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Abstract: Autonomous docking and recharging are among the critical tasks for autonomous mobile
robots that work continuously in manufacturing environments. This requires robots to demonstrate
the following abilities: (i) detecting the charging station, typically in an unstructured environment
and (ii) autonomously docking to the charging station. However, the existing research, such as that on
infrared range (IR) sensor-based, vision-based, and laser-based methods, identifies many difficulties
and challenges, including lighting conditions, severe weather, and the need for time-consuming
computation. With the development of deep learning techniques, real-time object detection methods
have been widely applied in the manufacturing field for the recognition and localization of target
objects. Nevertheless, those methods require a large amount of proper and high-quality data to
achieve a good performance. In this study, a Hikvision camera was used to collect data from a
charging station in a manufacturing environment; then, a dataset for the wireless charger was built.
In addition, the authors of this paper propose an autonomous docking and recharging method based
on the deep learning model and the Lidar sensor for a mobile robot operating in a manufacturing
environment. In the proposed method, a YOLOv7-based object detection method was developed,
trained, and evaluated to enable the robot to quickly and accurately recognize the charging station.
Mobile robots can achieve autonomous docking to the charging station using the proposed Lidar-
based approach. Compared to other methods, the proposed method has the potential to improve
recognition accuracy and efficiency and reduce the computation costs for the mobile robot system in
various manufacturing environments. The developed method was tested in real-world scenarios and
achieved an average accuracy of 95% in recognizing the target charging station. This vision-based
charger detection method, if fused with the proposed Lidar-based docking method, can improve the
overall accuracy of the docking alignment process.

Keywords: mobile robots; autonomous recharging; autonomous docking; manufacturing environments;
3D Lidar; computer vision

1. Introduction

The autonomous recharging process is an important part of a mobile robot’s au-
tonomous operations, enabling it to work continuously without any human intervention.
Docking [1] can be understood as the navigation and localization of a robot toward a
desired location. Docking requires an accurate estimation of the robot’s pose, often from a
position close to the docking station, through path planning [2]. Mobile robots are used
across various fields [3–8], including surveillance, planetary exploration, dangerous envi-
ronments, factory automation, search and rescue operations, and indoor manufacturing
environments. The role of mobile robots has become increasingly important for present and
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future applications. Thus, independent autonomous recharging has become a fundamental
requirement through which to ensure the autonomous operation of mobile robots in various
conditions. For a mobile robot to initiate the docking and recharging process, it first needs
to identify the charging station and then align itself with the charger autonomously by
following a series of rotational and translational steps.

The location of the charging station (e.g., indoor or outdoor) plays an important
role in the selection of sensors for a docking procedure. Outdoor environments are more
complex, unpredictable, and dynamic due to the presence of moving objects and obstacles.
Moreover, the performance of non-visual sensors, such as Lidar sensors, which are used
for docking, can depreciate in outdoor weather conditions, such as snow, dust, and fog [9].
Based on the sensor implemented, the autonomous docking techniques described in the
literature are divided into the three following categories: (i) infrared (IR) sensor-based
methods [10], (ii) computer vision [11], and (iii) laser-based approaches [12]. To receive
IR signals properly, the IR receiver needs to be implemented in a specific location on the
mobile platform, which limits the mechanical design of mobile robots [10]. Computer vision
and laser-based techniques, such as object detection [13] and Lidar-based approaches, are
the most commonly used methods through which to solve odometry-related problems.
However, both techniques have their respective limitations and benefits. Although Lidar
methods [14] can extract different features from the environment, without being affected
by changes in lighting conditions, and can obtain more accurate range measurements than
cameras, Lidar data are sparsely distributed and have limited visibility. Furthermore, this
technique’s operation is based on collecting large amounts of data, which requires more
computational power than a camera. In contrast, a camera provides rich and thick data
that do not have limited visibility. However, a standard camera without a 360-degree view
has a limited visibility angle, resulting in a blind spot [11].

