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Abstract: Leakages in the water distribution networks (WDNs) are real problems for utilities and
other governmental agencies. Timely leak detection and location identification have been challenges.
In this paper, an integrated approach to geospatial and infrared image processing was used for robust
leak detection. The method combines drops in flow, pressure, and chlorine residuals to determine
potential water leakage locations in the WDN using Geographic Information System (GIS) techniques.
GIS layers were created from the hourly values of these three parameters for the city of Sharjah
provided by the Sharjah Electricity, Water, and Gas Authority (SEWA). These layers are then analyzed
for locations with dropped values of each of the parameters and are overlaid with each other. In
the case where there were no overlaying locations between flow and pressure, further water quality
analysis was avoided, assuming no potential leak. In the case where there are locations with drops in
flow and pressure layers, these overlaying locations are then examined for drops in chlorine values.
If overlaying locations are found, then these regions are considered potential leak locations. Once
potential leak locations are identified, a specialized remote sensing technique can be used to pinpoint
the leak location. This study also demonstrated the suitability of using an infrared camera for leak
detection in a laboratory-based setup. This paper concludes that the following methodology can help
water utility companies in the timely detection of leaks, saving money, time, and effort.

Keywords: water distribution network (WDN); leak detection; GIS; remote sensing; infrared (IR)

1. Introduction

Water distribution networks (WDNs) are complex systems that are prone to significant
water loss, and this loss is mainly due to pipe leakage [1,2]. It is estimated that leaks can
contribute up to 70% of water losses in transmission systems [3]. Leakages in these WDNs
are mainly caused by pipe damage or by the network’s inability to control pressure due to
uncertain demand and operating conditions [4]. Leaks in pipelines are an issue of increasing
concern in WDNs as they have negative environmental, economic, and social impacts. Pipe
leakages have detrimental effects on natural water resources, nearby infrastructure, and the
environment, as they cause pipes to burst and enable the entry of harmful contaminants
into the network [4,5]. The loss of a substantial volume of water that has undergone costly
treatment is, for one, a serious economic issue [6]. Moreover, leaky pipes cause an increase
in pumping energy and system rehabilitation costs, which compromise water quality by
enabling the entry of contaminated groundwater, pathogens, and soil constituents [7].
Leaks also have the potential to erode soil and recharge aquifers beneath urban areas,
which puts building foundations at risk [8]. Not only will mitigating leakages reduce
operating costs and increase revenues, but it will also improve water efficiency, minimize
infrastructure damage, and prevent adverse effects on human health [9].

Detecting these leakages poses a great challenge to engineers since the pipes are usually
buried underground. For this reason, constant monitoring is required to identify and
prevent potential water leakages in pipes. Traditional leak detection methods, which are
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disruptive techniques, would change the structure of the WDN, disrupting the serviceability
of the network [10]. However, research on novel non-destructive methods has shown the
potential for leak detection without altering the chemical composition or geometry of the
materials being investigated.

The advent of technology has led to developments in non-destructive leak detection
techniques for WDNs. For instance, innovative non-destructive techniques (NDT) like
infrared (IR) cameras, spectrometers, and ground penetration radar (GPR) have been used
to identify leaks in different types of pipes at different moisture contents [10,11]. The
study deduced that all three NDTs could identify leaks in PE, PPR, and PVC pipes, but the
detection effectiveness decreased as the moisture content of the soil increased. A recent
study has shown the use of GPR and IR cameras simultaneously to effectively determine
water leaks in both cold and hot weather conditions [12]. Since GPR is a geophysical
imaging technique used for subsurface monitoring, it can accurately identify the pipe’s
location underground [12]. The IR camera is then able to determine leakage locations
and estimate the leakage area [12]. Thermal imaging has also been successful in leak
detection [12,13]. In addition, acoustic emission methods are another NDT suitable for
detecting leaks, as they collect sound signals generated by the cavitation and turbulence
that occur in a leak [14,15]. It is important to note that signal processing and classification
methods are required to verify that the noises formed are due to leaks [14]. Therefore,
integrated approaches are proven to be the most effective for accurate and efficient real-
time monitoring. Therefore, using a combination of NDTs has proven to enhance the
effectiveness of leak detection methods to help mitigate leakages. Several studies have
proposed techniques for leak detection in pressurized transmission mains (TMs). These
techniques can be used on WDNs as well; however, more studies are focusing on TMs as the
current technology for fault detection on TMs is lacking [16]. This issue is being addressed
because research has shown that TMs with relatively larger diameters have larger leaks than
expected, and the costs of replacing deteriorating TMs are higher than those of WDNs [17].
A study by [16] explored the use of transient tests, such as Transient Test-Based Techniques
(TTBTs), for fault detection in water transmission mains. This technique involves inserting
a small pressure wave into a pipeline, which travels through the pipeline, detecting leaks,
partial blockages, and the reduction of the pipe wall’s thickness due to corrosion. The study
illustrated the successful usage of TTBTs in a real-life pipe system. Another study designed
a smart-portable pressure wave maker (S-PPWM) for leak detection in TMs as a form of
TTBT [17]. The design was built to minimize the TM volume and to ease the evaluation of
the minimum detectable leak for a given TM. The device has been proven to be used within
leak detection surveys of TMs based on the execution of safe transient tests (TTBTs) [17].

