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Abstract: Students’ action behavior performance is an important part of classroom teaching eval-
uation. To detect the action behavior of students in classroom teaching videos, and based on the
detection results, the action behavior sequence of individual students in the teaching time of knowl-
edge points is obtained and analyzed. This paper proposes a method for recognizing students’ action
behaviors based on classroom time-series images. First, we propose an improved Asynchronous
Interaction Aggregation (AIA) network for student action behavior detection. By adding a Multi-scale
Temporal Attention (MsTA) module and a Multi-scale Channel Spatial Attention (MsCSA) module to
the fast pathway and slow pathway, respectively, the accuracy of student action behavior recognition
is improved in SlowFast, which is the backbone network of the improved AIA network,. Second,
the Equalized Focal Loss function is introduced to improve the category imbalance that exists in
the student action behavior dataset. Experimental results on the student action behavior dataset
show that the method proposed in this paper can detect different action behaviors of students in
the classroom and has better detection performance compared to the original AIA network. Finally,
based on the results of action behavior recognition, the seat number is used as the index to obtain the
action behavior sequence of individual students during the teaching time of knowledge points and
the performance of students in this period is analyzed.

Keywords: action behavior recognition; asynchronous interaction aggregation network; attention
mechanism; equalized focal loss

1. Introduction

Classroom teaching activities have always been the focus of research in the field of
education, and students are the main body of the activities. Recognizing and analyzing
students’ action behavior plays an important role in teaching evaluation [1]. Student action
behavior analysis can help teachers understand the learning process of students and is an
important means of measuring learning effectiveness. Traditional methods of analyzing
student action behaviors rely on manual assessment, manual recording, and manual coding
to collect and interpret behavioral performance data, which have the disadvantages of
strong coding subjectivity, small sample size, and high time-consumption [2]. With the
development of education informatization, smart classrooms are widely used; so, cameras
and other devices in the classroom can be used to obtain massive data such as videos and
images in the teaching process. For the acquired massive data, selecting the appropriate
sampling scheme and decomposition algorithm can effectively compress the data while
retaining the integrity of the data features [3]. Moreover, extracting effective features from
the data based on machine learning methods can be used to intelligently recognize students’
action behaviors. In recent years, some researchers have used traditional algorithms such as
wavelet transform and discrete path transform to extract features from data [4,5], Although
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the extracted features are more representative and generalized, the traditional methods
still have problems such as manual intervention and poor robustness. In addition, some
researchers have also applied fractal theory to the field of image processing [6].

Different from traditional machine learning methods, deep learning automatically
learns feature representations of data such as videos and images, which is robust and can be
used as an effective tool for detecting students’ action behaviors [7]. Tang et al. [8] proposed
a student posture detection method based on an improved Faster RCNN object detection
model to recognize the behaviors of standing, sitting, and sleeping. Liu et al. [9] proposed
an action detection framework based on YOLOv5, which is used to detect the classroom
behavior of students in the monitoring system under different backgrounds. Although
the above studies achieved good results in student action behavior detection, they did
not consider the temporal features of the behavior and the interaction with the spatial
contextual environment, and there are limitations in understanding the action behavior
based on a single-frame image.

Different from student action behavior recognition based on static images, video
behavior recognition can effectively utilize time-series information. Xie et al. [10] proposed
a college students’ classroom behavior recognition algorithm based on spatiotemporal
representation learning, which is used to recognize students’ abnormal behaviors such as
sleeping and playing mobile phones. However, this type of research is only applicable
to action behavior recognition in single-person scenarios, which cannot mark the spatial
location of each student and cannot be applied to action behavior detection in multi-person
classroom scenarios.

The purpose of spatiotemporal behavior detection is to locate each person in the
video and recognize their action behaviors. Many existing studies have improved the
performance of action behavior detection by modeling the interactions between the target
person and the contextual environment. Students’ action behaviors usually interact with
other students, objects, etc., around them, and modeling these interactions can be used to
recognize the students’ action behaviors more effectively. In addition, the background of
the classroom scene is complex, the students are crowded, the pixel area occupied by the
front row and the back row students in the video is different, and the visual speed of each
student’s action behavior is also different; so, the extraction of video features needs to be
optimized for these problems. Based on the above analysis, this paper proposes a student
action behavior recognition method based on classroom time-series image data. Firstly, the
improved Asynchronous Interaction Aggregation (AIA) network [11] is used to detect the
action behavior of students in classroom videos. Then, based on the recognition results, the
action behavior sequence of individual students during the teaching time of knowledge
points is obtained and analyzed. In addition, to validate the effectiveness of the proposed
action behavior detection algorithm, a student action behavior dataset is constructed and
Equalized Focal Loss (EFL) [12] is introduced to improve the category imbalance problem
existing in the dataset. The main contributions of this paper are as follows:

a. We propose an action behavior detection model based on an improved AIA net-
work [11]. The Multi-scale Temporal Attention (MsTA) module and Multi-scale
Channel Spatial Attention (MsCSA) module are added to the video backbone net-
work SlowFast, which improves the accuracy of students’ action recognition.

b. The EFL function [12] was introduced to dynamically adjust the categorization loss
weights of different categories to improve the category imbalance problem existing
in the dataset.

c. Experiments are conducted on a self-made student action behavior dataset. The
experimental results show that the algorithm proposed in this paper improves the
mean average precision (mAP) value of action behavior detection. Based on the
results of action behavior recognition, the student’s seat number is used as the index
to analyze the sequence of students’ action behavior during the teaching time of
knowledge points.
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2. Related Work
2.1. Video Behavior Recognition

The research on video behavior recognition is broadly divided into behavior recog-
nition, temporal behavior detection, and spatiotemporal behavior detection. Behavior
recognition is to classify the input video; temporal behavior detection needs to detect
the start time and end time of the behavior and recognize the behavior of the human in
that time; spatiotemporal behavior detection needs to locate the spatial position of the
human in the video and recognize the duration and category of the behavior. In this paper,
multiple students in classroom teaching videos are used as research objects to detect their
action behaviors; therefore, the spatiotemporal behavior detection method is used to detect
students’ action behaviors in this paper.

