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Abstract: Woodworking manipulators are applied in wood processing to promote automatic levels
in the wood industry. However, traditional trajectory planning results in low operational stability
and inefficiency. Therefore, we propose a method combining 3-5-3 piecewise polynomial (composed
of cubic and quintic polynomials) interpolation and an improved particle swarm optimization (PSO)
algorithm to study trajectory planning and time optimization of woodworking manipulators. In
trajectory planning, we conducted the kinematics analysis to determine the position information
of joints at path points in joint space and used 3-5-3 piecewise polynomial interpolation to fit a
point-to-point trajectory and ensure the stability. For trajectory time optimization, we propose an
improved PSO that adapts multiple strategies and incorporates a golden sine optimization algorithm
(Gold-SA). Therefore, the proposed improved PSO can be called GoldS-PSO. Using benchmark
functions, we compared GoldS-PSO to four other types of PSO algorithms and Gold-SA to verify its
effectiveness. Then, using GoldS-PSO to optimize the running time of each joint, our results showed
that GoldS-PSO was superior to basic PSO and Gold-SA. The shortest running time obtained by using
GoldS-PSO was 47.35% shorter than before optimization, 8.99% shorter than the basic PSO, and 6.23%
shorter than the Gold-SA, which improved the running efficiency. Under optimal time for GoldS-PSO,
our simulation results showed that the displacement and velocity of each joint were continuous and
smooth, and the acceleration was stable without sudden changes, proving the method’s feasibility
and superiority. This study can serve as the basis for the motion control system of woodworking
manipulators and provide reference for agricultural and forestry engineering optimization problems.

Keywords: woodworking manipulator; time-optimal trajectory planning; 3-5-3 piecewise polynomial;
PSO algorithm

1. Introduction

Wood processing, as a follow-up industry to forest harvesting and transportation, is
a key step in enhancing the synthetic utilization rate of wood in the forestry sector [1,2].
Compared to other industrial fields, the wood processing industry has a relatively late start-
up and slow development, and with the increasing demand for wood products, advanced
processing machinery, such as multi-axis CNC, industrial robots, and manipulators, are
urgently needed to improve mechanization and automation levels in wood processing [3–6].
Manipulators are widely used in related industries such as mechanical manufacturing,
electronic and electrical, food manufacturing, and aerospace manufacturing [7–9]. They
are designed to replace workers for tasks requiring high repeatability, high execution
difficulty, and low safety. With the expansion of its application scope, it will likely bring
unprecedented efficiency and quality to other production and manufacturing industries.
Therefore, applying manipulators to wood processing improves processing efficiency, safety,
product quality, reduces labor costs and create more value. Woodworking manipulators
are convenient, which can realize the free movement and rotation of four-head high-
speed electric spindles in the workspace to drill and mill wooden structures. However,
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their unstable operation and long running times pose challenges to the wood processing
process, leading to high accident rates and poor efficiency [10,11]. Appropriate trajectory
interpolation algorithms can improve manipulator’s operational stability, and the use of
intelligent optimization algorithms for time-optimal trajectory planning can improve the
manipulator’s efficiency. Thus, trajectory planning and time optimization are crucial to
improving the security of operation and shortening the running time of woodworking
manipulators. These improvements will enhance the machining efficiency and quality of
wood processing [12].

Trajectory planning is an important prerequisite step in manipulator’s control system,
which includes kinematic modeling of the manipulator, forward and inverse kinematic
analysis, trajectory interpolation algorithms, trajectory optimization, and simulation. It
significantly impacts the energy consumption, service life, and production efficiency of the
manipulator, which determines whether the manipulator’s terminals can accurately and
fast pass through specified path points and obtain a smooth trajectory [13,14]. According
to different methods of describing motion states, there are two typical types of trajectory
planning, trajectory planning in joint space and trajectory planning in the Cartesian space.
When trajectory planning in joint space, the joint angle is used to represent the position
and pose of the manipulator end-effector, which conveniently calculates inverse kinematics
and avoids singularity problems compared to the Cartesian space [15,16]. Joint angels or
positions can be obtained through inverse kinematics. In addition, introducing a trajectory
planning algorithm is necessary to generate a trajectory between path points.

B-spline curves and polynomial function interpolation are commonly used in trajectory
planning algorithms [17,18]. B-splines have excellent smoothing performance [19], but
cannot pass through all the path points due to their inherent properties, whether it is
approximate fitting or interpolation fitting. When using polynomial functions in trajectory
planning, continuity of velocity and acceleration can only be ensured when the polynomials’
order is at least five [18]. As the polynomials’ order increases, the trajectory becomes more
accurate and smoother; however, it may cause Runge’s phenomenon [20]. Piecewise
polynomial interpolation has proven to be a feasible method for guaranteeing trajectory
smoothness while simplifying calculation [21,22]. The 3-5-3 piecewise polynomial [23]
combines the advantages of cubic and quintic polynomials, enabling the stable operation
of the manipulator and without the need for complex calculations in trajectory planning. It
is suitable for the trajectory planning of the woodworking manipulator.

Efficiency is a primary factor in industrial production. Therefore, time optimization for
trajectory planning has great practical significance, as it improves the operating efficiency
of the woodworking manipulators. Recently, many intelligent optimization algorithms
were proven effective at solving time-optimal problems of trajectory planning; for instance,
the genetic algorithm (GA) [24], whale optimization algorithm (WOA) [25], sparrow search
algorithm (SSA) [26], PSO [27], and ant colony optimization algorithm (ACO), etc. [28].
Due to its few parameter settings, easy implementation, and good applicability, PSO
has been a popular research topic. However, the basic PSO has a slow convergence rate
and is prone to fall into the local extremum, causing low precision. Accordingly, several
studies have reformed the PSO algorithm and been successfully applied to engineering
problems, among which integrating other algorithms is considered effective. Zhao et al. [29]
proposed a hybrid improved whale optimization and PSO algorithm method that enhances
the convergence rate, which was applied to the optimum time-jerk path planning of
serial manipulators. Kamel et al. [30] applied a GA-PSO algorithm to a team of wheeled
mobile robots’ position control, which is superior to the GA or PSO algorithm alone.
Song et al. [31] improved the PSO-ACO algorithm to achieve comprehensive and global
optimization of energy dispatching; the results showed the effectiveness and higher security
of this algorithm.

