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Abstract: Road surface deterioration, such as cracks and potholes, poses a significant threat to both
road safety and infrastructure longevity. Swift and accurate detection of these issues is crucial for
timely maintenance and user security. However, current techniques often overlook the unique
characteristics of pavement images, where the small distressed areas are vastly outnumbered by
the background. In response, we propose an innovative road distress classification model that
capitalizes on sparse perception. Our method introduces a sparse feature extraction module using
dilated convolution, tailored to capture and combine sparse features of different scales from the
image. To further enhance our model, we design a specialized loss function rooted in domain-
specific knowledge about pavement distress. This loss function enforces sparsity during feature
extraction, guiding the model to align precisely with the sparse distribution of target features. We
validate the strength and effectiveness of our model through comprehensive evaluations of a diverse
dataset of road images containing various distress types and conditions. Our approach exhibits
significant potential in advancing traffic safety by enabling more efficient and accurate detection and
classification of road distress.

Keywords: machine learning; pavement distress; intelligent transportation systems

1. Introduction

Road infrastructure is pivotal for the socio-economic development and general pros-
perity of societies, acting as the backbone of connectivity and transportation. Maintaining
the integrity and longevity of these road networks is imperative for transportation au-
thorities globally. A major impediment faced by these bodies is the swift detection and
subsequent classification of road anomalies like potholes, cracks, and other deformities.
Such irregularities, if left unchecked, can result in accidents, amplify vehicular wear and
tear, and escalate road maintenance expenditures.

Historically, the detection of such road maladies predominantly depended upon
human inspection, a method that, despite its earnest intent, is laborious, time-intensive,
and susceptible to oversights. The evolution of camera and laser technologies [1] has
ushered in a new era, allowing for the capture of road images in high resolution, even while
in transit. This has resulted in the accumulation of expansive datasets of road imagery.
However, the true challenge surfaces in the meticulous identification and categorization of
road distress within these extensive datasets [2].

Addressing the intricacies of pavement management, Jooste et al. architected a model
harnessing the prowess of multi-classification machine learning algorithms, aiming for the ju-
dicious application of treatments to distinct road segments. This model showcases formidable
accuracy, predicting both untreated and treated segments with high precision [3].

Numerous innovators have further enhanced this domain. Hanandeh introduced a
novel intersection of mathematical modeling with Genetic Algorithm and Artificial Neural
Networks, aspiring to deduce the Pavement Quality Index of flexible pavements [4]. Zhao
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and collaborators ventured into machine learning, aiming to gauge the repercussions of
excessive traffic weight on asphalt pavement’s life, employing a random survival forest
algorithm [5]. In yet another groundbreaking endeavor, Kaloop et al. presented a hybrid
model, demonstrating superior accuracy in estimating the International Roughness Index
of rigid pavements compared to traditional techniques [6].

In this expansive realm, researchers like Qureshi et al. probed the potential of intelli-
gent image analysis techniques for pavement assessment, elucidating that these avant-garde
systems could substantially economize both cost and time [7]. Dong and his team show-
cased a fusion LSTM-BPNN model that surpassed its predecessors in forecasting pavement
performance [8]. Moreover, a slew of reviews and studies from researchers like Yang et
al. and Damirchilo et al. spotlighted the myriad applications and predictive capacities of
machine learning and artificial intelligence within pavement engineering [9–11].

Despite these advancements, road distress identification, with its intricate nuances,
often remains elusive to conventional image classification models. A pivotal reason is the
sparse distribution of pixels that characterize road distress juxtaposed against a predomi-
nant background—creating a stark imbalance and a unique challenge in image analysis.

To counter these challenges, this paper details a novel model rooted in sparse percep-
tion for road distress classification. The model’s architecture rests on two foundational
pillars: a sparse feature extraction module and a domain-specific loss function. The sparse
feature extraction module, leveraging the potential of dilated convolution, is adept at
capturing sparse features across various scales, creating a comprehensive representation of
road conditions. Meanwhile, our loss function, conceived with a meticulous understanding
of the pavement domain, ensures the consistent sparsity of the feature space.