The reviews of existing leak detection methods indicated the problem of accuracy
in identifying the location of leakages. Therefore, combining different technologies to
improve the accuracy of leak detection has proven to be most effective [18]. Recent studies
have explored the use of geographic information systems (GIS) and remote sensing for
different practical applications. One study by [19] developed a database of morphometric
characteristics and their hydrological implications using a satellite image of the Jimen
basin located in northern Iraq. The study evaluated the effect of solar radiation on the
basin’s surface runoff, allowing them to predict the presence of saturated soil for water
harvesting [19]. In addition, a study conducted in southwest Saudi Arabia integrated
GIS and remote sensing to determine the hydrological characteristics of a watershed in
Saudi Arabia [20]. The paper’s findings serve as a basis for practical applications in flood
management and water harvesting [20].

This paper aims to use GIS and remote sensing with an infrared camera to accurately
detect leakage in a pipe network. GIS refers to a computer-based system that stores,
analyzes, and displays geographically referenced data [21]. Therefore, GIS is essential for
the operation of water networks; studies have shown the integration of GIS can assist in real-
time leak detection [22,23]. A study by [23] employed the use of GIS to help water utility
companies predict and assess vulnerable locations prone to leakage in WDNs. Another
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study [24] utilized the ArcGIS software 3.2 to assist in the analysis of water losses in a
WDN by using four feature classes: pipeline layer, meter layer, elevation map, and field
operations layout. ArcGIS displayed the results obtained from the field and the results
calibrated, which illustrated the faulty meters and pipe leak locations [24]. Combining the
results of the model displayed on GIS with other layers, like a topographic layer of the
region or district metered area zones, enhanced the analysis of critical zones of WDNs for
optimal operation and management of the network [24].

Remote sensing provides better temporal and spatial coverage than ground detection
methods [25]. Recent studies have shown that spatial resolution is an essential parameter for
the detection and mapping of water leakage regions using remote sensing data. A study [18]
identified leakages by recording remote sensing data from ground spectroradiometers and
hyperspectral data from a low-altitude system. The study deduced that water leakages can
be monitored and detected using the appropriate spatial resolution images. The spectral
signals of dry and wet soils were recognizable in the visible range of 400–700 nm and in
the near-IR range of 750–900 nm [18]. In comparison to dry soils, wet soils have 20–25%
lower reflectance values, and the difference is maximized in the near-IR range [16]. The
research study concluded that remote sensing is effective for the determination of water
pipe location and leakage [18].

The literature on using hyperspectral imaging for water leakage detection is limited;
however, it is a growing area in remote sensing [26]. Hyperspectral imaging is a developing
technology in remote sensing where an imaging spectrometer collects hundreds of images at
different wavelengths for the same spatial area [26]. It is concerned with the measurement,
analysis, and interpretation of spectra taken from a given scene or object at a short, medium,
or long distance by an airborne (drone) or satellite sensor [27]. The NASA Jet Propulsion
Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) can record the
visible and near infrared spectrum (wavelength range 400–2500 nm) of the reflected light
on an area 2–12 km wide and several kilometres long using 224 spectral bands [28]. The
result is a stack of images whereby each pixel has a corresponding spectral signature, or
‘fingerprint’, that distinguishes the underlying objects, and the final data volume comprises
several gigabytes per flight [26]. This usually requires hardware accelerators to speed up
computations. Hyperspectral sensors are expected to increase their spatial, spectral, and
temporal resolutions [26]. The incredible amount of spectral information available from the
latest hyperspectral devices has opened doors to real-time processing applications such as
monitoring leakages [29].

An IR camera detects infrared energy reflected or emitted by an object and converts
it into a thermal image [10]. Leaks in an underground water network may change the
temperature of the surrounding soil, as leaked water is typically cooler than soil, which
absorbs thermal energy faster than water [10]. In addition, IR cameras can be used at any
time of the day, and they can investigate large areas in comparatively less time with lower
costs than other NDTs [30]. The paper presented the use of a thermography IR camera for
the detection of heat changes at pavement surfaces due to water pipe leaks underneath the
surface. The results of the study showed that the IR camera successfully detected several
leaks as thermal contrast at pavement surfaces occurred in the fall and spring seasons.
However, it failed to detect leaks during the summer and winter due to high pavement
temperatures and snow coverage. A more recent study evaluating the effectiveness of
spectrometers, GPR, and IR as NDTs deduced that the IR camera was shown to be the most
effective for pipeline leak detection [10].