Although the aforementioned PSO algorithms are effective optimization solutions
in their application field, they require complex parameter debugging and need many
iteration numbers for convergence. Meanwhile, many previous works have only adopted
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the single strategy, which is limited in improving algorithm performance. Therefore,
to simplify the algorithm structure and improve algorithm performance, we propose
a novel PSO algorithm that adapts multiple strategies and integrates Gold-SA [32]. It
has a fast convergence rate and better optimization ability, which can be well applied
in 3-5-3 piecewise polynomial trajectory planning of the woodworking manipulators to
reduce operating time and improve the wood processing efficiency. The following studies
were conducted: (1) we established the kinematics model and kinematics analysis of the
manipulator by a modified D-H parameter method [33]; (2) based on inverse kinematics,
we fit the trajectory between the path points by 3-5-3 piecewise polynomial interpolation;
(3) we developed an improved PSO algorithm and optimized the running time of each
joint; and (4) we conducted simulation experiments and analyses.

2. Materials and Methods
2.1. Mechanism of Woodworking Manipulator
2.1.1. Physical Model of Woodworking Manipulator

Figure 1 shows the woodworking manipulator’s structure. The woodworking manip-
ulator has a T-shaped layout consisting of four motion axes components (A, B, X, and Z),
and is equipped with a four-head high-speed electric spindles at the A axis. From the per-
spective of an industrial robot, it consists of two rectilinear motion joints and two revolute
joints. The rectilinear motion joints and the revolute joints can, respectively, achieve the
translational motion of the woodworking manipulator along the X, Z axis and the rotation
around the A, B axis. All joints are electrically driven by servo motors, drivers, and reducers.
When processing the wooden structure, the upper computer sends instructions, and the
motion controller responds to the input by controlling the joint angle or displacement,
achieving control of the manipulator’s velocity and position. Consequently, the end of the
woodworking manipulator can run smoothly and quickly according to the predetermined
trajectory, and finally reach the designated working position for processing.

Figure 1. Woodworking manipulator.

2.1.2. Kinematic Model of Woodworking Manipulator

The relative motion components in the woodworking manipulator are treated as rigid
connecting rods represented by straight lines. The motion joints are represented as moving
and rotating pairs. Thus, the woodworking manipulator can be simplified. The modified
D-H parameter method is commonly used for modeling different kinds of manipulators’
connecting rod and joint. It is defined by four parameters: connecting rod torsion angle,
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connecting rod length, connecting rod offset, and joint angle, which can achieve coordinate
system transformations through homogeneous transformation matrices and describe the
pose and position of the end-effector [33]. Compared with the D-H parameter method, the
modeling results are the same, but the position of the coordinate system is different. In
our study, the modified D-H parameter method is more convenient. Then, the simplified
manipulator’s connecting rod and joint model, established by the modified D-H method, is
shown in Figure 2, and the parameters are shown in Table 1.

Figure 2. Simplified woodworking manipulator.

Table 1. Modified D-H parameters of woodworking manipulator.

Joint i θi (rad) di (mm) αi−1 (rad) ai−1 (mm) Joint Range

1 −π/2 d1 0 0 0–1000 mm
2 π/2 d2 −π/2 0 0–1500 mm
3 θ3 d3 −π/2 0 −180◦–180◦

4 θ4 d4 π/2 0 −180◦–180◦

where θi is the joint angle, θ3 and θ4 are variable; di is connecting rod offset; d1 and d2 are variable; d3 = 672 mm;
d4 = 286.5 mm; αi−1 is connecting rod torsion angle; and ai−1 is connecting rod length; O represents the position of
the base coordinate system; O1−O4 represent the position of joint 1–joint 4 coordinate system; and O5 represents
the position of the tool coordinate system.

The modified D-H parameter method was used for the kinematic model, obtaining a
homogeneous transformation matrix i−1 Ai [33] between adjacent connecting rod coordinate
systems.

i−1 Ai =


Cθi −Sθi 0 ai−1

SθiCαi−1 CθiCαi−1 −Sαi−1 −Sαi−1di−1
SθiSαi−1 CθiSαi−1 Cαi−1 Cαi−1di−1

0 0 0 1

, (1)

where Cθ is cosine function, and Sθ is sine function.
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Then, calculate the manipulator’s forward kinematics T-matrix through the variable
values of each joint in Table 1, which shown in the following equation:

T = T0
0 A1

1 A2
2 A3

3 A4Ttool

=


r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

=

−Sθ3Cθ4 Sθ3Sθ4 Cθ3 d2 + d4Cθ3 + ySθ3Sθ4

Sθ3 Cθ4 0 d3 + yCθ4
−Cθ3Cθ4 Cθ3Sθ4 −Sθ3 d1 + z− d4Sθ3 + yCθ3Sθ4

0 0 0 1

,
(2)

where T0 is the base coordinate transformation matrix; Ttool is tool coordinate system transformation
matrix and y, z are the parameters in them. rij represents the pose information of the end-effector,
and px, py and pz represent the position information of the end-effector.

After the kinematics equation was obtained from the forward kinematics analysis, we assumed
that the value of the T-matrix was known and used the algebraic method to reverse solve the values
of θ3, θ4, d1, and d2, in the Equation (3) to obtain the inverse kinematics.