Rigorous validation on an authentic dataset affirmed the potency of our model, record-
ing remarkable F1 scores and signifying a profound edge over conventional methods.

In encapsulation, our contributions are as follows:

• We design a pioneering model emphasizing sparse perception tailored for road distress
classification.

• We design an intricate sparse feature extraction module, capitalizing on dilated convo-
lution, to distill and amalgamate sparse features from diverse feature scales.

• We crafting a loss function underpinned by a thorough of the pavement, ensuring
consistent feature space sparsity.

• We empirical validation of the model on an authentic dataset, underscoring its superiority.

2. Method

The maintenance and preservation of transportation infrastructure systems hinge
crucially upon the effective identification and classification of pavement distress. The health
and safety of these systems are paramount, necessitating reliable and precise methods for
identifying potential hazards. In the current study, we introduce a novel approach explicitly
crafted for the classification of pavement image distress. This innovative method addresses
the shortcomings of existing image classification models in the field of computer vision,
which often fail to account for features unique to pavement distress images.

At the heart of our method lies a bespoke sparse feature module. This module is
designed to optimize the extraction of image features, thus significantly enhancing the
overall performance of the model. Pavement images typically present a unique challenge,
wherein the background occupies the majority of the image, and the distresses, which are
the primary targets of our analysis, are sparsely distributed. Figure 1 presents an instance
of a road image dataset. The visual display comprises two facets: a grayscale image to
the left, which is employed in our model due to its optimal fitting characteristics, and a
depth map appearing concurrently on the right for clarity and comprehension. A critical
aspect to note in the figure is a specific region of interest, demarcated by a red bounding
box. This portion, though relatively diminutive in comparison to the entirety of the image,
captures the focus of our model due to the significant information it carries about the road’s
condition. The highlighted area demonstrates the inherent sparse nature of the distress
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features in road imagery—it constitutes only a small proportion of the total image pixels,
yet represents the vital information necessary for effective distress classification.

Pavement Image Pavement Depth Image

Figure 1. Samples of the pavement image data, with the depth image shown simultaneously for
clarity considerations (only the left grayscale image is used in the model for applicable fitness
considerations). It can be seen that the target shown in the red box (distress) is only a small part of
the whole image pixels, reflecting the sparse feature.

By centering our attention on these sparse regions, we ensure that no critical data
points are overlooked. Further, we have developed a loss function tailored to imposing a
sparsity constraint, ensuring that the features extracted align with the sparse nature of the
target areas. This illustrative example, therefore, underlines our model’s core proposition:
focusing on sparse, significant features rather than the largely monotonous background.
It encapsulates the challenges of pavement distress classification and how our proposed
method addresses them, serving as a testament to the potential effectiveness of our sparse
perception-based road disease classification model.
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2.1. BoneNetwork

Our method leverages the strengths of the High-Resolution Network (HRNet) [12], an
established architecture, or BoneNetwork, widely employed for diverse tasks within the
realm of computer vision. HRNet has heralded significant progress in the field by main-
taining high-resolution representations throughout the model. Its multi-scale, parallel, and
high-resolution design effectively tackles the issue of information loss at lower resolutions,
thereby facilitating the capture of fine-grained details. However, when HRNet is applied to
pavement image data, certain limitations become evident. The model fails to effectively
isolate and highlight the sparse target features against the pervasive background. Our
work is designed to address these limitations, focusing on the critical, sparse target areas to
yield better results.

2.2. Sparse Module

The second key component of our method is the Sparse Module. This module serves
a critical role in our proposed model. It is crafted to focus on the sparse targets amidst
the monotonous backgrounds, a feature often overlooked in conventional methods. The
module is designed to be adaptable and scalable, ensuring compatibility with diverse model
architectures. It harnesses the power of sparse representation theory, integrating sparse
paradigm formulas to enhance the extraction of sparse features from pavement images.