To overcome the challenges of conventional methods, the combination of different
sensors has been investigated for years, and recent research has proven that the fusion
approach yields better performance than a single-sensor method [14]; the limitations of
IR-based, laser-based, and vision-based methods for autonomous docking and recharging
are overcome by combining multiple sensors. The authors of [15] attempted to integrate
a camera and IR sensor with laser range finders in order to improve the reliability of the
autonomous docking process. In [16], a vision-based autonomous docking and recharging
approach was applied to a security robot. An artificial landmark was installed on top of
a charging station, at the same height as the camera, to assist the robot in detecting and
locating the charging station area. The rotational and translational errors were counter-
acted using a virtual spring model motion control approach. The model presented in [16]
assumed that the robot and the charger could be connected with a virtual spring, and the
compliant forces in the direction of the translation deformation and bending determined the
motion control. However, the vision-based docking approach is prone to calibration errors,
as demonstrated in [17], where a Faster R-CNN algorithm was used to detect arbitrary
visual markers. The pose of the mobile robot was estimated using the solvePnP algorithm,
which related the 2D–3D point pairs. However, the solvePnP algorithm gave systematically
inaccurate pose estimates in the x-direction and, hence, proved to be ineffective for docking.
Laser range finder techniques usually detect the charger based on the uniquely manufac-
tured shape of the charging station to distinguish it from surrounding objects. One such
example is the V-shaped recess on the MiR (mobile industrial robot) [18] made by Fetch
Robotics, which required the charger to be placed separately from any laser-height obstacles
to enable the successful detection of the contour of the charger using the laser range finder.
However, the requirement of a special shape adds to a charger station’s fabrication costs
and limits mobile robots’ practical applications in unstructured environments. To solve this
problem, a self-adhesive reflective tape can be used to help the robot identify the charger,
as reported in [19]. When using this reflection detection technique, the charger was easily
distinguished from other similar objects in an unstructured environment, as verified by
extensive experiments. Moreover, Lidar can be used for obstacle detection and avoidance,
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navigation, and pose estimation in a mobile robot without the use of additional hardware.
In [20], a multi-sensor fusing method used intensity and range data fusion, with a covari-
ance intersection approach, to estimate the robot pose during docking and recharging.
Using the inverse perspective projection method, an artificial landmark was employed
as a visual cue on the charging station to be identified by the robot. Then, based on the
laser range data, the geometrical relationship between the robot and charger station was
estimated precisely using the covariance intersection method. In [21], automated guided
vehicle (AGV) autonomous docking was investigated in an unstructured environment with
human presence. An autonomous docking technique was implemented with a non-visual
sensor, such as Lidar or AprilTag, for charger detection. A deep learning network was
used to detect and recognize humans and objects. Practical experiments verified that
the AGV could co-exist with humans and perform autonomous docking in unstructured
environments. With the development of deep learning techniques, deep-learning-based
approaches perform better in autonomous docking applications. In [21], the MobileNetv2-
SSDLite deep learning framework was adopted to detect and recognize a specific person in
the human–robot collaborative environment. Once the particular human was identified,
the robot system could achieve automatic docking to the target person based on LiDAR
and a RGB-D camera. Given that high-resolution images from a camera can provide rich
information, in [22], the authors proposed a fusion method to make use of images from a
camera to enrich the raw 3D point clouds from LiDAR. The sparse convolutional neural
network was adopted to predict the dense point clouds to enrich the raw point clouds
and then employed to execute LiDAR SLAM. In [23], the Faster-RCNN model with a
MobileNetv3-Large FPN backbone was used to detect arbitrary dynamic obstacles and
identify the charging station. It was proven that it can distinguish the charging station from
other surrounding objects in most scenarios.

Previous studies indicate that the autonomous docking and recharging process be-
comes more reliable and repeatable when using a multi-sensor fusion approach in both
structured and unstructured environments. However, IR sensors require specific configura-
tions, such as signal receivers, which are inconvenient and incur high costs [9]. Therefore,
most existing fusion methods consider combining the Lidar sensor with computer vision
techniques because of their low costs and non-destructive abilities. However, computer
vision techniques, especially deep-learning-based object detection, require a large amount
of proper task-oriented high-quality data for training and tuning to achieve the desired per-
formance [24]. The changing lighting conditions and jerking of the camera on mobile robots
can also affect the performance of deep-learning-based object detection models [25], which
makes it difficult to implement solely computer-vision-based techniques in real-world
manufacturing applications.

Considering the aforementioned challenges, this paper has the following aims:

• This paper aims to develop a vision–Lidar data fusion method for mobile robots to
achieve accurate autonomous docking and recharging in a manufacturing environ-
ment.

• This paper contributes to the transition of state-of-the-art real-time object detection
methods from general public datasets to real-world manufacturing tasks by combining
deep-learning-based techniques to identify charging stations in a complex manufactur-
ing environment; we then use a Lidar-based approach to localize the detected wireless
charger and dock the mobile robot to it for recharging.