θ3= arctan2(− r33, r13)
θ4= arctan2(− r11, r12)
d1 = pz − z− yCθ3Sθ4 + d4Sθ3
d2 = px − d4Cθ3 − ySθ3Sθ4

, (3)

2.2. 3-5-3 Piecewise Polynomial Interpolation
By inverse kinematics, the angle of each joint when the manipulator’s end-effector passes

through the path point can be obtained. Planning the trajectory between each path point is necessary
to determine the joint trajectory interpolation function and calculate the joint angle, velocity, and
acceleration motion parameters between the path points. Polynomial functions are commonly used
as trajectory interpolation functions. However, when only a cubic polynomial is used, the angular
acceleration is discontinuous, and when only using a quintic polynomial to pass through multiple
path points, it leads to complex calculations. Therefore, we used the 3-5-3 piecewise polynomial
interpolation [23] to conduct trajectory planning, which reduces computational complexity, effectively
ensuring the manipulator’s stability while passing through multiple path points. The 3-5-3 piecewise
polynomial interpolation is divided into three segments, with the first and third segments being cubic
polynomial and the second segment being quintic polynomial. Taking joint 1 as an example, the joint
trajectory interpolation functions of each segment are shown in the following equation:

θ1(t) =a10 + a11t + a12t2 + a13t3, (4)

θ2(t) =a20 + a21t + a22t2 + a23t3 + a24t4 + a25t5, (5)

θ3(t) =a30 + a31t + a32t2 + a33t3, (6)

where aij is the jth coefficient of the ith function; t is interpolation time of each segment; and θi(t)
represents the ith angular displacement at time t. Thus, the angular velocity and the angular
acceleration are: .

θ1(t) =a11+2a12t+3a13t2, (7)
.
θ2(t) =a21+2a22t+3a23t2+4a24t3+5a25t4, (8)

.
θ3(t) =a31+2a32t+3a33t2, (9)

..
θ1(t) = 2a12 + 6a13t, (10)

..
θ2(t) = 2a22 + 6a23t+12a24t2+20a25t3, (11)

..
θ3(t) = 2a32+6a33t, (12)
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To ensure the continuous and smooth trajectory of each segment during operation, the joint
angular displacement, velocity, and acceleration must satisfy the constraints as per the following
equation: 

θ1(0) = θ0
θ2(0) = θ1(1)
θ3(0) =θ2(1)

θ3(1) =θ f

, (13)



.
θ1(0) =

.
θ1 = 0

.
θ2(0) =

.
θ1(1).

θ3(0) =
.
θ2(1).

θ3(1) =
.
θ f = 0

, (14)



..
θ1(0) =

..
θ1 = 0

..
θ2(0) =

..
θ1(1)..

θ3(0) =
..
θ2(1)..

θ3(1) =
..

θ f = 0

, (15)

where θi(0),
.
θi(0), and

..
θi(0) are the joint angular displacement, velocity, and acceleration at the

beginning of the ith segment, respectively; and θi(1),
.
θi(1) and

..
θi(1) are the angular displacement,

velocity, and acceleration at the end of the ith segment. When the manipulator starts and stops, the
angular velocity and acceleration must be 0 to ensure safety. Then, the polynomial coefficient matrix
a can be solved by Equations (16)–(18), where ti of A matrix is ith segment interoperation time and Xi
is the ith path point interpolation position of joint 1.

A=



1 t1 t2
1 t3

1 −1 0 0 0 0 0 0 0 0 0
0 1 2t1 3t2

1 0 −1 0 0 0 0 0 0 0 0
0 0 2 6t1 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 1 t2 t2

2 t3
2 t4

2 t5
2 −1 0 0 0

0 0 0 0 0 1 2t2 3t2
2 4t3

2 5t4
2 0 −1 0 0

0 0 0 0 0 0 2 6t2 12t2
2 20t3

2 0 0 −2 0
0 0 0 0 0 0 0 0 0 0 1 t3 t2

3 t3
3

0 0 0 0 0 0 0 0 0 0 0 1 2t3 3t2
3

0 0 0 0 0 0 0 0 0 0 0 0 2 6t3
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0



, (16)

b =
[
0 0 0 0 0 0 X3 0 0 X0 0 0 X1 X2

]T, (17)

a = A−1 b =
[
a10 a11 a12 a13 a20 a21 a22 a23 a24 a25 a30 a31 a32 a33

]T, (18)

Figure 3 shows the joint 1 trajectory planning results when the interpolation time of each section
of 3-5-3 polynomial interpolation is 5 s. The results show that the joint displacement and velocity
curves are smooth, and there are no abrupt changes in the acceleration curve. This indicates that
the 3-5-3 piecewise polynomial interpolation can ensure the smooth operation of the woodworking
manipulator.

According to the solving process of coefficient matrix a, 3-5-3 piecewise polynomial interpolation
must predetermine the ti of each polynomial, which greatly impacts the overall trajectory planning.
Thus, selecting a suitable ti not only ensures the stability of each joint during operation, but also
improves the efficiency of the manipulator.
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Figure 3. Joint 1 trajectory planning results by 3-5-3 polynomial interpolation.

2.3. The Traditional PSO Algorithm
PSO is an intelligent optimization algorithm originating from research into the behavior of

birds foraging in forests. In PSO, bird swarms are abstracted into particle swarms with each bird
representing a particle. The particles iteratively solving the extremum of the fitness function in the
search space simulate the process of birds sharing information with each other to search for the
largest food in the forest, as shown in Figure 4.