Video is different from images, detecting human behavior requires extracting both
appearance features and motion features of the frame sequence. Based on these features,
researchers have proposed many effective networks to detect human behavior in video.
Feichtenhofer et al. [13] proposed a dual pathway network SlowFast, where the Slow
pathway and Fast pathway are responsible for the extraction of the appearance features
and motion features, respectively. Literature [14] proposed an efficient X3D network that
reduces the amount of computation and, at the same time, gives better results in video
behavior recognition. Such studies are based on a two-stage approach to recognize human
behavior: one stage is used to generate the human bounding box and the other stage is
used for behavior recognition. Recently, a researcher proposed a one-stage network to
detect human behavior in video [15], which decouples detection and behavior recognition
into two branches: one branch is responsible for detecting humans in video and the other
is responsible for recognizing the behavior.

With the application of transformer in the image processing field, Fan et al. [16]
proposed a Multi-scale Transformer, which combines the multiscale feature hierarchies
with the transformer to extract the video features at different levels so that the model can
better understand the video content. In addition, behavior recognition methods based
on interaction relationship modeling are also widely used. Tang et al. [11] proposed
an AIA Network that models human–human interaction, human–object interaction, and
temporal interaction. Pan et al. [17] proposed the Actor-Context-Actor Relation (ACAR)
Network, which explicitly models higher-order relationships between humans based on
their interactions with the background information. Zheng et al. [18] proposed a Multi-
Relational Support Network (MRSN), which first models actor–context and actor–actor
relationships separately and then models the two types of interactions at the relational
level. Faure et al. [19] proposed a multi-modal Holistic Interaction Transformation (HIT)
Network, which contains two branches: the RGB branch and the pose branch. The two
branches extract appearance features and motion features, respectively; finally, the features
extracted from the two branches are fused and input to the classification layer to detect
human behavior.

2.2. Behavior Recognition in Classroom Scenarios

In recent years, there have been many scholars applying machine learning to students’
action behavior recognition, which mainly focuses on recognizing students’ action behav-
iors through data modalities such as human keypoints, still images, and videos. Therefore,
this paper will introduce related research from these aspects.

In the study based on human keypoints, Zhang et al. [20] proposed a method to
recognize students’ postures in the classroom, which used an improved HRNet network to
extract students’ keypoints and then used a support vector machine to classify students’
classroom behaviors. Zhou et al. [21] extracted the key information of human skeleton
from student behavioral images and recognized students’ classroom behaviors based on a
deep convolutional neural network (CNN-10). Pang et al. [22] improved the traditional
algorithm by combining the traditional cluster analysis algorithm and random forest
algorithm with the human skeleton model to recognize students’ classroom behaviors in
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real-time. Ding et al. [23] used OpenPose to extract human keypoints and used a graph
convolutional neural network to classify the features and recognize the abnormal behaviors
of students.

In their study based on static images, Wu et al. [24] proposed a motion object detection
algorithm for student behavior recognition in the classroom, recognizing students’ standing
behaviors based on the region of interest (ROI) and face tracking, and students’ hand-raising
behaviors based on skin color detection. Banerjee et al. [25] proposed an improved SSD
object detection model to recognize the behavior of students and teachers in the teaching
laboratory. Liu et al. [26] improved the two-stage object detection network and proposed a
new ROI extractor SAA module and a new detection head RST module for student behavior
detection in classroom scenes. Huang et al. [27] constructed a deep neural network to
extract facial keypoints, recognize students’ head postures and expressions, and classify
classroom behaviors by combining the head gestures and expressions. Zheng et al. [28]
improved the CBL module of the YOLOv5 model to detect students’ classroom behavior
from multiple perspectives to evaluate students’ classroom attention.

In the study based on videos, Liu et al. [29] proposed a 3D multi-scale residual dense
network based on heterogeneous view perception for recognizing students’ classroom
behaviors. Jisi et al. [30] combined a spatial affine transform network with a convolu-
tional neural network to extract the spatiotemporal features of the video and fused the
spatiotemporal features to classify students’ behaviors by using a weighted sum method.

Although the above studies have achieved good results in the field of student action
behavior detection, there are still some shortcomings: (1) human keypoint-based studies
have difficulties in extracting human keypoints in student-intensive classroom scenarios
and it is difficult to accurately extract the keypoints of each student; (2) static-image-based
studies ignore the temporal features of the action behaviors and do not incorporate time-
series context information; (3) video-based studies incorporate the time-series context
information of action behaviors but ignore the interaction between students and the context
of the environment; these methods only recognize individual action behaviors and do not
apply to real multi-person classroom scenarios.