• An indoor manufacturing environment with an enclosed space where a wireless
charging station is situated is considered for the implementation of the docking
procedure. The proposed method is analyzed and discussed based on the autonomous
docking and recharging of a Husky robot made by Clearpath Robotics.

• A YOLOv7-based method is used to detect the charging station for the robot to
navigate to the desired location. The process of planning a path to the charger can be
achieved with waypoints using the SLAM method, which is not discussed in this paper.
Afterward, the Lidar sensor is used, along with the detected results from the camera,
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to determine the distance from the charger and side wall to achieve an accurate pose
estimation and then successfully dock the robot to the charging station. The proposed
method can be easily adapted to different types and numbers of wireless chargers in a
manufacturing environment. The distance data between the Lidar and the camera can
be calibrated to achieve accurate alignment and pose estimation.

This paper is structured as follows: The related work is presented in Section 2; Section 3
explains the proposed method in detail; Section 4 contains the results; and Section 5
comprises the discussion and conclusions of this paper.

2. Related Work

In this section, we present the recent docking and recharging methods, based on
Lidar and computer vision techniques, for mobile robot systems in the manufacturing
field. Fan et al. [5] proposed a vision-based docking and recharging method that can be
applied in a warehouse environment. This method used AprilTag for the detection and
identification of the robot’s pose. It achieved a docking success rate of approximately
97.33%. In [17], the authors proposed a Faster RCNN model to detect and localize the
designed markers mounted on a docking station, combining it with the solvePnP algorithm
to allow the mobile robot to navigate in a ROS simulation environment. This model
achieved an accuracy of 96.3% based on thirteen testing images. The detector took around
35 ms to process each image. Song et al. [21] adopted a single-shot detector (SSD) to identify
moving people and then dock to the target person for human–robot collaborative tasks in
an unstructured environment. In [23], an SSD was developed to detect the charging stations
in obstacle-free scenarios. This method could achieve a performance of 99.8% for successful
docking to the charger. It took an average of 12 s to complete the docking procedures based
on the designed scenarios.

Although these methods have made great contributions to autonomous docking and
recharging applications, some limitations are observed. Most methods are evaluated
in a simulation or laboratory environment instead of a manufacturing environment. In
addition, two-stage deep learning models, such as Faster RCNN, are inefficient compared
to one-stage real-time models. Considering these limitations, a state-of-the-art real-time
deep-learning-based model, YOLOv7, is developed to distinguish and identify the target
wireless charger from a complex manufacturing environment; it is integrated with the
proposed Lidar-based approach to achieve efficient, low-cost, and robust docking and
recharging.

3. System Overview

The autonomous mobile robot is shown in Figure 1. A Husky UGV field search robot
made by Clearpath Robotics is used to implement the Lidar-vision-based docking method
and conduct autonomous charging experiments in indoor manufacturing environments.
Figure 1 shows the Husky robot installed with a Lidar sensor and a Hikvision camera. The
ROS Melodic software development platform is used to program the docking process using
the 3D Lidar sensor and to control the robot’s motion through the docking steps.

The wireless charging station used in this study is presented in Figure 2; it is installed
inside a custom-sized modular structure. A ramp door placed in the front allows the robot
to come out of the docking station to run missions and return for recharging as necessary.
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Figure 2. The charging station used in this study.

4. Proposed Method

This section proposes a vision- and Lidar-based autonomous docking and recharging
approach. The proposed method consists of three main steps: (i) data collection, which
is achieved by using a Hikvision camera and Ouster Lidar to capture the surrounding
environments through RGB images and laser-based distance/depth information, respec-
tively; (ii) a deep-learning-based object detection method, with the YOLOv7 model as the
core architecture, which is used to recognize the charging station in the manufacturing
environment; and (iii) a Lidar-based approach to adjust the pose of the mobile robot and



Appl. Sci. 2023, 13, 10675 6 of 16

then dock it to the detected wireless charger. A flowchart of the proposed method is
presented in Figure 3.
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4.1. YOLOv7 Architecture

