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Abstract: Novelty detection aims to detect samples from classes different from the training samples
(i.e., the normal class). Existing approaches predominantly make the target reconstruction better
and choose the appropriate reconstruction error measurement method but ignore the influence of
background information on this process. This paper proposes a novel reconstruction network and
mutual information Siamese network. The reconstructed network aims to make the distribution
of reconstructed samples consistent with that of original samples, intending to reduce background
interference in the reconstruction process. After this, we measure the distance between the original
and generated images based on a mutual information Siamese network, which extracts more dis-
criminative features to calculate the similarity between the original images and their reconstructed
ones. This part of the network uses global context information to improve the detection accuracy.
We conduct extreme experiments to evaluate the proposed solution on two challenging public
datasets. The experimental results show that the proposed method significantly outperforms the
state-of-the-art methods.

Keywords: figure reconstruction; one-class novelty detection; mutual information fusion

1. Introduction

Novelty detection tackles an important unsupervised learning problem where nov-
elty samples are not known a priori and the majority of the training dataset consists
of “normal” data [1]. This problem has been widely applied in many areas, including
abnormality detection [2,3], intruder detection [4], biomedical data processing [5], im-
balance learning [6], vehicle tracking [7], and specific sign detection [8]. Different from
other machine learning tasks, methods for one-class novelty detection are trained on
only one class (i.e., the normal class) and aim to determine whether the given sample is a
novelty during the inference stage. The challenges associated with anomaly detection
tasks encompass several key aspects. (1) Lack of manual supervision: Anomaly detection
often operates in an unsupervised or semi-supervised manner, meaning that there is
limited availability of labeled data specifically indicating anomalies. This scarcity of
labeled data hampers the ability to train models effectively. (2) Limited novelty samples:
Novelty or anomaly samples are typically rare and occur infrequently in real-world data.
The small number of available anomaly samples makes it challenging for models to
learn and generalize effectively. (3) Imbalanced training data: In most cases, the training
dataset consists primarily of instances from the normal class, making it imbalanced. This
imbalance can lead to model bias towards the majority class and the poor detection of
anomalies. (4) Unknown anomaly patterns: Anomalies can take various forms, and their
characteristics may not be well-defined or known in advance. This uncertainty about the
nature and structure of anomalies adds complexity to the task.

In recent years, novelty detection tasks have received extensive attention. According to
the recent literature, existing models for novelty detection can be generally divided into two
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branches. The first branch is to extract latent features of an image as the input to traditional
novelty detection algorithms such as one-class SVM [9]. Another one is to reconstruct the
image using the deep generative networks [10], which are trained on samples from the
normal class, and use the reconstruction error as a measure for novelty sample detection.
The reconstruction approach using deep generative networks focuses on learning potential
information for the retaining of normal samples, but, for the novelty samples, it will have
large reconstruction errors. In this strategy, existing methods improve the performance
by making image reconstruction better and choosing more appropriate distance metrics.
Most of the existing methods ignore the effects of the image background. Specifically, the
one-class novelty detection results for the CIFAR10 dataset are comparatively weaker for all
methods. A complex background can affect the result of image reconstruction, which will
affect the choice of distance metrics. However, background information can also help in
object detection. In natural surroundings, the foreground and the background are strongly
correlated. For instance, the sky background naturally correlates with birds and airplanes
with a higher probability, whereas the ground background relates to terrestrial animals
and vehicles. Hence, the background, especially a complex one, subtly indicates certain
foreground elements, with distinctive backgrounds potentially indicating novel samples.
Furthermore, owing to the expansive and non-discriminatory nature of neural networks,
background information and foreground information exhibit a certain diffusion effect,
resulting in the inclusion of some foreground information within the background. Hence,
this paper proposes a method for complex background reconstruction, thereby facilitating
the detection of novel targets.