A study [31] used medium- and high-resolution data from different satellites for the
detection of water leakages in the “Frenaros—Choirokoitia” water pipe in Cyprus. The
study applied two alternative methodologies. The first used a high-resolution QuickBird
image to identify and verify ‘suspicious leaks’ in a small area near the water pipes [31]. The
second methodology involved using multi-temporal analysis using medium-resolution
SPOT images. The analysis focused on regions around the joints of the pipe, using a
10-meter buffer zone [31]. This method recorded 10 possible leakage points along the
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25-kilometer-long pipeline [31]. The effectiveness of this study could be enhanced if the
images were taken of a larger area, displaying an entire WDN and not just a single pipeline.
In addition, acquiring images at a high spatial resolution can increase the accuracy of leak
detection along the pipeline.

In this paper, an integrated approach of GIS and IR image processing was used
to detect leakages in the WDN of Sharjah Electricity and Water Authority (SEWA). The
objective of this paper is to develop a leak detection method using GIS and remote sensing.
The aim of using this method is to enhance the efficiency of WDNs by increasing their
accuracy in identifying leakages. This study creates a GIS-based customized system to
identify potential leakage locations and deploys an IR camera to identify potential leak
locations. The main contributions of this paper are as follows:

• For potential locations of leak identification, we used GIS analysis methods, including
buffer and intersection methods, using drops in water pressure, flow, and chlorine
values.

• Capturing infrared drone images for the potential leak locations identified through
the GIS analysis methods.

• Use of log ratio methods to process the infrared drone images for robust leak localization.

2. Materials and Methods

To achieve the objectives, the paper develops an integrated leak detection method
using GIS and remote sensing. For this reason, the methodology is deconstructed into
two phases. In the first phase, the use of GIS helps identify potential leak locations using
different sets of hydraulic and water quality data from a real WDN that may indicate
potential leaks. That is, sudden drops in pressure, flow, and water quality can be shown on
spatial variability maps generated by GIS. At the end of the first phase, either no leaks were
found in certain locations or candidate leak locations were identified. Once the candidate
leak locations are found, the second phase begins with the use of remote sensing to capture
and process images that can be utilized at the candidate leak location.

2.1. Phase 1: GIS Application

In this study, WDN for the City of Sharjah, UAE, was used to demonstrate the ap-
plicability of the model. Sharjah Electricity and Water Authority (SEWA) manages the
desalination plants and WDN in the City of Sharjah. The WDN consists of more than
4000 km of pipe networks. Figure 1 illustrates a map of SEWA’s WDN that was used
for the GIS-based model for the leak detection system. Most of the pipes were made of
asbestos-cement pipes. The SEWA installed many sensors throughout the large WDN to
monitor the hydraulic and water quality parameters to ensure enough water is available in
good quality.

SEWA installed sensors in the WDN capable of monitoring real-time hydraulic and
general water quality parameters. Potential leaks can cause drops in parameters like
pressure, flow, and water quality. In addition, the larger the number of joints along a pipe
length, the more likely it is for there to be a leak. In large WDNs like Sharjah, it is difficult
to differentiate leaks from other sources of parameter fluctuations. Therefore, spatial
variability maps were generated in GIS for pressure, flow, and water quality parameters
such as pH, conductivity, and chlorine residuals. The spatial variability maps were used to
identify parts of the WDN where large drops of pressure, flow, and chlorine residuals occur.
It is assumed that locations with high drops in pressure, flow, and chlorine residuals may
indicate potential leakages. Three conditioning factors were represented as raster layers on
the ArcGIS Pro 3.2 software: pressure, flow, and chlorine residual.
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Figure 1. Water distribution network of Sharjah Electricity and Water Authority.

The ArcGIS Pro software was used in this phase. The flow chart illustrated in Figure 2
shows the values of the three parameters—flow, pressure, and water quality—at a set
of locations during any period. This data was provided by SEWA. The real-time data is
continuous, and the software is expected to run analysis as data is provided. Initially, the
flow and pressure parameters in different regions undergo overlay analysis. An overlay
analysis carries through all the attributes of the features taking part in the overlay and
creates a new polygon dataset. The data set provided ten locations (regions) in Sharjah
and tabulated thirty readings for pressure and flow data for each location, and the average
value was calculated for each of those data sets. Any individual value lower than the
average of the data set is suspected of containing a leak. Each value indicating a drop in
pressure or flow along the pipe was overlaid in the software, and this either created new
overlaying regions or no regions at all. In the case where there are no overlaying regions
among the two parameters, there is no need to analyze the water quality values, and the
conclusion is that there are no leaks detected in the given set of locations at a particular time.
In the second case, where there are one or more overlaying regions formed among pressure
and flow drops, these overlaying regions are merged with locations that indicate drops in
chlorine residual values. Afterwards, there is no new overlaying region, which indicates
that there were no leaks in that location at a certain time or that new overlaying regions
had formed. If one or more new overlaying regions are generated, then the conclusion is
that those locations do have leaks. The proposed methodology uses ArcGIS Pro as well as
a module builder based on Python code (Appendix A) to identify leakage locations.
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2.2. Phase 2: Remote Sensing with an Infrared Camera