The process of particle iterative solution is achieved by continuously updating the particles’
position and velocity information. Figure 5 shows the process of updating particle position and
velocity. In the D dimension search space, we can assume that the particle number is N, Xi = [Xi1, Xi2,
. . ., XiD], which represents the position of the ith particle, Vi = [Vi1, Vi2, . . ., ViD], which represents
the velocity of the ith particle. Pi = [Pi1, Pi2, . . ., PiD] represents the current best position of ith particle
and can be updated by the following equation:

Pi(iter+1) =

{
Pi(iter), f itness(Xi(iter+1) > Xi(iter))

Xi(iter+1), f itness(Xi(iter+1) < Xi(iter))
, (19)

where iter represents iterations; fitness () is fitness function; Xi(iter) and Pi(iter) are the position and
current best position of the ith particle when the iteration number is iter, respectively.

Pgbest = [Pgbest1, Pgbest2, . . . PgbestD] is the current global best position. Then, the formula for
updating the position and velocity of particles is as follows:

V iter+1
ij = ωV iter

ij + c1r1

(
Pij − X iter

ij ) + c2r2

(
Pgbestj − X iter

ij

)
, (20)

X iter+1
ij = X iter

ij + V iter+1
ij , (21)

where ω is inertia weight; c1 and c2 are learning factors; r1 and r2 are the random numbers in the
range (0,1); V iter

ij and X iter
ij are the velocity and position of the jth dimensional component of the ith

particle when the number of iterations is iter, respectively. It is called basic PSO [34] when inertia
weightω = 1.
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Figure 4. The process of birds foraging.

Figure 5. The updating of particle position and velocity.

2.4. The Improvement Strategy of PSO
From the structure of PSO, improvements can be made in terms of population initialization,

inertia weights, and learning factors, as well as particle position and velocity update formulas.
Hu et al. [35] analyzed the impact of PSO velocity on algorithm performance and confirmed that it
was not an essential part and the presence of velocity may cause the iterative process in the wrong
evolutionary direction. So, they proposed a simpler particle swarm optimization (SPSO), and the
position update formula is shown in Equation (22):

X iter+1
ij = ωX iter

ij + c1r1(Pij − X iter
ij )+c2r2(Pgbestj − X iter

ij ), (22)

Compared to PSO, SPSO removes the velocity term, simplifies the control process of particles,
and avoids the velocity parameters’ impact on the algorithm’s convergence rate and accuracy.

We adopted the idea of SPSO in this paper. Firstly, the initialization of the population was based
on Circle chaotic mapping. Introducing tanh function to PSO, we proposed an S-curve type inertia
weight nonlinear decreasing method, which increased the algorithm’s ability to develop a large search
space in the early iteration and precision search around the optimal solution in the later iteration. It
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also integrated Gold-SA to change the particle position update method. The convergence rate and
accuracy of the improved algorithm significantly increased, and overall performance was better.

2.4.1. Initial Population by Circle Chaotic Mapping
The rand function is commonly used for population initialization to generate particle position

and velocity information. Although this method has high randomness, it is difficult to ensure the
uniformity of distribution in the whole search space. Consequently, population diversity reduces,
leading to a slow convergence rate and affecting the convergence accuracy of the algorithm. Chaotic
mapping has good ergodicity and randomness [36], providing a more uniform initial population
distribution than conventional random number generators by generating chaotic sequences, and
increasing the population diversity. Therefore, we used Circle chaotic mapping to initialize the
population, and the generated chaotic sequence was as follows [37]:

k(i + 1) = mod(k(i) + 0.2 − (0.5/2π)sin(2πk(i)), 1), (23)

where mod (a, b) is the remainder of a over b, and k (i) is the ith chaotic sequences number. The
generation of a Circle chaotic sequence does not rely on initial values, and k (1) can be a random
number between [0,1]. Figure 6 shows the distribution diagram and histogram of the 0–1 sequence
values generated by the rand function and Circle chaotic map when the population size is 100.
Obviously, when comparing histograms (c) and (d), there is less randomness in the Circle map, and
the distribution of data points between 0.2 and 0.6 is denser. However, in comparing distributions
(a) and (b), while some randomness is lost, the data points generated by the Circle map are more
evenly distributed in space than the rand function. Furthermore, there are no data “clustering” or
“overlapping” phenomena, which can generate high-quality initial populations in the search space,
accelerate the convergence rate and enhance the ability of particles to escape from local extremum.

Figure 6. Comparison between two kinds of random number generators: (a) distribution diagram of
Circle mapping chaotic sequence values; (b) distribution diagram of random number values of rand
function; (c) histogram of Circle mapping chaotic sequence values; (d) histogram of random number
values of rand function.
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2.4.2. S-curve Type Inertia Weight Nonlinear Decreasing Method
ω is a vital parameter in PSO. In the early iteration, it generally has a larger value with a

strong global optimization ability to accelerate the population’s evolution toward the dominant
population [38]. When the particles approach the optimal solution in the later iteration, it can
seek local optima by using smaller valuesω and performing fine searches to improve convergence
accuracy. Thus, we propose an S-curve type inertia weight nonlinear decreasing method based on the
tanh function [39]. The inertia weight updating formula is as follows, and Figure 7 shows the inertia
weight curve:

ω =ωmin + (ωmax − ωmin)(1 + tanh(2 − 4iter/itermax))/2, (24)

where ωmin is the minimum inertia weight value; ωmax is the max inertia weight value; tanh() is
hyperbolic tangent function; and itermax is the max iterations.

Figure 7. Inertia weight S-curve decreasing and Linear decreasing.

Compared to Linear decreasing, the S-curve decreasing in the early and late iteration of the
search is slower change. Maintaining a larger ω value in the early iteration is beneficial for global
optimization, whereas maintaining a smaller ω value in the later iteration is beneficial for local
optimization.

2.4.3. Position Updating Integrating the Gold-SA
Gold-SA is an optimization algorithm developed by Tanyildizi et al. in 2017 based on the sine

function, which has the advantages of good convergence, strong robustness, and less parameter
tuning [32]. Gold-SA, which searches the entire solution space, is simulating the process of scanning
a unit circle with a radius to obtain a sine function. Therefore, it has good ergodicity, can carry out
extensive searches, and has a strong local optimization ability. In addition, Gold-SA continuously
reduces the search space near the optimal solution through a golden section operator, improving the
algorithm’s convergence rate and accuracy. The position information of Gold-SA is updated using
the following formula.