Figure 2 representation portrays the comprehensive architecture of our model, meticu-
lously designed to address the challenges of pavement distress classification. This schematic
illustrates a holistic workflow that initiates with an input pavement image and ends with
the extraction and sharing of sparse image features then getting classification results.
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Figure 2. The overall architecture of our model. Given a pavement image, four feature extractors of
different sizes extract image features and iterate forwards, sharing information between the different
sizes. Meanwhile, we design a sparse module to take features from the max size features, while using
a 1 × 1 convolution to keep the features, a pooling layer to read the sparse points and expand the
sensory field using two dilated convolutions with different sizes, and finally concatenate the outputs
up to participate in the sharing of different sizes as sparse features.

The pavement image serves as the initial input, and the image is processed through
four distinctive feature extractors. Each of these extractors is unique in terms of size,
offering a multi-scale method to feature extraction. Simultaneously, as part of this intricate
process, we introduce a bespoke sparse module. This component is designed to extract
features from the largest size features, further enhancing the ability of the model to identify
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sparse areas of interest. The utilization of a 1 × 1 convolution aids in the maintenance
of these features. In the following step, a pooling layer is employed to identify and
highlight sparse points within the image, consequently expanding the sensory field of
the model. The sparse module also leverages dilated convolutions of varying sizes to
further scrutinize the image, focusing on the comprehensive coverage and extraction of
relevant features. The model then amalgamates these diverse outputs, effectively compiling
them into a singular, coherent format. This concatenated output serves to participate in
multi-dimensional information exchange among different sizes, thus enhancing the overall
feature extraction process.

Figure 3 visually encapsulates a comparative exploration of feature extraction method-
ologies for pavement distress. The graphical representation utilizes color coding to distin-
guish between different regions of interest within the pavement image. Notably, the red box
delineates the target area, indicative of pavement distress, while the blue box demarcates
the surrounding background region.

Common Ours

Sparse Threshold

Figure 3. The figure demonstrates the difference in feature extraction for pavement distress, where
the red box represents the target,the green box represents the convolutional kernel and the blue box
represents the background. It can be seen that we have improved the qualitative feature extraction by
expanding the receptive field and setting the sparse threshold (0.1).

The crux of our enhancement lies in the ingenious alteration of the conventional
feature extraction process. As the illustration suggests, we have enhanced the qualitative
aspect of feature extraction by expanding the receptive field. This expansion allows the
model to grasp a broader perspective of the image, effectively incorporating a larger, more
diverse set of contextual details. By doing so, the model transcends the limitations of a
narrow field, gaining a more holistic understanding of the spatial and relational intricacies
embedded within the image.

Furthermore, the illustration elucidates our decision to implement a sparse threshold
set at 0.1. This sparse threshold plays a pivotal role in fine-tuning the feature extraction
process, ensuring that the model maintains a focus on areas with significant information
density. The sparse threshold serves as a guiding parameter, allowing the model to priori-
tize extraction from the key areas of interest—the sparse distress points—while effectively
reducing the noise from the relatively monotonous background. Through the expanded
receptive field and the incorporation of a sparse threshold, we have been able to enhance
the qualitative feature extraction, leading to a more accurate and effective representation of
pavement distress.
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2.3. Domain Sparse Constrained Loss Function

Building upon the foundational concepts of computer vision and image classifica-
tion, the third component of our research introduces a uniquely tailored mechanism—the
Domain Sparse Constrained Loss Function. This innovative approach to handling the intri-
cacies of pavement distress classification is borne out of the need to explicitly incorporate
the sparse nature of pavement distresses into our model’s learning process.