In the second phase of this integrated approach, thermal images (thermograms) of
the model distribution system were captured using the FLIR420 thermal imaging camera,
Wilsonville, Oregon, U.S. (Figure 3). The camera has a wavelength range of 7500–14,000 nm.
On the right side of the camera’s display, the color range represents the temperature range
of the captured area. The darker colors illustrate regions with lower temperatures, while
the brighter colors illustrate regions with higher temperatures.
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Since the data provided by SEWA was a few years old at the time of the study,
conducting field tests may not be meaningful as maintenance activities might have already
been carried out at the suspected locations. In addition, due to government restrictions
related to field experiments at the locations identified in Phase 1, similar experiments were
conducted on the model setup. The thermal images of the model water distribution system,
shown in Figure 4a,b, were captured manually. This WDN model is a carefully built setup
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that includes a dune-sand-filled box with four PPR pipes (th = 5.7 mm) and is designed to
simulate pipe leaks in underground conditions. One of the pipes is a regular pipe without
any leaks, and the three other pipes were created with simulated leaks from cracks, holes,
and joints. An experiment was conducted on the pipe with a hole. These grayscaled IR
images generated during laboratory-based experiments were then processed to clearly
display the heat signatures. Since water has a cooling effect compared to the surrounding
soil, with the help of time series images, the leakage locations can be identified.
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Figure 4. (a) Labeled diagram of experimental setup; (b) model water distribution system.

The aim is to capture the thermograms in grayscale RGB (red, green, and blue) format
where all three layers are equal. Therefore, only one layer is selected for image processing.
The grayscale image is later processed to a false color image with multiple layers for percep-
tion purposes to increase the contrast of the thermal images. Figures 5 and 6 show a sample
grayscale image and its corresponding false-color thermogram from a previous study [13].
The leakage is characterized by a lower temperature than the soil. It is important to consider
that the temperature of the soil will vary with time. The temperature of the surrounding soil
will decrease continuously as the leak spreads throughout the soil. Therefore, the surface
with the highest temperature variation is above the leakage. The next section outlines the
mathematical model that will emphasize the temporal temperature variation.
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3. Results and Discussion
3.1. GIS Application
3.1.1. Case Scenario 1: No Detection of Leakage Location(s)

To prove that this integrated approach works, this method was applied to dates that
are known not to have any leakages. The raw data provided by SEWA is shown below,
and it illustrates the flow and pressure values for each day in one month at 10 locations
in the city of Sharjah. Using ArcGIS Pro, the flow and pressure data for each location are
evaluated to map the water quality parameters. As mentioned in the previous section, the
assumption is made that any flow higher than the average or pressure value lower than the
average from the data set (highlighted in green and red) is suspected to have a leak in that
location. Another assumption for suspected leakage is customer complaints.

Tables 1 and 2 show the daily flow data (in m3/day) at 10 different locations in a
specific month, and Table 3 shows the average flow for that month. Any value less than the
average is highlighted in green.

Table 1. Flow data provided by SEWA (first half of the month).

DMA D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
Al Rahmanya-1 740 760 660 680 710 770 710 670 600 790 580 740 500 600 0 650
Al Rahmanya-3 960 1100 1030 970 1200 1140 1210 1120 600 1160 990 1190 1140 670 1250 1210

Industrial Area-4 4500 5070 5440 6930 5430 5450 5120 5110 4760 4730 4960 5180 5380 5150 5150 5350
Industrial Area-4 30 20 10 0 40 30 40 40 20 10 0 10 20 40 10 30

Barashi 410 570 160 630 670 930 1180 2260 2070 1800 1220 1420 640 780 1060 830
Maysaloon 440 650 800 450 170 100 240 1310 1710 2540 2780 3120 2620 2670 2940 3110
Al Fayah 980 980 1020 970 1030 1050 1070 1080 1010 1060 1060 1080 1070 1060 960 1020

Al Ghuwair 3340 4230 8190 3800 4650 5290 2870 3850 830 790 870 860 1200 890 950 1070
Bu Tina 6500 6490 6600 7280 7270 7120 7010 7040 6930 7410 7800 7420 7410 7150 7200 7150

Al Sabkha 3740 3730 3690 3670 3770 3760 3680 3730 3700 3870 3810 3720 3840 3970 3780 3830
Al Sabkha 890 880 900 830 800 860 740 880 850 820 800 730 640 690 700 630

Al Ghaphia 1270 1140 750 220 550 1170 610 830 1060 740 350 690 830 730 850 760
Al Ghaphia 1160 1070 950 780 860 1070 930 1060 1050 800 680 740 650 640 750 750
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Table 2. Flow data provided by SEWA (second half of the month).