YOLOv7 is a one-stage model and the latest algorithm for real-time object detection,
and it performs well in terms of both speed and accuracy [26]. The architecture of the
proposed charging station detection method based on YOLOv7 is presented in Figure 4, and
it is composed of three main components: a backbone, neck, and head. The convolutional
backbone module adopts Darknet-53 [27] to extract image feature maps from the input
image and transfer them to the neck layers. In the neck module, the Feature Pyramid
Network (FPN) [28] is used to enhance the feature maps. These maps are then combined,
fused, and passed to the subsequent layers. Finally, the head network predicts the bounding
boxes and classes of the objects.
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YOLOv7 adopts a developed extended efficient layer aggregation network to improve
inference efficiency. This network can quicken the model’s learning ability without disturb-
ing or changing the original gradient propagation path. In addition, a novel scaling method,
referred to as corresponding compound model scaling, is proposed to address the issue
of a larger width output of the computational block by directly scaling the depth of the
concatenation-based model. Moreover, several techniques are used to improve inference
accuracy while keeping training costs low. These techniques, called Bags of Freebies (BoF),
include planned re-parameterization, dynamic label assignment, and batch normalization.
After thoroughly investigating the re-parametrized convolution, the authors demonstrate
increased model accuracy when using RepConv without an identity connection. Further-
more, batch normalization integrates the mean and variance in the data to adjust the bias
and weight of the convolutional layer, which can immediately impact the training process
by utilizing a higher training rate and faster convergence.

According to [26], YOLOv7 optimizes the inference process and improves detection
accuracy and speed compared with other existing real-time object detection methods
because of its more advanced network structure and training strategies. However, it has not
yet been used in the domain of autonomous docking and recharging. In this article, YOLOv7
is adopted as the backbone architecture to detect and recognize the charging station.
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4.2. Lidar and Vision Data Fusion Method for Autonomous Docking

In recent research, Lidar sensors and cameras have commonly been used together in
autonomous driving applications, because a Lidar sensor can collect 3D spatial information.
In contrast, a low-cost camera captures the appearance and texture of the corresponding
area in 2D images. Therefore, the fusion of Lidar and the camera data can improve the object
detection performance. Lidar–camera calibration estimates a transformation matrix that
gives the relative rotation and translation between the 2D coordinates obtained from the
Hikvision camera and the 3D spatial coordinates obtained from the Lidar, as demonstrated
in Equation (1) [29]. The 3D coordinates of the charging station can be calculated using
Equations (2)–(4) [29] based on the predicted bounding box in the image domain:

zc

u
v
1

 =


fx
dx 0 u0

0 fy
dy v0

0 0 1


1 0 0 0

0 1 0 0
0 0 1 0




X
Y
zc
1

 (1)

X =
u − u0 · zc · dx

fx
(2)

Y =
v − v0 · zc · dy

fy
(3)

Z = zc (4)

where u and v are the 2D coordinates from the camera; u0 and v0 are the origins of the
coordinate system in the image domain; fx and fy are the focal lengths along the x and
y directions, respectively; X, Y, and Z are the 3D global coordinates from the Lidar; and
zc is the distance between the detected object and the camera. An illustration of the
transformation process is presented in Figure 5.
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An Ouster Lidar sensor is utilized to calculate the distances from the robot frame of
reference to the side wall and the depth or the distance to the charger. It is assumed that the
charging station is enclosed within walls to simplify the pose estimation of the robot for the
docking process. Two scenarios are considered for the implementation of the Lidar–vision
docking method: docking in an environment with only one charger and in one with three
chargers, as shown by the Gazebo virtual environment setups in Figure 6.
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In the case of the scenario with three different chargers, the vision-based method will
aid the robot in identifying the correct charger and autonomously docking with it. Rviz
software is used to visualize the Lidar point cloud data of the charging stations for both the
one-charger and three-charger setups, as demonstrated in Figure 6. The pose estimation
and navigation for docking are used with the Lidar sensor data based on the information
given in Figure 7. After the correct charging station is identified using computer vision
algorithms, the Lidar point cloud data are filtered to obtain two diagonal and two straight
lines, called, respectively, Front_laser, Back_laser, Wall_laser, and Charger_laser. Based
on this information, a series of rotations and linear motions can be applied to the robot to
move it to the desired location in front of the charger. The pseudo-code Algorithm 1 used
to carry out the Lidar-based docking procedure is described as follows:
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Algorithm 1. Lidar-based docking.