Figure 4 portrays the distinct difference in feature space distribution between conven-
tional image classification tasks and the specialized domain of pavement images. The left
shows the feature distribution pattern of usual computer vision tasks, the middle shows
the sparse feature distribution specific to the road distress domain, and the right shows
our proposed loss function dedicated to optimizing the feature extraction by exploiting
the distance between sparse clusters. The key objective of our function is to discern and
distinguish these sparse, yet critical, features in the pavement images. The loss function,
by imposing a distance-based separation, helps to accentuate the sparse features, thereby
facilitating their recognition and classification.

Common Feature Space Pavement Distress

Feature Space

Sparse Distance 

Constraint

Figure 4. The figure illustrates the feature space for the conventional task as well as the feature space
in the pavement image. In general, the feature distribution is more even, whereas the pavement
domain is more sparse and concentrated, and the loss function we designed aims to clearly separate
sparse features with distance.

Unlike traditional loss functions, our design takes into account the sparsity of target
features in pavement image data. This tailoring to the specifics of pavement distresses
ensures the optimal extraction and classification of the sparse features. In essence, we
modify the original loss function by incorporating a term for L1 regularization, which helps
enforce sparsity in the extracted features:

L f inal = LCrossEntropy + λ× L1_loss (1)

where LCrossEntropy is the cross entropy loss function typically used in classification tasks,
and L1loss is the L1 regularization term. The λ factor in this equation is a hyperparameter
that controls the degree of regularization, striking a balance between the original loss and
the imposed sparsity constraint (is 1 in this case). The L1 regularization term is defined as
the sum of the absolute values of the weights in our model’s dilated convolution modules,
a formulation known for its property of promoting sparsity:

L1_loss = ∑
Sparse Module

||weight||1 (2)

In this equation, ||weight||1 represents the L1 norm of the weight matrix in the convo-
lutional layer of each dilated convolution module.

Moreover, the Domain Sparse Constrained Loss Function addresses the common
challenges in handling sparse data. Conventional models often fall short in dealing with
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sparse data due to the risk of overfitting or inadequate feature extraction. Our custom loss
function mitigates this by imposing a constraint that not only aligns with the data’s natural
distribution but also aids in maintaining a robust model by discouraging overfitting.

To recap, the Domain Sparse Constrained Loss Function serves a dual purpose: Firstly,
it improves the quality of feature extraction from sparse data by incorporating the nature
of the data directly into the model’s learning process. Secondly, it improves the overall
robustness and performance of the model by mitigating the common challenges associated
with handling sparse data.

3. Results

In this section, we present an empirical evaluation of our proposed model and compare
its performance with six contemporary, state-of-the-art methods in image classification.
The primary aim of this study was to ascertain the performance and efficiency of our
model in addressing image classification tasks with a particular focus on pavement distress
categories. A dataset embodying an array of pavement distress categories was meticulously
analyzed as part of the evaluation process. Extensive experimentation underscored the
superior performance of our sparse model in terms of classification accuracy as compared
to the other methods.

• ResNet (Residual Network) [13]: A type of convolutional neural network (CNN)
that uses shortcut connections (also known as residual connections) to make deeper
models possible. These shortcut connections help to solve the vanishing gradient
problem, which can occur when training very deep neural networks. ResNet models
can have hundreds or even thousands of layers, and they have achieved state-of-the-art
performance on many computer vision tasks.

• VGGNet (Visual Geometry Group Network) [2]: The model is characterized by its
simplicity, using only 3 × 3 convolutional layers stacked on top of each other in
increasing depth. The depth of the network, which is a defining characteristic of
VGGNet, contributes to learning more complex features at higher layers. Despite its
simplicity and depth, it is quite resource-intensive.

• DenseNet (Densely Connected Convolutional Networks) [14]: This is a type of CNN
that connects each layer to every other layer in a feed-forward fashion, different from
ResNet which only involves a connection from the previous layer. This architecture
enhances the vanishing gradient problem, strengthens feature propagation, encour-
ages feature reuse, and significantly reduces the number of parameters, thus making
the model more efficient.