To address the above issues, this paper uses a spatiotemporal action detection model
based on interaction relationship modeling to locate students in classroom videos while
recognizing their action behaviors and optimizes the model for the difficulties existing in
the classroom scenarios; based on the results of action behavior recognition, the student’s
seat number is used as the index to obtain the action behavior sequence of individual
students during the teaching time of knowledge points to help teachers understand the
students’ learning process and take personalized intervention measures to improve the
teaching effect.

3. Proposed Method

The overall system structure diagram of the student action behavior recognition model
proposed in this paper is shown in Figure 1. Firstly, the spatiotemporal features of classroom
video are extracted based on the backbone network in the improved AIA network. Secondly,
students and objects such as books and mobile phones are detected by using the object
detection model applicable to the classroom scenario; then, the spatiotemporal features
of the video and the spatial coordinate information of the students are fused to detect the
student’s action behaviors. Finally, based on the action behavior recognition results during
the teaching time of the knowledge points, the student’s seat number is used as the index
to correlate the student’s action behavior sequence during the period.

3.1. Detection of Students’ Action Behavior

The AIA network [11] has achieved good results in spatiotemporal action behavior
detection; however, the network uses a fixed convolutional kernel to learn video features,
which cannot capture the spatiotemporal information of multi-scale feature maps to enrich
the feature space, and the detection accuracy of the small sample categories is lower in
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a dataset with category imbalance. Therefore, in a real classroom environment, the AIA
network does not have high accuracy in detecting action behaviors with small sample
sizes and insignificant features. To improve the detection accuracy, this paper proposes an
improved AIA network: firstly, it incorporates the MsCSA module into the slow pathway
of the backbone network SlowFast [13], and incorporates the MsTA module into the fast
pathway of SlowFast, which helps the network to extract the multiscale spatiotemporal
features; second, the EFL function [12] is introduced to improve the detection performance
of action-behavior categories with small sample sizes. The improved AIA network struc-
ture is shown in Figure 2 and consists of three parts: The first is part a, which uses an
independent object detection network to detect students and objects in video keyframes;
next is part b where, in this paper, the MsCSA module is added to the Res2, Res3, and Res4
stages of the slow pathway of the SlowFast network [13] and the MsTA module is added to
the Res3, Res4, and Res5 stages of the fast pathway of the SlowFast network to help the
network extract multi-scale spatial features and multi-scale temporal features. Finally, the
AIA module in part c consists of the Asynchronous Memory Update (AMU) Algorithm
and the Interaction Aggregation (IA) structure. The ROI Align algorithm [31] is used to
extract the feature Pt of the student bounding box and the feature Ot of the object bounding
box; store and read the memory feature Mt online using the AMU algorithm; input Pt, Ot,
and Mt into the IAstructure to model multiple types of interaction relationships; and then
classify the fused features to detect the student’s action behavior.
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3.1.1. Video Backbone Network

The video backbone network SlowFast is the b part of Figure 2. Literature [13] cat-
egorizes SlowFast into slow and fast pathways based on the difference in the sampling
step of the frames, where the number of convolutional blocks in the residual layer is the
same and only the number of convolutional kernels and output channels are different.
The sampling step for slow pathway frames is τ = 16, 1 frame every 16 frames, and the
number of output channels is C to learn spatial semantic information with fewer frames
and a larger number of channels; the sampling step for fast pathway frames is τ/α(α = 8),
1 frame every 2 frames, and the number of output channels is βC

(
β = 1

8

)
to learn the

motion information with a larger number of frames and fewer number of channels. Lateral
connections are established with the slow pathway in the Res2, Res3, and Res4 stages of
the fast pathway, and the features of the fast pathway are fused with the features of the
slow pathway after reconstruction.

Different from the traditional SlowFast network, this paper adds an MsCSA module
after the Res2, Res3, and Res4 stages of the slow pathway and an MsTA module after the
Res3, Res4, and Res5 stages of the fast pathway to extract multi-scale spatial features and
multi-scale temporal features of the classroom teaching video and, thus, to improve the
detection of the students’ action behavior accuracy. In this paper, these two modules will
be introduced in detail in Sections 3.1.4 and 3.1.5.

3.1.2. Feature Extraction

The video clip vt is taken as input and the video features ft ∈ RC×T×H×W are extracted
using the backbone network described in Section 3.1.1, where C, T, H, and W are channel,
time, height, and width, respectively. The video features ft are average pooled along the
time dimension to obtain the feature map It ∈ RC×H×W . Meanwhile, the Faster RCNN [32]
is used to locate students in the keyframes (i.e., the center frames) of the video clip vt,
as well as objects, such as books and mobile phones, and obtains Nt student bounding
boxes and Kt object bounding boxes. Based on the detected bounding boxes, the ROI Align
algorithm [31] is used to extract the student features Pt =

[
p1

t , · · · pi
t, · · · , pNt

t

]
and object

features Ot =
[
o1

t , · · · oi
t, · · · , oKt

t

]
of the video clip vt along the spatial dimension from the

feature map It. In addition, to model the long-term temporal context between different
clips, the student features of multiple clips are deposited into the feature pool using the
AMU algorithm and the student features of the neighboring clip are read from the feature
pool each time of training; then, they are combined with those of the current clip to form
a memory feature Mt = [Pt−L, · · · , Pt, · · · , Pt+L], where L is the size of the time window.
Thus, the memory feature Mt contains long-term semantics, which can provide useful
temporal semantics to help recognize temporally relevant action behaviors such as reading
and writing.