DMA D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31
Al Rahmanya-1 660 780 600 730 720 660 660 670 600 680 640 710 670 560 710
Al Rahmanya-3 1180 900 1000 1270 1200 1210 1150 1390 1010 1180 1140 1230 1160 1200 1360

Industrial Area-4 5310 5180 5060 5340 5090 5220 5330 5250 4830 4950 5380 5160 5350 5380 5000
Industrial Area-4 30 40 20 0 10 20 20 30 80 110 50 80 60 60 80

Barashi 660 1260 920 970 1690 1370 1160 820 1220 1580 2070 1580 1710 1480 1270
Maysaloon 2850 2850 2190 1870 2090 2380 2390 2020 2650 2000 1740 0 1530 1400 1380
Al Fayah 1050 1050 1130 1010 1050 980 1010 990 1030 1170 1040 1060 1100 1020 1090

Al Ghuwair 1060 1050 950 950 940 920 980 950 1150 1450 260 210 210 220 200
Bu Tina 7040 7690 7380 7070 6950 6860 7050 7070 7320 7380 7200 7220 7470 7220 7150

Al Sabkha 3790 3860 3790 3790 3760 3700 3770 3700 3730 3750 3680 3690 3780 3750 3770
Al Sabkha 620 670 690 710 720 770 750 720 700 640 620 630 630 680 740

Al Ghaphia 640 160 60 360 730 750 900 780 460 510 550 440 230 180 550
Al Ghaphia 790 720 720 810 800 800 920 760 910 800 770 830 750 740 820

Table 3. Average flow in a month (m3/day).

DMA AVG (m3/day)

Al Rahmanya-1 651.9354839

Al Rahmanya-3 1113.548387

Industrial Area-4 5210.967742

Industrial Area-4 33.5483871

Barashi 1173.870968

Maysaloon 1773.870968

Al Fayah 1041.290323

Al Ghuwair 1780

Bu Tina 7156.452

Al Sabkha 3761.290323

Al Sabkha 739.6774194

Al Ghaphia 640.3225806

Al Ghaphia 834.8387097

Tables 4 and 5 show the daily pressure data (in bars) at 10 different locations in one
month, and Table 6 shows the average flow for that month. Any value less than the average
is highlighted in red.

The model is initiated by adding the given pressure and flow values into the ArcGIS
Pro software. This is followed by the addition of the flow query values, which exclude any
flow values above the average value and identify the value with the lowest flow below
average from each location. Furthermore, the pressure query values are found by taking
the average of the average pressure values from each location. Once the query values
have been obtained in the model, a buffer analysis is conducted within a radius of 2000 m
around the suspected leakage areas. That is, the buffer analysis tool on ArcGIS Pro traverses
the suspected regions and creates buffer polygon offsets. The blue polygons in Figure 7
show the intersections of the buffer offsets generated from the suspected areas within a
2000-meter radius.
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Table 4. Pressure data provided by SEWA (first half of the month).

DMA D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
Al Rahmanya-1 4.07 3.87 2.56 4.2 3.96 3.76 4 3.43 2.33 3.12 3.13 3.23 2.84 1.99 3.65 3.81
Al Rahmanya-3 3.7 3.41 2.18 3.7 3.58 3.23 3.39 2.73 2.22 2.31 2.41 2.33 3.03 2.61 2.8 2.98

Industrial Area-4 1.07 1.01 0.99 0.97 1.05 1.04 1.03 1.05 1.07 1.1 1.13 1.07 1.09 1.07 1.05 1.02
Barashi 3.31 1.73 1.93 2.64 2.2 1.33 1.89 2.09 2.48 2.04 1.38 1.44 1.09 0.89 1.05 1.17

Maysaloon 1.07 1.07 1.03 0.95 1.03 1.04 1.02 1.07 1.14 1.21 1.12 1.08 1.15 1.09 1.07 1.08
Al Fayah 0.89 0.86 0.88 0.89 0.88 0.9 0.87 0.87 0.85 0.93 0.94 0.89 0.93 0.9 0.9 0.87

Al Ghuwair 0.87 0.87 0.84 0.76 0.83 0.86 0.85 0.88 0.93 0.94 0.85 0.84 0.9 0.86 0.84 0.85
Bu Tina 0.69 0.68 0.68 0.63 0.67 0.69 0.68 0.7 0.7 0.72 0.68 0.67 0.71 0.69 0.68 0.67

Al Sabkha 1.05 1.02 1.01 0.97 1.01 1.05 1.01 1.04 1.02 1.04 1 1.02 1.03 0.96 1.01 1.01
Al Ghaphia 1.15 1.1 1.06 1.01 1.07 1.14 1.07 1.12 1.11 1.1 1.04 1.07 1.08 1 1.07 1.08
Al Nasserya 0.9 0.8 0.82 0.8 1.07 1.08 0.79 0.84 0.84 0.89 0.88 0.83 0.87 0.83 0.81 0.81
Al Qadsia 0.9 0.87 0.88 0.85 0.89 0.9 0.87 0.9 0.87 0.93 0.91 0.85 0.93 0.89 0.87 0.86

Industrial Area-6 0.67 0.66 0.5 0.3 0.55 0.64 0.67 0.7 0.79 0.56 0.32 0.5 0.49 0.47 0.48 0.53

Table 5. Pressure data provided by SEWA (second half of the month).