State 1: Robot straightening
Initialize Front_laser, Back_laser, Charger_laser, and Wall_laser
If (Front_laser − Back_laser) > 0 then rotate clockwise until Front_laser = Back_laser
elseif (Front_laser − Back_laser) < 0 then rotate anti-clockwise until Front_laser = Back_laser
If Wall_laser >known_distance
Change state to 3
esleif Wall_laser <known_distance
Change state to 2
State 2: Robot turning left if to the right of the charger
Turn the robot anti-clockwise until Back_laser = Wall_laser
Then change state to 4
State 3:Robot turning right if to the left of the charger
Turn the robot clockwise until Front_laser = Wall_laser
Then change state to 4
State 4:Robot’s linear motion
Move robot in a linear motion until Wall_laser = known_distance
Then change state to 5
State 5: Robot straightening second time
If (Front_laser − Back_laser) > 0 then rotate clockwise until Front_laser = Back_laser
elseif (Front_laser − Back_laser) < 0 then rotate anti-clockwise until Front_laser = Back_laser
Then change state to 6
State 6:Robot moving towards the charger
Move robot in a linear motion until charger_laser within 2 to 3 cm’s away from the charger
Then change state to 7
State 7:Robot docking with the charger
Stop the robot’s motion and change status to docked
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The above algorithm was tested on the Husky robot and gave a fairly accurate pose
estimation and localization for docking, except for systematic errors based on the Lidar data
readings. The algorithm was tested for various initial poses and locations from the charger;
a few of the scenarios considered can be seen in Figure 8. The experiments conducted on
the actual Husky robot are shown in Figure 9. The known distance of the charger from
the side wall can be determined using the vision-based method and matched with the
Wall_laser to fuse the Lidar–vision data. Moreover, once the robot is in the correct docking
position for charging or close to the desired location, the Lidar point cloud data and the
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camera-based 2D image can be calibrated to eliminate any errors and improve the pose
estimation for the autonomous docking of the robot.
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5. Results
5.1. Transfer Learning and Data Augmentation

Deep learning models frequently require extensive input images for the training pro-
cess. However, gathering enough practical images for some applications can be difficult.
Therefore, rather than building a model from scratch, transfer learning provides an al-
ternative strategy for addressing this problem [30]. It uses a pre-trained deep learning
model as a template for another training task. The modified YOLOv7 model is trained and
tested on the Microsoft COCO dataset with the parameters used in this study, significantly
improving training efficiency. Due to the limited number of charging stations, the images
do not have extensive features. As a result, diversifying the training data is a common
technique for improving generalization and reducing overfitting [31]. This study randomly
introduces geometric distortions, such as rotation, translation, scaling, and vertical flipping,
and image distortions, such as Gaussian blur and noise.

5.2. Datasets Building

Since there are no public datasets for the charging stations used in this study, a specific
dataset was built for the experiments. The images of charging stations were collected
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through the Hikvision camera mounted on the mobile robot. The generated dataset has
240 images with a resolution of 1920 × 1018 pixels, shot from different angles and split into
three sub-datasets: 160 training images, 40 validation images, and 40 testing images. The
images in the dataset were annotated using LabelImg Software, which is an open-source
annotation tool. The labelled images are shown in Figure 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 16 
 

 
Figure 10. Example of labelled images. 

5.3. Training Environment and Parameters 
The model for detecting and recognizing the dock and charging stations was trained 

and tested on a local desktop with the specifications listed in Table 1. The pre-trained hy-
per-parameters for the dock and charging station detection are presented in Table 2. 

Table 1. Training environment and specifications. 

Specifications Value 
Operating System Windows Server 2019 

CPU AMD Ryzen Threadripper 3970X 32-Core 
GPU NVIDIA GeForce RTX 3090 
RAM 128 GB 

CUDA Version 11.1 
PyTorch Version 1.10.1 

Table 2. Training parameters. 

Parameters Value 
Learning Rate 0.001 

Learning Momentum 0.9 
Batch Size 16 

Epochs 100–300 

5.4. Results and Analysis 
5.4.1. Evaluation Metrics 

This paper adopts the mean average precision (mAP) as the evaluation metric. It is 
the area under the precision and recall (true-positive rate) curve, calculated according to 
Equation (5), at different intersection-over-union (IoU) thresholds. mAP_0.5, at a 0.5 

Figure 10. Example of labelled images.

5.3. Training Environment and Parameters

The model for detecting and recognizing the dock and charging stations was trained
and tested on a local desktop with the specifications listed in Table 1. The pre-trained
hyper-parameters for the dock and charging station detection are presented in Table 2.

