the BDBR loss of 1.23%. This indicated that our method significantly
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improved the efficiency of the encoding process while maintaining a high compression
performance.

Table 3. Experimental results of the different algorithms for the different test sequences.

Coding Sequence
Fast Partition Skip Reference Line 3 Decision

BDBR (%) Ts (%) BDBR (%) Ts (%)

Tango2 1.11 47.12 0.04 5.75
Campfire 0.99 50.25 0.06 6.72
CatRobot 1.35 51.11 0.08 4.11

DatLightRoat2 1.16 47.25 0.11 7.25
ParkRunning3 1.05 50.11 0.09 3.21

MarkPlace 1.23 49.32 0.09 6.42
Cactus 1.01 48.75 0.11 5.21

BasketballDrive 0.88 50.42 0.21 7.32
BQTerrace 0.71 52.31 0.33 4.11

RaceHorses 0.91 45.15 0.12 6.21
BasketballDrill 1.02 49.03 0.09 4.32

BQMall 1.22 50.62 0.04 7..21
PartyScene 1.11 49.32 0.12 4.21
RaceHorses 0.87 48.01 0.09 5.01

BasketballPass 0.96 52.01 0.14 6.02
BQSquare 0.93 51.04 0.13 6.45

BlowingBubbles 1.11 49.21 0.06 4.66
FourPeople 0.94 50.22 0.21 5.23

Johnny 0.92 47.42 0.21 6.69
KristenAndSara 1.08 50.32 0.09 4.24

average 1.02 49.77 0.12 5.43

Table 4. Comparison of the algorithm results.

Coding
Sequence

Reference [11] Reference [16] Algorithm in This
Paper

BDBR (%) Ts (%) BDBR (%) Ts (%) BDBR (%) Ts (%)

Tango2 0.74 37.01 1.59 51.85 1.34 55.97
Campfire 0.66 34.05 1.61 50.11 1.43 50.96
CatRobatl 0.54 29.91 1.55 50.59 1.21 51.41

DatLightRoat2 0.71 32.12 1.77 47.92 1.16 53.25
ParkRunning3 0.68 32.11 1.39 54.33 1.41 51.07

MarkPlace 0.55 34.15 1.46 48.11 1.19 55.11
Cactus 0.61 30.73 1.31 44.95 1.32 50.07

BasketballDrive 0.74 34.48 0.94 48.33 1.26 49.61
BQTerrace 0.62 30.85 1.49 46.16 1.02 49.01

RaceHorses 0.46 27.83 0.98 51.04 1.35 54.27
BasketballDrill 0.41 26.55 1.05 51.18 1.28 53.21

BQMall 0.65 33.79 0.81 46.95 1.14 53.02
PartyScene 0.42 31.62 0.83 45.88 1.22 52.65
RaceHorses 0.55 30.17 1.24 48.33 1.19 57.21

BasketballPass 0.7 30.53 1.18 45.17 1.07 48.95
BQSquare 0.29 29.97 1.41 40.04 1.11 53.35

BlowingBubbles 0.43 29.34 0.99 43.86 1.36 51.15
FourPeople 0.78 35.63 0.89 46.68 1.29 53.77

Johnny 0.69 30.65 1.27 39.21 1.05 51.57
KristenAndSara 0.59 31.38 1.63 49.82 1.38 50.91

average 0.59 31.44 1.29 47.91 1.23 52.26

Compared to the method described in reference [11], our approach saved more encod-
ing time. Compared with the method in reference [16], our method was superior for both
the time savings and the BDBR. The method in [16] required a large amount of data to train
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the model, and the performance of the method may have been affected if the training data
were insufficient or not comprehensive enough.

We plotted the corresponding curve graph for the data in Table 3, as shown in Figure 9.
By observing Figure 9, it is evident that the proposed algorithm in this paper significantly
saved encoding time compared to the method proposed in reference [11]. Furthermore,
when compared to reference [16], the curve corresponding to the saved encoding time in
the proposed algorithm is smoother, indicating that the proposed algorithm was stable
for various coding sequences. The method presented in reference [16] showed significant
variation in its encoding results for different coding sequences, indicating lower stability
compared to our proposed algorithm.
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In Figure 10, we present the rate-distortion (RD) curves for the sequences Basketball-
Pass and BlowingBubbles, comparing the performance of our proposed method (repre-
sented by the red curve) with that of the original encoder (represented by the black curve).
Figure 10a,b shows the RD curves for BasketballPass and BlowingBubbles, respectively.
For BlowingBubbles, the RD curve of the proposed method is slightly lower than that of
the original encoder. For BasketballPass, the RD curve of our proposed method nearly
coincides with that of the original encoder. Therefore, our algorithm effectively saved
encoding time while maintaining a high RD performance.

Figure 11 shows a subjective quality comparison for BasketballDrill. As we can see
in Figure 11, the reconstructed frame of the proposed algorithm is nearly the same as
that of the original encoder. Other sequences had similar situations, which verified the
effectiveness of the proposed algorithm.
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Figure 10. Comparison of the RD performances between the proposed algorithm and the original
encoder: (a) RD performance of BasketballPass, and (b) RD performance of BlowingBubbles.
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Figure 11. Subjective quality comparison: (a) the reconstructed frame of the original encoder, and
(b) the reconstructed frame of the proposed algorithm.

5. Conclusions

We have proposed a low-complexity algorithm for VVC intra coding which exploits
the effect of the sub-block texture complexity on the selection of partitioning modes to
construct the MPPPL, and it decides the optimal mode on this basis. At the same time,
unnecessary reference lines are skipped by using the pixel content similarity between the
reference lines. The algorithm was tested on the reference software VVC VTM-13.0 and
achieved an average coding time savings of 52.26%, with a BDBR increase of 1.23%.
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