DMA D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31
Al Rahmanya-1 3.85 3.72 2.61 3.97 3.97 3.93 3.78 3.63 3.73 3.59 3.69 3.82 3.91 2.94 4.1
Al Rahmanya-3 3.1 3.12 2.18 3.15 3.22 3.33 3.17 2.94 3.05 2.98 2.73 3.34 2.87 3.21 3.36

Industrial Area-4 0.98 0.99 0.92 0.96 0.98 0.91 0.86 0.88 0.84 0.85 0.89 0.89 0.98 0.99 1
Barashi 0.93 1.12 1.25 1.32 2 1.6 1.68 1.26 1.29 1.57 1.76 1.95 1.77 1.64 1.42

Maysaloon 1.05 1.01 1.03 1.04 1.04 1.01 1.02 1.01 0.97 0.98 0.97 0.95 0.98 0.96 0.95
Al Fayah 0.83 0.84 0.84 0.87 0.85 0.82 0.83 0.86 0.81 0.83 0.8 0.82 0.86 0.88 0.87

Al Ghuwair 0.82 0.76 0.79 0.83 0.84 0.8 0.8 0.79 0.72 0.75 0.75 0.77 0.8 0.79 0.77
Bu Tina 0.64 0.6 0.61 0.67 0.67 0.63 0.63 0.64 0.58 0.59 0.61 0.62 0.65 0.66 0.65

Al Sabkha 0.99 0.95 0.97 1 1 0.96 1 1.01 0.96 0.98 0.99 0.99 1.01 1.01 1.01
Al Ghaphia 1.06 1.02 1.04 1.08 1.07 1.02 1.09 1.09 1.06 1.07 1.05 1.07 1.09 1.08 1.08
Al Nasserya 0.77 0.75 0.76 0.8 0.79 0.75 0.76 0.76 0.71 0.74 0.75 0.74 0.78 0.77 0.77
Al Qadsia 0.82 0.82 0.83 0.87 0.86 0.81 0.82 0.84 0.78 0.81 0.81 0.81 0.85 0.85 0.85

Industrial Area - 6 3.85 3.72 2.61 3.97 3.97 3.93 3.78 3.63 3.73 3.59 3.69 3.82 3.91 2.94 4.1

Table 6. Average pressure in a month (bars).

DMA AVG (Bars)

Al Rahmanya-1 3.522258065

Al Rahmanya-3 2.979354839

Industrial Area-4 0.991290323

Barashi 1.652258065

Maysaloon 1.038387097

Al Fayah 0.866451613

Al Ghuwair 0.824193548

Bu Tina 0.657741935

Al Sabkha 1.0025806

Al Ghaphia 1.072258065

Al Nasserya 0.81483871

Al Qadsia 0.858064516

Industrial Area-4 0.58806452
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Figure 7. Buffering 2000 m from the location of the data.

Once buffering is complete, the software generates a new output feature class. In terms
of the water quality parameter, there are 42 chlorine residual locations within the polygon
generated. The low chlorine values were determined by finding any value lower than
the average of the daily mean chlorine values. The locations of low chlorine values were
determined using the ‘near’ function. Figure 8 focuses on the intersections of the model that
generate a new output feature class. The output results for the locations without leakage
events show that there are no regions with leakages. Therefore, this proves that this method
works for any pressure or flow value, indicating that it can be applied in any situation.
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3.1.2. Case Scenario 2: Detection of Leakage Locations

The same procedure applied in Case Scenario 1 is undertaken. The output identified the
three locations suspected of leakages: Al Ghaphia, Al Ghuwair, and Maysaloon. Once these
locations were identified, a customized interface was run on ArcGIS Pro. The identified leak
locations are determined based on the intersections of buffer zones from the low pressure
and flow data, as well as areas with low chlorine levels detected using the ‘near’ function
on the software. The GIS approach used in this study is different from other studies on
leak detection. For this reason, direct comparisons may not be meaningful. However, other
studies using GIS for leak detection found it feasible as a tool for leak detection [32,33].

3.2. Remote Sensing and IR Camera

The experiment was designed such that one IR video could be captured every twenty
minutes over a pipeline. The experiment was run for three hours, producing nine thermograms.
It took around sixty minutes for IR detection of water leakage. The experimental setup is
shadowed by surrounding buildings, so the temperature of the soil was anticipated to decrease
with time. The images shown in Figures 9–11 are the acquired thermograms of the model
WDN shown in Figure 4b. Figure 9 shows the captured grayscale RGB format, and Figure 10
shows the false-color IR images, which are used for better visualization of the leak locations.
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The leakage areas and shadows shown in the IR images have overlapped luminance
values, so temporal-based techniques are required to distinguish them. In addition, a
decrease in the field temperature would reduce the soil’s temperature. As such, the
dynamic ranges of the luminance of all the thermograms are transformed to remove the
effects of the field temperature using the following equation:

Ls(ti) = L(t_i )−min{L(ti )} (1)

where L(ti) is the luminance of the IR images and Ls(ti) represents the shift-transformed
luminance at a particular time ti.