X iter+1
ij = X iter

ij | sin(R1)| − R2sin(R1

)∣∣∣(x1Pgbestj − x2X iter
ij

)∣∣∣, (25)

where R1 is the random numbers in the range (0, 2π), and R2 is the random numbers in the range
(0, π). x1 and x2 are golden section coefficients, which are updated in the following equation:

x1 = a (1− τ) + bτ, (26)

x2 = aτ + b (1− τ), (27)
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τ =
(√

5− 1
)

/2, (28)

The initial values of a and b are −π and π, respectively [32]. The golden ratio τ is approximately
0.618033. By integrating the Gold-SA position update strategy with the SPSO algorithm, a new
position update formula is obtained as the following equation:

X iter+1
ij = ωX iter

ij + c1| sin(R1)|
(

Pij − X iter
ij )−c2R2sin(R1)

∣∣∣(x1Pgbestj − x2X iter
ij

)∣∣∣ , (29)

Meanwhile, to further improve search efficiency, an acceleration factor λ was introduced to
improve the convergence rate [40]. Finally, the GoldS-PSO position update formula is as follows:

X iter+1
ij = λ(ωXiter

ij + c1|.sin(R1)|(Pij − X iter
ij )−c2R2sin(R1)|(x1Pgbestj − x2X iter

ij )|), (30)

In conclusion, the implementation steps of the GoldS-PSO are as follows:
Step 1: Set the maximum iterations itermax, the particle number N, upper bounds Ub and lower

bounds Lb of particle position and fitness function ‘s dimension D;
Step 2: Population initialization based on Circle chaotic mapping;
Step 3: Calculate the fitness of each particle and record the current historical best position Pi for

each particle, the current global best position Pgbest and optimal value of fitness Gbest;
Step 4: Update the inertia weightω, golden section coefficients x1 and x2, and position Xiter

i ;
Step 5: Determine whether the updated particle position is out of bounds and use the boundary

value as the particle position if it is;
Step 6: Calculate particle fitness again, update the current best historical position Pi for each

particle, the current global best position Pgbest, and the current optimal value of fitness Gbest;
Step 7: Repeat Step 4–6 before reaching the maximum iterations and return the optimal solution

Xbest and optimal value Gbest after reaching it.

2.5. Comparative Testing Experiment
To test the performance of the GoldS-PSO algorithm, we selected eight test functions commonly

used by IEEE Congress on Evolutionary Computation (IEEE CEC) and verified its effectiveness
experimentally [40]. In Table 2, F1–F5 are unimodal benchmark test functions with only one optimal
solution, which involves testing the algorithm’s convergence rate and accuracy. F6–F8 are multimodal
benchmark testing functions with many local optima, which mainly test the algorithm’s ability to
jump out of the local extremum.

Table 2. Benchmark functions.

Function Range Dimension Optimal Value

F1(x) =
n
∑

i=1
x2

i
[−100, 100] 30 0

F2(x) =
n
∑

i=1

∣∣x2
i
∣∣+ n

∏
i=1

∣∣x2
i
∣∣ [−10, 10] 30 0

F3(x) =maxi
{∣∣x2

i
∣∣, 1 ≤ i ≤ n

}
[−100, 100] 30 0

F4(x) =
n
∑

i=1
(|xi+0.5|)2 [−100, 100] 30 0

F5(x) =
n
∑

i=1
ix4

i + random [0, 1) [−1.28, 1.28] 30 0

F6(x) =− 20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+20+e

[−32, 32] 30 0

F7(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

x i√
i

)
+1 [−600, 600] 30 0
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Table 2. Cont.

Function Range Dimension Optimal Value

F8(x) = 0.1
{

sin2(3πxi) +
n
∑

i=1
(xi − 1)2[1+ sin2(3πxi+1)

]
+

(xi − 1)2 [1+ sin2 (2πxn)
]} n

∑
i=1

u(xi, 5, 100, 4)

u = (xi, a, k, m) =


k(xi − a)m,

0,
k(−xi − a)m,

xi > a,
−a ≤xi ≤ a,

xi < −a.

[−50,50] 30 0

Figure 8 shows the F1–F8 diagram when the function dimension is 2. Then, we selected four
related algorithms, basic PSO [34], SPSO [35], compression factor particle swarm optimization
(CFPSO) [41] and Gold-SA [32] for comparative experiments. In the experiment, to ensure fairness,
the basic parameters of different PSO and Gold-SA were set the same, with a population size of
N = 30, a dimension of D = 30, and maximum iterations of itermax = 1000. Other parameters are
consistent with the original literature.

Figure 8. F1–F8 benchmark test function three-dimensional diagram.

Each algorithm runs 30 times independently, calculating the mean value (Mean), best value
(Best), and standard deviation (Std) of the optimal results as performance indicators for algorithm
optimization, reflecting the algorithm’s convergence accuracy and stability. As there are no high
requirements for real-time in the woodworking manipulator’s trajectory planning, we did not choose
to compare and analyze the running time of each algorithm as a specific performance indicator. The
results of specific performance indicators in the comparative experiment are recorded in Table 3, and
the best results are highlighted in bold font.