• EfficientNet [15]: This model uses a simple yet effective compound coefficient. The
EfficientNet models, with this compound scaling method, have achieved state-of-the-
art accuracy on ImageNet while being up to more efficient than ConvNets.

• HRNet (High-Resolution Networks) [16]: The HRNet maintains high-resolution repre-
sentations throughout the entire network, different from other networks that might
reduce the resolution in the earlier stages. It has parallel multi-resolution convolu-
tions which exchange information across different resolutions, making it particularly
effective for semantic segmentation tasks where high-resolution spatial information
is important.

• RexNet [12]: This model proposes a simple yet effective channel configuration that
can be parameterized by the layer index. As a result, RexNet achieves remarkable
performance on ImageNet classification and transfer learning tasks including COCO
object detection, COCO instance segmentation, and fine-grained classifications.

• SparseModule refers to the ablation experiment of our method, using only SparseModule
without adjusting the loss function.

Dataset. Our dataset comprises over 100,000 km of road data from various Chinese
regions, such as Jiangsu, Henan, Xinjiang, and Shanxi, and features a variety of pavement
conditions. Data were collected using a 3D line laser scanner mounted on a vehicle, with
a 1 mm sampling accuracy and a 100 km/h acquisition speed, scanning a 4 m wide lane
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at a 28 kHz frequency. The raw data were converted to images, and the brightness was
homogenized. Images were resized to 512 × 512 pixels for model input as shown in Figure 5.
Road engineering professionals performed pixel-level mask labeling, and domain experts
confirmed accuracy. The dataset was split into 80% training, 10% validation, and 10% test
sets. The Road dataset includes diverse cracks and healthy pavement, with no overlap or
excess images from the same road segment, ensuring a high-resolution and robust dataset.

Pothole SealedCrackCrack

Figure 5. A sample of pavement distress types.

Metrics. The F1 score is a commonly used metric in machine learning, particularly in
tasks that deal with binary or multi-class classification. It is a balanced measure of precision
and recall, providing a single metric that encapsulates model performance in terms of
both false positives and false negatives. Precision measures the correctness of the positive
predictions. It calculates the ratio of correctly predicted positive observations to the total
predicted positives. Recall measures the ability of a model to find all the relevant cases
in a dataset. It calculates the ratio of correctly predicted positive observations to all the
observations in the actual positive class.

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(3)

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)
(4)

F1 = 2 · precision · recall
precision + recall

(5)

where True Positive (TP) means images correctly classified as positive, False Positive (FP)
means images are incorrectly classified as positive and False Negative (FN) means positive
images are incorrectly classified as negative.

Tables 1 and 2 outlines the performance metrics of the various models tested against
three classes of road damage, namely, Crack, Pothole, and SealedCrack, and their average
performance across these classes. In terms of the average performance, our method signifi-
cantly outperforms all other models with average F1 scores of 0.94, an improvement over
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the closest competitors, EfficientNet and REXNet, which both achieved an average F1 score
of 0.92.

Table 1. Precision/recall comparison with state-of-the-art methods.

Method Crack Pothole SealedCrack Avg

ResNet 0.92/0.99 0.92/0.79 0.88/0.95 0.90/0.87
VGGNet 0.93/1.00 0.92/0.86 0.87/0.87 0.90/0.91
DenseNet 0.93/1.00 0.92/0.79 0.92/0.92 0.92/0.90
EfficientNet 0.96/0.99 1.00/0.79 0.92/0.92 0.96/0.90
HRNet 0.97/0.99 0.92/0.79 0.89/0.89 0.92/0.89
RexNet 0.98/1.00 1.00/0.71 0.93/0.97 0.97/0.89
SparseModule 0.96/1.00 1.00/0.79 0.90/0.95 0.95/0.91
Ours 0.98/1.00 1.00/0.86 0.88/0.95 0.95/0.93

Table 2. F1 score comparison with state-of-the-art methods.