3.1.3. Modeling and Aggregation of Interactions

In addition to spatial and temporal features, student self-interactions, student–student
interactions, student interactions with objects such as books and mobile phones, and long-
term temporal interactions of the same student are crucial for understanding the student’s
action behaviors. Given different student features Pt, object features Ot, and memory
features Mt, the IA structure can fuse these features to model and aggregate the above
interaction types for more accurate action behavior detection.

The IA structure consists of multiple interaction blocks improved based on transformer
blocks [33], each modeling a single type of interaction through an attention mechanism.
Interaction blocks are divided into three types in total: P-Block, O-Block, and M-Block.
P-Block is used to model human–human interaction (including self-interaction) in the same
clip, and its query and key/value are both student features or enhanced student features;
O-Block is used to model human–object interaction, and its key/value input is the object
features Ot. Figure 3a shows an illustration of an O-Block; M-Block is used to model the
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same human at different frames of time interaction, and its key/value input is the memory
features Mt.
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In a Dense Serial IA structure, each interaction block accepts the output of all previous
interaction blocks, and different types of interactions interact with each other and are
aggregated using learnable weights. The query for the ith block can be represented as

Qt,i = ∑
j∈C

Wj � Et,j (1)

where � denotes the element-wise multiplication, C is the set of indices of previous blocks,
Wj is a learnable d-dimensional vector normalized with a Softmax function among C, and
Et,j is the enhanced output features from the jth block. Dense Serial IA is illustrated in
Figure 3b.

The fused features from the Dense Serial IA structure are fed into the classifier to
detect the student’s action behavior.

3.1.4. MsTA Module

In the field of video action recognition, existing research uses fixed convolution kernels
or operations to learn the temporal features of videos. The AIA network used in this
paper also uses fixed 3× 1× 1 convolution to learn the temporal features of students’
action behaviors in the classroom scene. However, different action behaviors last for
different durations; so, it is crucial to capture the multi-scale temporal features. This
paper proposes a Multi-scale Temporal Convolution Unit (MsTCU) with different temporal
convolution kernels, which utilizes different temporal sliding windows to extract the
multi-scale temporal information.

The Double Attention (DA) block of A2-Net [34] is applied to the fast pathway of
the backbone network of the action detection model in this paper and cascaded with the
abovementioned MsTCU to form an MsTA module, which extracts the local temporal
features and global temporal features to model the long-distance interdependencies. The
MsTCU and the DA block are described below.

MsTCU. As shown in Figure 4, the feature map X ∈ RC×T×H×W first passes through
the three branches of MsTCU, which are equipped with different temporal convolution
kernels, respectively, and perform temporal convolution processing on the feature map X
to obtain multi-scale temporal features as follows:
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(1) X ∈ RC×T×H×W passes through three branches with temporal convolution kernel
sizes of 3, 5, and 7, respectively, and the dimensionality of the output feature maps is
constant in size, denoted as

[
X′0, X′1, X′2

]
Afterward, the feature maps of the three branches

are summed up element by element:

F1 = X′0 + X′1 + X′2 (2)

(2) To maintain spatiotemporal consistency, F1 extracts the spatial features of the
video through three dilated convolutional branches with convolutional kernel size 3 and
dilation rates 1, 2, and 3, respectively. The output feature maps are represented using[
X′′0 , X′′1 , X′′2

]
. Afterward, the feature maps of the three branches are concatenated together

and the channel is reduced in dimension by 1× 1× 1 convolution:

F2 = f 1×1×1(Cat
([

X′′0 , X′′1 , X′′2
]))

(3)

where f 1×1×1 denotes the 1× 1× 1 convolution, F2 ∈ RC×T×H×W .
DA block. As shown in Figure 5, let the input be X ∈ RC×T×H×W and the local feature

of each spatiotemporal location i = 1, · · · , THW be vi. Then, define Equation (4):

zi = Fdistr

(
Ggather(X), vi

)
(4)
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There are two operations in the equation. First, the Ggather operation adaptively
aggregates the features of the global context; then, the Fdistr operation assigns the aggregated
global context features back to each location i based on the local features vi and outputs zi.
zi can be obtained by steps (1) and (2):
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(1) Feature Gathering. The DA block uses bilinear pooling to capture the second-order
statistics of features to generate a global representation. Bilinear pooling is the summation
of the outer product of all feature vectors (ai, bi) in the two input feature maps A and B:

Gbilinear(A, B) = ABT = ∑
∀i

aibi
T (5)

where A = [a1, · · · , athw] ∈ Rm×thw and B = [b1, · · · , bdhw] ∈ Rn×thw. In CNNs, A and
B can be the feature maps from the same layer, i.e., A = B, or from two different layers,
i.e., A = φ

(
X; Wφ

)
and B = θ(X; Wθ), with parameters Wφ and Wθ .