Table 3 shows that the average and standard deviation of GoldS-PSO optimization results in
F1–F3 reached the theoretical optimal values. This finding indicates that the improved algorithm
had good solving accuracy and stability in such unimodal optimization problems. Gold-SA and
SPSO algorithms also achieved good results but did not reach the theoretical optimal values in the
F2 and F3. However, there is still a significant gap in algorithm accuracy compared to GoldS-PSO.
None of the algorithms reached the theoretical optimal value at F4 and F5, but GoldS-PSO had higher
accuracy. For the test functions F6 and F7, GoldS-PSO and Gold-SA achieved better results with
standard deviations of 0, indicating better robustness of the algorithm. In the F8 test results, although
the mean and best values of GoldS-PSO are slightly lower than Gold-SA, it had higher convergence
accuracy than the PSO, CFPSO, and SPSO, demonstrating that the improved algorithm has a stronger
ability to jump out of local optima. In summary, GoldS-PSO has significantly improved convergence
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accuracy and stability compared to other PSO algorithms. It is only slightly inferior to Gold-SA in the
terms of F8 results. The overall performance of the algorithm has improved.

Figure 9 shows the curve of the best fitness value for each algorithm during the iterative
evolution of the F1–F8 test function, which can more intuitively compare algorithm’s convergence
rate and accuracy. F1–F3 in Figure 9 shows that GoldS-PSO’s convergence rate is significantly better
than other algorithms. It can fully converge to the theoretical optimal value in the first 600 generations,
nearly 300 generations faster than the fastest Gold-SA on average.

Although Gold-SA and GoldS-PSO both completed convergence in the first 100 generations
from the F6 and F7 in Figure 9, GoldS-PSO still used the least iterations, showing that the efficiency
and rapidity of the improved algorithm was significantly enhanced. It is shown from the F4, F5 and
F8 in Figure 9 that GoldS-PSO has an excellent ability to jump out of local extremum.

Figure 9. Cont.
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Figure 9. The best F1–F8 fitness evolution curves by using PSO, SPSO, CFPSO, Gold-SA, and GoldS-
PSO in 30 times independent runs.

Table 3. The optimization results of the comparative testing experiment.

Function PSO CFPSO SPSO Gold-SA GoldS-PSO

F1

Mean 3.73248 × 101 0.12322 × 101 6.4918 × 10−190 0 0
Best 2.43271 × 101 5.3919 × 10−1 2.5027 × 10−190 0 0
Std 0.46358 × 101 0.39174 × 101 1.4048 × 10−189 0 0

F2

Mean 2.59152 × 101 0.31992 × 101 7.6576 × 10−96 1.3191 × 10−259 0
Best 2.31681 × 101 0.17982 × 101 3.6225 × 10−96 0 0
Std 0.16301 × 101 8.0076 × 10−1 2.852 × 10−96 0 0

F3

Mean 0.23978 × 101 9.964 × 10−1 1.3423 × 10−95 2.4626 × 10−214 0
Best 0.20577 × 101 8.1201 × 10−1 1.2058 × 10−95 0 0
Std 1.2016 × 10−1 1.1032 × 10−1 5.1565 × 10−97 0 0
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Table 3. Cont.

Function PSO CFPSO SPSO Gold-SA GoldS-PSO

F4

Mean 3.58749 × 101 0.12009 × 101 0.53438 × 101 6.3772 × 10−5 3.0695 × 10−5

Best 2.7984 × 101 5.26 × 10−1 0.4776 × 101 2.7074 × 10−7 2.3277 × 10−7

Std 0.49812 × 101 4.6943 × 10−1 4.2675 × 10−1 1.6428 × 10−4 3.52212 × 10−5

F5

Mean 1.5867973 × 103 0.75091 × 101 1.3191 × 10−1 4.141 × 10−5 2.9164 × 10−5

Best 1.0118771 × 103 0.28872 × 101 2.3587 × 10−2 3.9512 × 10−6 1.0577 × 10−6

Std 3.269182 × 102 0.38832 × 101 7.6126 × 10−2 5.6872 × 10−5 2.3199 × 10−5

F6

Mean 0.38518 × 101 0.16354 × 101 7.8752 × 10−15 8.8818 × 10−16 8.8818 × 10−16

Best 0.35918 × 101 7.1535 × 10−1 4.4409 × 10−15 8.8818 × 10−16 8.8818 × 10−16

Std 1.15 × 101 4.6235 × 10−1 6.4863 × 10−16 0 0

F7

Mean 8.6704 × 10−1 5.0136 × 10−2 1.1211 × 10−1 0 0
Best 7.7332 × 10−1 1.5054 × 10−2 0 0 0
Std 4.6326 × 10−2 2.0134 × 10−2 2.6264 × 10−1 0 0

F8

Mean 0.56774 × 101 3.2971 × 10−1 0.31016 × 101 9.1171 × 10−5 9.823× 10−5

Best 0.30884 × 101 1.4755 × 10−1 0.26321 × 101 1.0629 × 10−7 1.3947 × 10−77

Std 8.3954 × 10−1 1.0153 × 10−1 3.8235 × 10−1 2.5837 × 10−4 1.0078 × 10−4

3. Experiments and Results
3.1. Time Optimal Trajectory Planning Process

In this section, GoldS-PSO was used to optimize the running time of woodworking manipulator
within the constraints of each joint’s maximum velocity and acceleration. As described in Section 2.2,
the interpolation time ti of each segment is an important parameter in 3-5-3 piecewise polynomial
interpolation trajectory planning. Therefore, while ensuring a smooth and controllable trajectory,
minimizing the ti of each segment is necessary to improve the efficiency of manipulation. The
optimization problem for the interpolation time of the ith joint is as follows:

f (t) = min (ti1 + ti2+ti3), (31)

max
{∣∣∣vij

∣∣∣} ≤ V max,

max
{∣∣∣aij

∣∣∣} ≤ A max

where tij, vij, and aij are the interpolation time, velocity, and acceleration of the jth segment of the
ith joint, respectively. Vmax and Amax represent the maximum velocity and acceleration of each joint.
The simultaneous movement of each joint was optimized separately to ensure that they meet the
velocity and acceleration limits. The maximum value of each optimized joint in each segment was
considered the optimization result. Tallying the optimization results of each segment to obtain the
final optimized running time. Then, we could propose a woodworking manipulator time-optimal
trajectory planning method based on 3-5-3 piecewise polynomial interpolation and the GoldS-PSO
algorithm. Figure 10 shows a flowchart of the process.