The method proposed in this paper is to quantify the time variation of the transformed
luminance Ls(ti). Figure 11 has the best illustration of leaks captured on the IR camera as
it shows the log-ratio images. One of the variables that can affect the readings shown on
the thermograms is whether the temperature of the leaked water is higher or lower than
the soil’s temperature. In order to highlight the temperature changes in either case and
improve the visual detection of the leakage spots, the following log-ratio equation was
used:

Rl(ti) =

∣∣∣∣log
Ls(ti + 1)
Ls(ti)

∣∣∣∣ = ∣∣∣∣log
Ls(ti)

Ls(ti + 1)

∣∣∣∣ (2)

where Rl represents the log-ratio image.
The log-ratio resulted in the best images for visual detection, as the equation focuses

on only one source of leakage. As such, this method allows for the identification of leakage
areas and negates non-leakage and shadowed areas. The log-ratio image is derived from
the ratio image that is defined by:

R(ti) =
Ls(ti + 1)
Ls(ti)

+
Ls(ti)

Ls(ti+1)
(3)

where R represents the ratio image.
While ratio images are capable of distinguishing leakage areas from non-leakage

areas [23], they do not offer the best visuals to display the locations of leaks. Therefore,
the log-ratio method is best at detecting the temporal variation of the temperature due to
leakage. Moreover, hot spot analysis of the IR images has been employed to detect the leaks.
As observed in Figure 11, there is a clear formation of light blue spots over time in the IR
images. The light blue spots indicate the locations where the temperature was reduced due
to increased moisture in the soil from the leak. IR images with higher resolutions may be
able to capture more distinct temperature contrasts between the soil and the water leak. It is
important to note that the general moisture of the soil can drastically affect the readings of
the IR camera. That is, it can be more difficult to detect leaks if the soil has an initially high
percentage of moisture [4]. Previous studies conducting water leak and oil spill detection
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also observed it to be a suitable technology [4,34]. The use of GIS can provide the general
location of the leak, with infrared technology being used for accurate leak location. The
integrated hybrid approach can be very suitable for large water distribution networks.

Previous studies have either used IR thermography or GIS separately for water leakage
detection [12,13,23]. However, this study implemented two different techniques for leak de-
tection. This paper used buffering analysis and intersection methods to create a GIS-based
system to locate potential leakages by considering three operational conditioning factors
for leakage: flow, pressure, and water quality. The model was validated by using thirteen
DMAs of the SEWA WDN. The software generated an intersection map by identifying
locations where low residuals intersected with low pressure and flow. This generates an in-
tersection map that highlights areas that have all three conditioning factors for leakage. This
intersection map can be used by water utilities for corrective maintenance and preventive
measures. In addition, the findings have shown that the IR camera was able to accurately
detect leaks in a PPR pipeline with a thickness of 5.7 mm. IR thermography has some
disadvantages, such as being influenced by soil moisture and weather conditions [4,23].
However, these disadvantages can be mitigated by integrating IR thermography into a
GIS-based system.

4. Conclusions

The study used a novel integrated approach combining the use of GIS and remote sens-
ing for effective water leak detection. The study developed a novel GIS-based approach for
identifying general leakage locations with low computational complexity. On the other hand,
infrared-based remote sensing technology was used for the identification of precise leak
locations. Laboratory-based experiments were conducted for remote sensing experiments.

Overall, the integrated approach presented in this study has demonstrated promising
results in the detection of leakage locations within WDNs. While previous literature
has shown the use of GIS and remote sensing independently for water pipeline leak
detection [21,27], the studies have covered smaller regions and did not use an integrated
approach. As such, this method goes beyond the identification of leakages and confirms
data indicating the absence of leaks in specific regions. By combining GIS and remote
sensing technologies with IR image analysis, this approach provides an effective means
of monitoring and detecting pipe leaks. However, a major drawback of this research is
receiving access to values of chlorine, pressure, and water flow within a WDN. In addition,
it is recommended to include more parameters that affect leakages in pipelines, such as the
type of soil beneath the pipes and the material of the pipes used. Evaluating the impacts of
a variety of parameters would increase the accuracy of the buffer analysis. The successful
application of this integrated approach suggests that further research and experimentation
should be conducted. Further applications of hyperspectral remote sensing can offer the
potential for more detailed and accurate detection and mapping of leakages. Future research
efforts could potentially focus on operating the IR camera on a drone that detects leaks
over an entire WDN and creating an integrated system that relies on multiple conditioning
factors and IR thermography.
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Abbreviations

SN Abbreviation Descriptions
1 WDN Water distribution network
2 IR Infrared
3 GIS Geographical information system
4 NDT Non-destructive techniques
5 GPR Ground penetration radar
6 PE Polyethylene
7 PPR Polypropylene random copolymer
8 PVC Polyvinyl chloride
9 AVIRIS Airborne Visible Infra-Red Imaging Spectrometer
10 SEWA Sharjah Electricity and Water Authority
11 DMA District metering area