By introducing the output variable G = [g1, · · · , gn] ∈ Rm×n of the bilinear pooling
and rewriting the second feature B as B =

[
b1, · · · , bn

]
, where each bi is a thw dimensional

row vector, we can reformulate Equation (5) as

gi = Ab
T
= ∑
∀j

bijaj (6)

Equation (5) shows that G can be viewed as a collection of visual elements in a
sequence of frames, where each subset gi is obtained by gathering local features weighted
by bi; then, further applying a softmax onto B to ensure ∑j bij = 1, i.e., a valid attention
weighting vector, gives the following second-order attention pooling process:

gi = Aso f tmax
(

bi

)T
(7)

(2) Feature Distribution. After the global features are collected from the frame
sequence, the input X is first transformed by a convolutional layer to obtain the fea-
ture map V. The elements within V are normalized using the softmax function, i.e.,
V = so f tmax

(
ρ
(
X; Wρ

))
, and Wρ are parameters of the convolutional layer; then, the

attention vectors vi at each position of the feature map V are multiplied by the global
features G and a subset of the global feature vectors can be adaptively assigned according
to the weight magnitude of each vector vi, as shown in Equation (8):

zi = ∑
∀j

vijgj = Ggather(X)vi, where∑
∀j

vij = 1 (8)

(3) Substituting Equations (7) and (8) into Equation (4), the double attention operation
can be expressed by Equation (9):

Z = Fdistr

(
Ggather(X), V

)
= Ggather(X)so f tmax(ρ(X; Wρ))

=
[
φ
(
X; Wφ

)
so f tmax(θ(X; Wθ))

T
]
so f tmax

(
ρ
(
X; Wρ

)) (9)

Based on the above process of double attention operation, the computational diagram
of the DA block is briefly summarized as follows: the input feature map X ∈ RC×T×H×W is
passed through three different convolutional layers to obtain the feature maps A, B, and V.
B and V need to be softmax normalized. A and B are subjected to bilinear pooling operation
and then multiplied by V to obtain Z ∈ RC′×THW . Then, the 1× 1× 1 convolution is used
to reshape Z into Z ∈ RC×T×H×W .

Finally, residual connections are added to the MsTCU and DA block, respectively, to
ensure the propagation of information across layers, as shown in Figure 6:

Y = Y′ + X (10)

where X is the input feature map and Y′ is the output feature map of MsTCU (DA block).
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3.1.5. MsCSA Module

The video data captured in this study have a large resolution; a large difference in pixel
size occupied by front and back row students in space; and the need to extract small object
features Ot, such as books and mobile phones around the students, along with other types
of features, to model the interaction. Literature [35] shows that multi-scale receptive field is
helpful for the network to notice the spatial position of different size objects. Therefore,
a Multi-scale Spatial Attention (MsSA) block is added to the slow pathway of the video
backbone network to obtain contextual information of a larger receptive field; at the same
time, to allow the network to learn the weight response of the feature maps of different
channels in the process, the MsSA block is cascaded with Gaussian Context Transformer
(GCT) [36] to form an MsCSA module. The MsCSA module is shown in Figure 7.
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GCT block. The GCT block first performs the global average pooling operation on
the input feature map X in the spatial dimension; then, it stabilizes the distribution of the
global features by normalizing the channel vectors; finally, it obtains the attention map by
using the Gaussian function to perform the excitation operation on the normalized global
features. The specific process is as follows:

(1) Global Context Aggregation (GCA). Let the input X ∈ RC×T×H×W reshape X into
RCT×H×W ; the GCA can be expressed as

z = avg(X) =

{
zk =

1
H ×W ∑W

i=1 ∑H
j=1 Xk(i, j); k ∈ {1, · · · , CT}

}
(11)

where CT is the number of channels, and H and W are the height and width of the feature
map, respectively.

(2) Normalize. The GCT block computes the attentional activation value of the channel
using the function f (·). Define ẑ as the input to the function f (·), and ẑ is represented by
Equation (12):

ẑ =
1
σ
(z− µ) (12)
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where µ = 1
C ∑C

k=1 zk denotes the mean of the global context z, and z− µ is the mean shift.

σ =
√

1
C ∑C

k=1(zk − µ)2 + ε denotes the standard deviation of the global context z, ε is a
very small constant, and σ is introduced so that ẑ remains in distribution with mean 0
and variance 1 for different input samples, thus ensuring that the output of f (·) is stable.
Equation (11) is consistent with the result of normalizing z and, thus, can be expressed as
ẑ = norm(z).

(3) Gaussian Context Excitation (GCE). The GCT block substitutes the Gaussian func-
tion into f (ẑ) and defines the GCE operation as

g = f (ẑ) = e−
ẑ2

2c2 (13)

where c is a constant or learnable parameter and g is the attentional activation value.
The above steps are combined to form the GCT block, which is represented by

Equation (14):

Fc = e−
norm(avg(X))2

2c2 X (14)

where Fc ∈ RCT×H×W is the feature map output by the GCT block.
MsSA block. After the GCT block, Fc ∈ RCT×H×W is input to the Multi-scale Spatial

Convolution Unit (MsSCU) in the MsSA block to extract the spatial information at different
scales. The process is shown below:

(1) Fc undergoes dilation convolution with a convolution kernel size of 3× 3 and
dilation rates of 1, 2, 3, and 4, respectively; then, Fc is sliced into four parts, denoted
using [X1,X2, X3, X4], with the number of channels in each part being C′ = CT

r , and then
concatenated in the channel dimension

F1 = Cat([X1, X2, X3, X4]) (15)

(2) F1 ∈ R
4CT

r ×H×W undergoes a 3× 3 convolution to further fuse the multi-scale fea-
tures and recover the original number of channels CT to obtain the feature map F2 ∈ RCT×H×W :

F2 = f 3×3(F1) (16)

where f 3×3 denotes the 3× 3 convolution operation in the spatial dimension; for ease of
representation, the above process is denoted as F2 = MsSCU(Fc). After two MsSCU, the
spatial attention feature map is then obtained by the sigmoid function

Fs = σ(MsSCU(MsSCU(Fc))) (17)

where Fs ∈ RCT×H×W , σ is the sigmoid function, and Fc and Fs are multiplied element by
element to obtain the feature map Y′:

Y′ = Fc � Fs (18)

Reshape Y′ to Y′ ∈ RC×T×H×W to keep the size of the input constant.
Similar to the MsTA module, residual connections are added to the MsCSA module to

ensure the propagation of information across layers.