3.2. Time Optimization Experiment of Woodworking Manipulator
Time Optimization experiments were conducted on the four joints of woodworking manipulator

to optimize runtime. The woodworking manipulator passed through four path points A, B, C, and D.
The corresponding joint position and joint angle were obtained through the inverse kinematics of
Section 2.1, as shown in Table 4. The basic PSO, Gold-SA and algorithms proposed in this paper were
selected for time-optimal trajectory planning. For each algorithm, the population size was set to 50,
the maximum iterations were 300, the maximum velocity of joints 1 and 2 was 0.6 m/s, the maximum
acceleration was 0.8 m/s2, the maximum velocity of joints 3 and 4 was 1.8 rad/s, the maximum
acceleration was 2.4 rad/s2, and the particle position range was constrained at [1,5]. Under velocity
and acceleration limitations, the total optimal interpolation time and the three-stage interpolation
time for each joint were recorded in Table 5. The shortest Ttotal and maximum ti of each joint are
highlighted in bold.
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Figure 10. Time-optimal 3-5-3 piecewise polynomial trajectory planning process based on GoldS-PSO.

Table 4. Four joint positions and angle of path points.

Joint A B B D

1 0.800 m 0.578 m 0.688 m 0.459 m
2 1.200 m 0.868 m 0.567 m 0.964 m
3 3.141 rad 1.897 rad 1.468 rad 2.355 rad
4 0.000 rad 1.047 rad 1.771 rad 0.754 rad

Table 5. Interpolation time after optimizing each joint.

Algorithm Joint Ttotal t1 t2 t3

PSO

1 7.2210 1.7301 3.5905 1.9008
2 7.4472 2.0576 2.2782 3.0889
3 7.0339 2.6648 2.3479 2.0272
4 6.9658 2.0908 2.5381 2.3368

Gold-SA

1 7.1210 1.9488 3.1077 2.0645
2 7.5203 2.2059 2.2647 3.0497
3 6.9526 2.4483 2.4637 2.0406
4 7.1518 2.3862 2.4097 2.3560

GoldS-PSO

1 7.0672 2.1107 2.9540 2.0025
2 7.2177 2.0009 2.6121 2.6047
3 6.8970 2.3189 2.5846 1.9935
4 6.8713 2.0205 2.5096 2.3412

According to Table 5, GoldS-PSO achieved the best results compared to basic PSO and Gold-SA,
with the optimized total running time Ttotal of each joint being 7.0672 s, 7.2177 s, 6.8970 s, and 6.8713
s, respectively. Moreover, the maximum interpolation time of each joint segment under GoldS-PSO
optimization was also the smallest compared to basic PSO and Gold-SA. The fitness iterative evolution
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curve for each joint is depicted in Figure 11. It better reflects the performance of each algorithm in the
optimization process.

Figure 11. Four joints’ iterative process by using PSO, Gold-SA, and GoldS-PSO.

Figure 11 shows that GoldS-PSO had a faster rate of convergence than PSO. Out of all the
optimization processes, the iterations of GoldS-PSO were within the 60 generations to complete
global convergence, whereas PSO required at least the 120 generations. Compared to Gold-SA,
GoldS-PSO’s rate of convergence did not significantly improve; however, its ability to jump out of
local extreme values was stronger and its convergence accuracy was the highest. Although Gold-
SA achieved global convergence within the 50 generations, it was hard to adjust the evolutionary
direction in the middle or later iteration and easily fell into the dilemma of local extremum. Even in
the optimization processes of joints 2 and 4, Gold-SA’s convergence accuracy was lower than that of
PSO. In a word, GoldS-PSO has a good convergence rate and is not easily trapped in local convergence.
It balances the rapidity and accuracy of convergence, which indicates better performance for such
engineering optimization problems.

Subsequently, we selected the maximum interpolation time of each joint segment as the final
t1, t2, and t3. Then, the total interpolation time obtained after optimizing the PSO, Gold-SA, and



Appl. Sci. 2023, 13, 10482 18 of 22

GoldS-PSO was 9.3442 s, 8.6057 s, and 7.8776 s, respectively. The GoldS-PSO algorithm reduced time
consumption by 47.483% compared to before optimization, 15.695% compared to PSO optimization,
and 8.461% compared to Gold-SA optimization, demonstrating the effectiveness and superiority of
the algorithm. The final planning times t1 = 2.3189 s, t2 = 2.9540 s, and t3 = 2.6047 s of each segment
was substituted into the 3-5-3 piecewise polynomial interpolation function in Section 2.2 to obtain the
displacement, velocity, and acceleration simulation curves of each joint.

3.3. Simulation Results
According to the simulation curve in Figure 12, the displacement and velocity curves of each

joint are smooth and continuous, and there is no sudden change in the acceleration, and none exceeds
the limit range. In the velocity and acceleration curves, the maximum velocity and acceleration of
the joint tend toward the maximum limit value, indicating improved joint operation efficiency. In
conclusion, the above results proved the successful of the time optimal trajectory planning method
proposed in this paper. It not only improved the operational efficiency but also effectively ensured
the continuity and stability of the manipulator.

Figure 12. Woodworking manipulator displacement, velocity, and acceleration of each joint (a) Joint
displacement running curve; (b) joint velocity running curve; (c) joint acceleration running curve.