Method Crack Pothole SealedCrack Avg

ResNet 0.96 0.85 0.91 0.90
VGGNet 0.96 0.89 0.87 0.90
DenseNet 0.97 0.85 0.92 0.91

EfficientNet 0.98 0.88 0.92 0.92
HRNet 0.98 0.85 0.89 0.90
REXNet 0.99 0.83 0.95 0.92

SparseModule 0.98 0.88 0.92 0.92
Ours 0.99 0.92 0.91 0.94

Our model also excelled in the identification of Crack and Pothole defects, recording
top F1 scores of 0.99 and 0.92, respectively. Given the inherent sparsity of cracks and
potholes in pavement images, our model has showcased impressive performance gains in
these categories. Cracks and potholes present unique challenges due to their infrequent
occurrence and diverse characteristics, calling for a model that can effectively isolate and
recognize these sparse yet critical data points. Our proposed model, designed with a
focus on the unique sparsity of such features, has excelled in the accurate detection of
both crack and pothole defects, recording top F1 scores of 0.99 and 0.92, respectively. The
effective capture and identification of these sparse and intricate patterns in road images
demonstrate the adaptability and efficacy of our method. The superior performance in
detecting these specific distress types underscores the model’s ability to address the critical
aspect of sparsity in pavement distress detection.

These findings robustly affirm the efficacy of our proposed model in recognizing
a wide array of road damage types. The superior performance of our model can be
largely attributed to the innovative design of our sparse feature module and the domain-
specific sparse constraint, which contribute to the robustness of the model in a variety of
detection scenarios.

4. Conclusions

In this study, we have presented a novel method for pavement distress classification,
designed specifically to handle the unique challenges posed by the sparse distribution of
features in road images. The traditional image classification models used in computer vision
often fail to capture these sparse features effectively, leading to suboptimal performance
when applied to tasks such as road distress detection and classification. Our model,
equipped with a specially designed sparse feature module and a sparse constrained loss
function, shows superior performance in tackling this problem.

The experimental results indicate that our model outperforms other state-of-the-art
models in terms of classification accuracy for various road distress types, especially for
sparsely distributed features such as cracks and potholes. The improved performance can
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be attributed to the effective extraction and focus on these sparse yet crucial features in
the image.

Additionally, the sparse constrained loss function provides a more refined control
over the learning process, guiding the model to focus on the sparse target areas and ignore
the largely monotonous background. This results in a more accurate and effective distress
classification, as demonstrated by the high average F1 score achieved by our model.

This research provides paving the way for further optimization of image classification
models for similar tasks. Future work can extend this methodology to other sparse feature
problems within the domain of road detection.

The success of our model underlines the significance of incorporating domain-specific
knowledge in the design of image classification models, encouraging continued exploration
of specialized models to tackle domain-specific challenges effectively. This work also holds
practical implications for transportation authorities, offering a more reliable, efficient, and
scalable method for road maintenance and safety assessment.

5. Future Work

While our study has achieved notable progress in the domain of pavement distress
classification, there are several promising directions for future research that can extend and
enhance the proposed methodology. Improving model performance through augmented
data is a crucial consideration. Developing specialized data augmentation techniques
that capture the nuances of real-world road conditions and distress instances could lead
to enhanced model generalization. Extending the methodology to analyze distress pat-
terns across extensive road networks could provide insights into broader maintenance
strategies. Exploring ways to incorporate geospatial information and analyzing distress
trends on a regional scale could guide informed decision making by transportation au-
thorities. Researching ways to optimize the algorithm’s efficiency and enable real-time
distress assessment would be valuable. In conclusion, our study lays the foundation for
further research that addresses both technical intricacies and real-world applications in
pavement distress classification. By exploring these potential directions, we aim to con-
tribute to the advancement of computer vision methodologies and the effectiveness of road
maintenance practices.
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