3.1.6. Equalized Focal Loss Function

The student action behavior dataset used in this paper suffers from a category im-
balance problem, whereby most of the students show action behaviors such as listening
and reading during the class period while a few students have action behaviors such as
using mobile phones and lying on the table. The loss function used in the original AIA
network is Focal Loss [37], but Li et al. [12] proved that Focal Loss does not deal with the
foreground category imbalance problem; so, in this paper, we use the EFL proposed by
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Li et al. [12] as the loss function of the action classifier in the AIA network to improve the
category imbalance problem, specifically shown by Equation (19):

EFL(pt) = −
C

∑
j=1

αt

(
γb + γ

j
v

γb

)
(1− pt)

γb+γ
j
v log(pt) (19)

where αt is used to regulate the weights of positive and negative samples during training

and pt is the prediction score.
(

γb+γ
j
v

γb

)
is the weight factor associated with the category,

γb +γ
j
v is the focusing factor for the jth category, γb is a constant, and γ

j
v can be expressed as

γ
j
v = s

(
1− gj

)
(20)

where the hyper-parameter s is the scaling factor that determines the upper limit of γ
j
v in

EFL, and the parameter gj indicates the accumulated gradient ratio of positive samples to
negative samples of the jth category during the training process, with the range of gj set to
[0,1].

Since gj indicates the accumulated gradient ratio of positive samples and negative
samples of the jth category during the training process, a larger value of gj indicates that
the category is trained to be balanced and a smaller value of gj indicates that the category
is trained to be unbalanced; so, the focusing factor γb + γ

j
v and the prediction score pt in

the EFL, composed of (1− pt)
γb+γ

j
v as the category-related weighting factor in the loss,

can dynamically regulate the weight of the loss based on the cumulative gradient ratio
of positive and negative samples in each category during the training process and the
prediction score pt to handle the problem of category imbalance.

3.2. Seat-Association-Based Analysis of Students’ Action Behavior Sequence

The application scenario of this paper is in the classroom. The classroom scenario is
densely populated with students, mutual occlusion, and the pixel area occupied by the face
region in the video frame is small; thus, it is difficult for the face recognition technology to
associate the student object across the video frames. During the class period, the position of
students is fixed and the position shift of individual students in the video frame sequence
is small; therefore, this paper associates the same student object through the student’s seat
across the video frames, tracks the changes of the same student’s action behaviors in a
continuous period, and obtains the action behavior sequence of individual students in the
teaching time of knowledge points:

(1) Students’ use of electronic devices in the classroom cannot be simply classified as
playing with a mobile phone; so, this paper first obtains the recognition result set GA of
the action behavior detection model within the teaching time of knowledge point k. The
number of students who use mobile phones in the set GA is counted; if the ratio of the
number of students is greater than 0.6, it is considered that the teacher published an in-class
test and classifies the behavior as reading.

(2) In this paper, we first use the LabelImg tool to label a rectangular box for each
student’s seat in the classroom and save its coordinate information; then, we extract the
student’s bounding box information from GA. We use the method of calculating the
Complete Intersection over Union (CIoU) in the literature [38] to calculate the CIoU value
of the seat rectangular box and the student’s bounding box to measure the overlap between
the two boxes, match the student’s seat based on the maximum overlap, and then obtain the
sequence of individual student’s action behaviors by using the seat number as the index.
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4. Experimental Results and Analysis
4.1. Datasets

Dataset 1: The AVA dataset [39] is a dataset oriented to the spatiotemporal action
detection task. This dataset takes 1 frame per second as a keyframe to be labeled. There
are 80 atomic action classes, including three major classes: posture actions, actions of
human–human interaction, and actions of human–object interaction.

Dataset 2: UCF101-24 is a dataset oriented to the spatiotemporal action detection task.
This dataset is labeled frame-by-frame and contains a total of 24 classes of actions.

Dataset 3: At present, there is no public student action behavior dataset; so, this
paper constructs a dataset of students’ action behaviors based on real classroom videos
and annotated concerning the AVA dataset [39], which contains seven types of action
behaviors, including listening, looking around, lying on the table, reading, writing, using
mobile phone, and talking, as shown in Figure 8. The construction process of the dataset is
as follows:
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Step 1: Collect real classroom videos from a university; screen and edit the videos; and
select a total of 25 videos, each with a length of 5 min.

Step 2: Firstly, video frames are extracted according to the frame rate of 30 frames
per second; then, every 30 frames are extracted as keyframes, which are used to label the
students’ positions and action behaviors.

Step 3: Use the VGG Image Annotation tool to label the position and action behavior
categories of students in the keyframes, save the labeling information in CSV file format,
and then process it into labeling files in AVA format.

In addition, to model the interaction between students and the environment in the
classroom video, it is necessary to correctly find the objects that students interact with.
Therefore, this paper trains a target detection model based on YOLOv5 that is suitable for
classroom scenes and then uses the model to detect objects such as cell phones and books
in key frames, extracts coordinate information and category indexes of cell phones and
books based on the detection results, and generates labeled files in the format of the COCO
dataset to be used as auxiliary training data.