Figure 13 depicts three trajectories from starting point A to ending point D of the woodworking
manipulator end-effector under optimal time and a simulation model of the woodworking manipula-
tor by simplifying the woodworking manipulator into a series of connecting rods in the MATLAB
Robotics Toolbox [42]. As shown in the following figure, the connecting rod can stretch and rotate
to simulate the movement and rotation of the four joints of the woodworking manipulator. The red
curve represents the end-effector trajectory of the woodworking manipulator and the four black
dots marked represent the four path points A, B, C, and D in the Cartesian space. Figure 13a–d
shows the entire operation process in detail. The trajectory of the end-effector passes through all
paths point stably without interruption. Our results proved that the proposed algorithm achieved
the time-optimal trajectory planning of the woodworking manipulator while ensuring stability and
operational accuracy. In other words, we demonstrated that the proposed method is feasible.
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Figure 13. The woodworking manipulator end-effector trajectory under optimal time (a) The end-
effector at starting point A; (b) the end-effector at point B and the trajectory from A to B; (c) the
end-effector at point C and the trajectory from A to C; (d) the end-effector at end point D and the
trajectory from A to D.

4. Discussion
For the woodworking manipulator, joints 1 and 2 are rectilinear motion joints, while joints 3 and

4 are revolute joints. Therefore, the limitations of joint velocity and acceleration are different. In the
experiment of optimizing joint running time, joints 1 and 2 can be divided into one group experiment,
and joints 3 and 4 are another group. From Table 5, the difference in total running time of joints 1 and
2 optimized by GoldS-PSO is 0.1505 s, and the difference in total running time of joints 3 and 4 is
0.0257 s, which is smaller than the 0.2262 s and 0.0681 s of basic PSO and the 0.3993 s and 0.1992 s of
Gold-SA, indicating that GoldS-PSO has better stability. The simulation results in Section 3.3 show
that the displacement and velocity curves of the manipulator maintain good operational smoothness.
However, due to the trajectory being divided into three segments, there is a clear convergence in
the operation patterns of the first and third segments, which may not be conducive to meeting the
special needs of some machining tasks. Additionally, because of the different interpolation functions
used, the acceleration curve can maintain continuity at the connection of two trajectories, but it is not
smooth enough and can result in non-differentiable points. But in summary, the simulation results
meet the working requirements of the woodworking manipulator.

The method proposed in this paper achieved satisfactory results in time-optimal trajectory
planning of woodworking manipulator. However, some areas must be considered for future research.
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Firstly, from the perspective of the proposed GoldS-PSO algorithm, further testing is needed to
evaluate the effectiveness of different parameter combinations that may need strict mathematical
derivations [43]. Moreover, currently we only applied GoldS-PSO to time-optimal trajectory planning
of woodworking manipulators. More experiments are needed to assess the effectiveness of other
optimization problems in agricultural and forestry engineering, which may require adjustments
to the algorithm structure again. Then, after completing the time-optimal trajectory planning, it is
necessary to comprehensively consider the effect of energy consumption, impact, and other factors
on the operation and carry out multi-objective optimization [44,45] of the trajectory to enhance the
general performance of manipulator. The design of the manipulator control system and trajectory
tracking control is also the focus of subsequent studies.

Recently, some advanced technologies, such as machine vision, image processing, artificial
intelligence algorithms, etc., have been integrated into automated manipulator and robot systems,
which has provided unprecedented opportunities for traditional agriculture and forestry industries
to achieve an automate decision-making processes and improve efficiency [46,47]. In this process,
the GoldS-PSO algorithm proposed in this paper can be used for the training of neural networks
and optimization of control model structure in the intelligent control system [48,49], as well as
for the optimization of target recognition, positioning, and tracking technology in visual detection
systems [50,51]. Meanwhile, some relevant studies indicate that it has great potential in optimizing
forestry management structure [52].

5. Conclusions
In this paper, we proposed a time-optimal trajectory planning method based on a 3-5-3 piecewise

polynomial interpolation combined with GoldS-PSO algorithm. Aiming to optimize the trajectory
of woodworking manipulator in joint space and improve processing efficiency. Firstly, a brief
introduction was provided to the structure and operating principles of the woodworking manipulator.
Then, we used a modified D-H parameter method to establish a kinematic model of the manipulator
for forward and inverse kinematic analysis and used a 3-5-3 piecewise polynomial interpolation
to fit three segment trajectories between four path points in joint space. By introducing a Circle
chaotic map for population initialization, proposing an S-curve type nonlinear decreasing method
to update inertia weight, and integrating the Gold-SA for improving the particle position update
formula to obtain the GoldS-PSO, we utilized the commonly used benchmark functions to test the
performance of GoldS-PSO, and compared it to basic PSO, SPSO, CFPSO and Gold-SA. Afterward,
under the limitations of joints’ displacement, velocity, and acceleration, the GoldS-PSO was used to
optimize the trajectory interpolation time of each joint, with the target of obtaining the minimum
total running time. The experimental results demonstrated that GoldS-PSO decreased each segment’s
maximum time of 5 s by 2.6811 s, 2.046 s, and 2.3953 s, respectively. Therefore, the total running
time obtained via GoldS-PSO optimization was 7.8876 s, which had reduced by 47.483%, 15.695%,
and 8.461% form 15 s before optimization, the 9.3442 s for PSO optimization, and the 8.6057 s for
Gold-SA optimization, respectively. These findings indicate that GoldS-PSO converges faster and
more accurately. The optimized trajectory displacement and velocity curves are smooth and stable,
and the acceleration curve is continuous without sudden changes. Our results demonstrate the
feasibility and superiority of the proposed method by continuously passing through all the given
path points in the Cartesian space in optimal time. In future work, the structure of GoldS-PSO
needs further adjustment to improve algorithm performance, and we will carry out multi-objective
trajectory optimization for the woodworking manipulator in terms of energy consumption, time,
and impact. The GoldS-PSO algorithm proposed in this paper can provide guidance for relative
agricultural and forestry engineering optimization problems.
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