Appendix A

# -*- coding: utf-8 -*-
"""
Generated by ArcGIS ModelBuilder on: 2023-07-28 21:49:53
"""
import arcpy

def Leak(): # Leak

# To allow overwriting outputs change overwriteOutput option to True.
arcpy.env.overwriteOutput = False

# Model Environment settings
with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\
Documents\\ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

Flow_Data = "FlowData_10112020_10Location"
Presser_Data = "PressData_10112020_10Location"
WDN = "Shj_WATERPIPENET"
Water_Quality_Sensor = "WQ_Monitoring2018"

# Process: Make Query Table (Make Query Table) (management)
Below_AVG_Flow = "Below AVG Flow"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.management.MakeQueryTable(in_table=[Flow_Data],
out_table=Below_AVG_Flow, in_key_field_option="USE_KEY_FIELDS",
where_clause="FlowData_10112020_10Location.AVG < 2430.35")
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# Process: Buffer (Buffer) (analysis)
_2000_m_Buffer_Flow = "C:\\Users\\rgawai\\Documents\\ArcGIS\\Projects\\
Leak_De_2020\\Leak_De_2020.gdb\\BelowAVGFlow_Buffer"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.analysis.Buffer(in_features=Below_AVG_Flow,
out_feature_class=_2000_m_Buffer_Flow, buffer_distance_or_field="2 Kilometers",
dissolve_option="NONE")

# Process: Make Query Table (2) (Make Query Table) (management)
Below_AVG_Pres = "Below AVG Pres"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.management.MakeQueryTable(in_table=[Presser_Data],
out_table=Below_AVG_Pres, in_key_field_option="USE_KEY_FIELDS",
where_clause="PressData_10112020_10Location.AVG < 1.46")

# Process: Buffer (2) (Buffer) (analysis)
_2000_m_Buffer_Presser = "C:\\Users\\rgawai\\Documents\\ArcGIS\\Projects\\
Leak_De_2020\\Leak_De_2020.gdb\\BelowAVGPres_Buffer"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.analysis.Buffer(in_features=Below_AVG_Pres,
out_feature_class=_2000_m_Buffer_Presser, buffer_distance_or_field="2 Kilometers")

# Process: Intersect (Intersect) (analysis)

Intersect_Output = "C:\\Users\\rgawai\\Documents\\ArcGIS\\Projects\\Leak_De_2020\\
Leak_De_2020.gdb\\BelowAVGFlow_Buffer_Intersec"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.analysis.Intersect(in_features=[[_2000_m_Buffer_Flow, ""],
[_2000_m_Buffer_Presser, ""]], out_feature_class=Intersect_Output)

# Process: Intersect (3) (Intersect) (analysis)

WDN_Intersected = "C:\\Users\\rgawai\\Documents\\ArcGIS\\Projects\\Leak_De_2020\\
Leak_De_2020.gdb\\BelowAVGFlow_Buffer_Intersec2"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.analysis.Intersect(in_features=[[Intersect_Output, ""], [WDN, ""]],
out_feature_class=WDN_Intersected)
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# Process: Intersect (2) (Intersect) (analysis)
Output_Feature_Class_2_ = "C:\\Users\\rgawai\\Documents\\ArcGIS\\Projects\\
Leak_De_2020\\Leak_De_2020.gdb\\BelowAVGFlow_Buffer_Intersec1"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.analysis.Intersect(in_features=[[Intersect_Output, ""],
[Water_Quality_Sensor, ""]], out_feature_class=Output_Feature_Class_2_)

# Process: Make Query Table (3) (Make Query Table) (management)
Water_Quality_Output = "QueryTable1"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.management.MakeQueryTable(in_table=[Output_Feature_Class_2_],
out_table=Water_Quality_Output, in_key_field_option="USE_KEY_FIELDS",
where_clause="BelowAVGFlow_Buffer_Intersec1.Chlorine < 0.2685")

# Process: Intersect (4) (Intersect) (analysis)

Intersected_Polygon = "C:\\Users\\rgawai\\Documents\\ArcGIS\\Projects\\Leak_De_2020\\
Leak_De_2020.gdb\\BelowAVGFlow_Intersect"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.analysis.Intersect(in_features=[[Below_AVG_Flow, ""], [Intersect_Output, ""]],
out_feature_class=Intersected_Polygon)

# Process: Intersect (5) (Intersect) (analysis)
Output = "C:\\Users\\rgawai\\Documents\\ArcGIS\\Projects\\Leak_De_2020\\
Leak_De_2020.gdb\\BelowAVGPres_Intersect"

with arcpy.EnvManager(scratchWorkspace="C:\\Users\\rgawai\\Documents\\ArcGIS\\
Projects\\Leak_De_2020\\Leak_De_2020.gdb", workspace="C:\\Users\\rgawai\\Documents\\
ArcGIS\\Projects\\Leak_De_2020\\Leak_De_2020.gdb"):

arcpy.analysis.Intersect(in_features=[[Below_AVG_Pres, ""], [Intersect_Output, ""]],
out_feature_class=Output)

if __name__ == '__main__':
Leak()
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