4.2. Experimental Results on the Public Dataset

In the experiments on the AVA dataset, the model was trained using the pretraining
parameters of the Kinetics-700 dataset for weight initialization. The input to the network
is sixty-four frames, α = 8,τ = 16, i.e., thirty-two frames for the fast pathway and four
frames for the slow pathway. To reduce the number of parameters, the short edges of the
video frames are cropped to 256, two GPUs are used for training, and the SGD optimization
algorithm is used with a batch size of four and an initial learning rate of 0.00025, which
is adjusted in the first 2k iterations using linear warm-up. In this paper, we refer to the
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literature [31] and evaluate the performance of the model using frame-level mAP with an
IoU threshold of 0.5.

In this paper, the MsTA module and MsCSA module are fused to the AIA network;
the classification loss function is replaced with the EFL function, which is compared with
the SlowFast [13], X3D [14], ACAR [17], AIA [11], MRSN [18], DOAD [15], and HIT
networks [19]; and the experimental results are shown in Table 1.

Table 1. Comparison with other models in the AVA dataset.

Model Pretrain mAP%

SlowFast, R101-NL Kinetics-600 29.0
X3D Kinetics-600 27.4
AIA Kinetics-700 31.2

ACAR Kinetics-700 31.9
MRSN Kinetics-700 33.5
DOAD Kinetics-700 28.5

HIT Kinetics-700 32.6
Ours Kinetics-700 32.0

ACAR and AIA models are results reproduced in the environment provided by the
authors and the rest are reported results from the paper. In the experiments on the CUF101-
24 dataset, the input to the network is 32 frames, α = 4, τ = 4; trained using a single GPU
with a batch size of eight; and the other settings are the same as the experiments on the
AVA dataset. The MsTA module and MsCSA module are fused to the AIA network and
compared with the ACT [40], STEP [41], AIA [11], ACAR [17], MRSN [18], DOAD [15], and
HIT networks [41]. The experimental results are shown in Table 2.

Table 2. Comparison with other models in the UCF101-24 dataset.

Model Input mAP%

ACT V 69.5
STEP V + F 75.0
AIA V 81.7

ACAR V 84.3
MESN V 80.3
DOAD V 74.8

HIT V 84.8
Ours V 82.2

V and F in Table 2 denote visual frames and optical flow, respectively.

Tables 1 and 2 show the results of comparing this paper’s improved AIA network
with other models on the AVA dataset and the UCF101-24 dataset, respectively: (1) The
experimental results of the two datasets show that the improved AIA network in this paper
outperforms most of the models and has good generalizability. (2) On the AVA dataset, the
mAP values are lower than those of the MRSN model and the HIT model; however, the
MRSN model requires pretraining of a base network to extract the features of the video
clips as memory features and the HIT model requires an additional human pose estimation
network to extract the keypoints of the human body. (3) On the UCF101-24 dataset, the
mAP values are lower than those of the ACAR model and the HIT model but the ACAR
model models actor–context interactions, which may generate background noise.

4.3. Student Action Behavior Detection Performance
4.3.1. Experimental Results and Analysis of the Student Action Behavior Dataset

In the experiments on the student action behavior dataset, in this paper, the video
frames are cropped to 640× 640, the batch size is set to four, the initial learning rate is
0.00025, and the input of the network is 64 frames. Figure 9 shows the curves of the accuracy
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and loss values of the proposed method during the experimental process. The results show
that the improved AIA network in this paper converges stably during the training process
and achieves 92% accuracy.
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To verify the effectiveness of the different modules added to the improved AIA
network and the improved loss function, Table 3 lists the experimental results with the
addition of the MsTA module and the MsCSA module, as well as the comparative results
of replacing the loss function with the EFL function [12] and the EQLv2 function [42].

Table 3. Comparison of adding different modules and replacing loss functions.

Model Precision% Recall% mAP%

AIA 78.4 77.6 76.5
AIA + MsTA 81.5 78.3 79.4

AIA + MsCSA 79.2 78.5 77.8
AIA + EQLv2 80.3 78.2 78.8

AIA + EFL 82.7 79.1 80.2
AIA + MsTA + MsCSA + EQLv2 82.2 78.8 80.1

AIA + MsTA + MsCSA + EFL (Ours) 83.9 80.4 81.3

As can be seen from Table 3, after integrating the MsTA module and the MsCSA
module into the AIA network, the mAP values of student action detection improved.
Students’ different action behaviors during class have different durations and visual speeds,
and the MsTA module can extract action behavior features with different time scales. For
example, when students are listening carefully, they usually look up and face the teacher,
and there is not much posture change between the current frame and the history frame;
however, when students are looking around, the module needs to combine the temporal
features of multi-frames to recognize the student’s “looking around” behavior. When
students are reading, writing, or using mobile phones, they will turn the book, take a pen,
or touch the book or mobile phone and the MsCSA module expands the receptive field in
the space and enhances the response of the mobile phone, book, and other objects in the
feature map, thus enhancing the interaction features of the student and the object so that
the network better recognizes the interaction behaviors such as reading, writing, or using
mobile phones.