Table 1. Training environment and specifications.

Specifications Value

Operating System Windows Server 2019
CPU AMD Ryzen Threadripper 3970X 32-Core
GPU NVIDIA GeForce RTX 3090
RAM 128 GB

CUDA Version 11.1
PyTorch Version 1.10.1

Table 2. Training parameters.

Parameters Value

Learning Rate 0.001
Learning Momentum 0.9

Batch Size 16
Epochs 100–300
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5.4. Results and Analysis
5.4.1. Evaluation Metrics

This paper adopts the mean average precision (mAP) as the evaluation metric. It
is the area under the precision and recall (true-positive rate) curve, calculated according
to Equation (5), at different intersection-over-union (IoU) thresholds. mAP_0.5, at a 0.5
intersection-over-union (IoU) threshold, is commonly used as the evaluation metric. In
addition, mAP_0.5:0.95, which is the average mAP over multiple IoU thresholds, can affect
the model, resulting in better performance. Therefore, both metrics are considered in the
training and testing procedures to evaluate the performance of charging station detection.

IoU =
Area o f Overlap
Area o f Union

(5)

AP =
∫ 1

0
(Precision × Recall) d(Recall) (6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Here, TP, FP, and FN are the true-positive, false-positive, and false-negative results of
the predicted bounding box, respectively.

5.4.2. Results

Figure 11 depicts the training and validation loss for detecting the charging station. To
optimize the proposed model, the loss function used in YOLOv7 [26] needs to be minimized.
It is clear that, at around 300 epochs, the training and validation losses both decrease to
a stable point, with a minimal gap between the two final values. Figure 12 displays the
model performance based on both performance metrics of the model in the validation.
It can achieve about 99.4% mAP_0.5 and 86.5% mAP_0.5:0.95. During the training and
validation, various epochs were tested. It can be observed that, when the epoch is below
300, both the training loss and validation loss continue to decrease at the end of the curves,
which indicates that the proposed model can be further improved through further learning.
However, with the epochs surpassing 300, the validation loss begins to increase, which
leads to an overfit. Therefore, in the training and validation, an epoch of 300 was chosen to
obtain the optimized pre-trained model, which can achieve the best performance.

In addition, an evaluation is performed for real-time charger detection while the
mobile robot is moving based on the proposed method. Figure 13 depicts an example
of the recognized results. A metric for evaluating the method performance in a practical
environment is adopted, as shown in Equation (9):

Accuracy =
N
T

(9)

where N is the number of correctly recognized images, and T is the total number of images
used in the evaluation process. It can be observed that, in real-time scenarios, the accuracy
of the developed charging station detection method can achieve an average of 95%.
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6. Discussion and Conclusions

This paper discusses the challenges faced by current autonomous docking and recharg-
ing methods in the context of mobile robots in manufacturing environments. Current state-
of-the-art methods heavily rely on Lidar, which makes it expensive and time-consuming
for mobile robotic systems to achieve autonomous docking and recharging applications.
Therefore, a Lidar and vision data fusion method, generated by combining deep learning
object detection and Lidar-based docking approaches, was proposed to address the afore-
mentioned problems. A YOLOv7-based real-time object detection model was developed
to identify wireless chargers. To evaluate the developed detection method, a set of testing
images and real-time video frames captured through a Hivision camera was used, and
it achieved an average of 95% accuracy. The performance of the detection model for the
charging station was compared with that of existing methods. According to the comparison
results, the proposed method outperformed the other methods. A Lidar and vision data
fusion approach was then developed to localize the wireless charger and then navigate
the mobile robot to achieve docking to the charging station, reducing the computation
costs of the system. Despite the advantages of the proposed method, it is limited by some
challenges. For instance, the wireless charging station needs to be in an enclosed space,
which can be used to calculate the wall_laser distance in the proposed method. Moreover,
the developed charging station detection method can be affected by the low-illumination
conditions in the manufacturing environment and by the blurring caused by the unstable
movement of the mobile robot.

So far, this proposed Lidar–camera data fusion method for autonomous docking and
recharging has only been validated on a 2D camera and a Lidar system. Future work will
focus on the use of a stereo camera and Lidar system to improve the performance of the
developed method in a practical autonomous manufacturing environment. Furthermore,
for the docking procedure itself, to improve the pose estimation of the robot in relation
to the charger, calibration between the vision and Lidar data needs to be implemented in
future work.
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