In addition, due to the problem of category imbalance in the dataset, there are fewer
samples of behaviors such as lying on the table, using a mobile phone, and talking, and
more samples of behaviors such as listening and reading. Both the EQLv2 function and the
EFL function are used to improve the problem by adjusting the loss weights of the different
categories. The experimental results in Table 3 show that the EFL function performs better in
the study of this paper; so, the EFL is chosen as the improved AIA network’s loss function.
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Figure 10 shows the AP values of seven student action behaviors for the method
proposed in this paper and the AIA network. The original AIA network has a good
recognition effect for action behaviors with a large number of samples, such as listening,
reading, and writing; however, the recognition accuracy of action behaviors with a small
number of samples, such as lying on the table, using mobile phones, and talking, is low.
The improved AIA network significantly improves the detection accuracy of the four
categories of action behaviors such as looking around, lying on the table, using mobile
phones, and talking, indicating that the method proposed in this paper can not only extract
spatiotemporal features that are beneficial to the recognition of action behaviors but also
deal with the problem of imbalance of the foreground category that exists in dataset 2,
which has a greater improvement in the recognition accuracy of the categories of action
behaviors with fewer samples. Although there are few sample instances of lying on the
table, the features are obvious, and the detection accuracy reaches 80.7%. The detection
accuracy of “talk” behavior is improved by 5.7% compared with that of the AIA network but
is still significantly lower than the other action behaviors, mainly because the application
scenario of this paper is densely populated with students and the head region of the
students occupies a smaller area in the image, with less obvious features.
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Figure 11 shows an example of student action behavior detection at a certain moment
in the classroom of the method proposed in this paper, which proves the effectiveness of
the method.
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In Figure 11, the improved AIA network model can detect students’ action behaviors
such as listening, reading, and using mobile phones during class. Since the number of
students in the classroom is large and the boxes are dense, Figure 12 shows an example of
the detection of action behaviors in a local area.
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4.3.2. Comparative Experiments and Analysis

To objectively evaluate the performance of the network proposed in this paper for
recognizing students’ action behaviors in classroom scenarios, the improved AIA network
is compared with the SlowFast [13], MviT [16], ACAR [17], and AIA [11] networks under
the same experimental configuration conditions and dataset. The experimental results are
shown in Table 4.

Table 4. Comparison with other models in the student action behavior dataset.

Model Pretrain mAP%

SlowFast Kinetics-600 74.2
AIA Kinetics-700 76.5

MViT Kinetics-600 75.2
ACAR Kinetics-700 76.1
Ours Kinetics-700 81.3

As can be seen from Table 4, the mAP values of the network proposed in this paper
are higher than those of other networks, which are 7.1%, 6.1%, 5.2%, and 4.8% higher
than those of SlowFast, MviT, ACAR, and AIA networks, respectively, indicating that the
improved model has better accuracy in the detection of spatiotemporal-oriented students’
action behaviors. The mAP curves during the experiments of different models are shown
in Figure 13.

4.4. Analysis of Students’ Action Behavior Sequences

The action behavior of the students in the classroom is detected by the action behavior
recognition method described in Section 3.1. Then, each student’s seat is matched using
the method described in Section 3.2. The seat matching result at a certain point in time is
shown in Figure 14. The seat is denoted as (x, y), where x stands for rows of seats and y
stands for columns of seats.
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With the seat number as the index, the changes in students’ action behavior are tracked,
and the sequence of students’ action behavior in the teaching time of knowledge points
k is obtained, as shown in Table 5. Listening, writing, reading, looking around, using
mobile phones, lying on the table, and talking are represented by 3, 2, 1, −1, −2, −3,
and −4, respectively.

Table 5. The sequence of students’ action behavior in the teaching time of knowledge point k.

Seat 10 s 20 s 30 s 40 s 50 s 60 s 70 s 80 s 90 s 100 s 110 s

(1, 1) −2 −2 3 3 3 3 3 3 3 3 3
(1, 2) 1 −2 −2 3 1 3 3 3 3 3 3
(1, 3) 1 3 −4 3 3 3 3 3 3 3 3
(1, 5) −4 −4 1 1 3 3 −4 −4 3 3 3
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(5, 9) 3 3 3 3 3 3 3 3 3 3 1
(5, 10) −1 3 −2 −2 −2 −2 −2 −2 −2 −2 −2

From Table 5, it can be seen that analyzing the sequence of students’ action behavior
in the teaching time of knowledge point k can understand the behavior performance of
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students in class and help teachers to find students with negative behaviors, for example, if
the student whose seat number is (5, 10) continues to use a mobile phone during the period
and is in a state of wandering, the teacher should remind the student after class so that the
student can listen to the lectures attentively during the class period and review what the
teacher has said promptly after the class.

5. Conclusions

Recognizing and analyzing students’ action behaviors is of great significance in the
research of teaching feedback and improving students’ learning effectiveness. In this paper,
we propose a student action detection model based on an improved AIA network. To
improve the detection accuracy of the model, we add an MsTA module to the fast pathway
of the video backbone network, and an MsCSA module to the slow pathway, to efficiently
extract the multi-scale temporal and spatial information. The EFL function is introduced to
improve the category imbalance problem that exists in the action behavior dataset. The
experimental results show that the improved AIA network in this paper can detect different
action behaviors of students and has higher detection accuracy compared with the original
network. In addition, correlating students’ action behavior sequences with seat numbers as
indexes can find the students who have negative action behaviors during the class period,
which helps teachers to understand students’ learning efficiency during the class period.
In the future, data such as students’ facial expressions will be further combined to jointly
analyze students’ learning emotions. Meanwhile, more data are collected to create a rich
and diverse dataset. In addition, this paper plans to deploy the algorithm to embedded
devices for use in smart classrooms to help teachers understand students’ learning and
improve their learning outcomes.
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