Inspired by this, we offer improvements from the following aspects. First, we use the
Maximum Mean Discrepancy (MMD) to make the distribution of reconstructed samples
similar to that of the samples in the training set. Second, we propose a similarity metric
network to measure the similarity between the sample and its reconstructed one. This
network extracts more discriminant features as the basis for judging similarities and dealing
with complex backgrounds and distributed discrete samples more effectively.

As highlighted in Figure 1, the uppermost group showcases the input images. The inter-
mediate group depicts the reconstructed images exploiting L2 loss, whereas the lowermost
group exhibits the reconstructions obtained using our solution. It is discernible that in the
left segment, all the samples correspond to autonomous vehicles, which can be considered
as standard instances. Conversely, the right segment contains a multitude of novel samples,
including airplanes, trucks, and animals, etc. Notably, in both cases, it is evident that our
solution improves the background reconstruction of the respective samples.

In this work, we propose a method for novelty detection. First, we propose a new
reconstruction network (RNet) based on MMD-GAN [11] for the reconstruction of images.
Second, we propose a similarity metric network (MNet) to learn the distance metric between
latent representations of original images and reconstructed ones, which is used to determine
whether the image is a novelty. In our method, RNet is trained on a dataset with only
normal samples, and MNet takes samples and their reconstructed images generated by
RNet as inputs. The goal of the whole model is to minimize the distance between normal
samples and their reconstructed ones. At the testing stage, the detection result is based on
the distance between the original sample and its reconstructed image.

Our contributions are three-fold.

• We propose a reconstruction network that not only can learn the features of the target,
but also the distribution of the background. Reconstructing background information
can reduce the interference of the background information on reconstructed objects

• We propose a Siamese neural network with mutual information to learn the simi-
larity between original images and their reconstructions. This method not only can
extract more discriminant features about objects than the previous method but can
also obtain background context information. Therefore, the target classification
accuracy is significantly improved.



Appl. Sci. 2023, 13, 10702 3 of 15

• Experiments on challenging datasets with complex backgrounds demonstrate the
superiority of the proposed model.
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Figure 1. The result of our image reconstruction is compared with that of other methods. The
left side shows normal samples (automobile) and the right side shows novel samples. For normal
samples, our method has a better reconstruction effect than other methods (using L2 loss) on the
whole image, because it not only learns the features of the target as in the previous method, but
also the distribution of the background. Reconstructing background information can reduce the
interference of the background information in reconstructed targets.

2. Related Work

In this section, we review the related work on novelty detection, MMD, and metric learning.
Novelty Detection: The one-class novelty detection task has attracted considerable

attention in recent years. With the success of neural networks and deep learning, great
progress has been made in novelty detection. According to the recent literature, approaches
to novelty detection can be generally divided into two branches. One is to extract the
latent features of the image as the input to a traditional anomaly detection algorithm such
as one-class SVM (OC-SVM) [12]. Hoffmann [13] and Sakurada and Yairi [14] propose
to leverage the mean squared error to conduct novelty detection. Gruhl et al. [15] lever-
age a self-adaptive and self-organizing paradigm for novelty detection. Deep One-Class
Classification [16] jointly trains a deep neural network while optimizing a data-enclosing
hypersphere in the output space, which firstly introduces the fully deep one-class classifica-
tion objective for unsupervised anomaly detection.

Another approach is to reconstruct the image using a deep generative network. Since
generative adversial networks (GANs) [17] have shown a strong ability to extract deep
features, several works apply GANs in novelty detection. AnoGAN [2] hypothesizes that
the latent vector mapped from the input of the GAN represents the high-dimensional
distribution of the data. The detection process is based on the reconstruction error and
the error between the intermediate discriminator feature of the test image and the recon-
structed image. Meanwhile, in ADGAN [18], which shares a similar framework with
AnoGAN, the network is optimized based on both the latent vector and the generator,
and only the reconstruction error is considered as the anomaly score while inferenc-
ing. Sabokrou et al. [1] attempt to de-noise noisy samples of the given class, and the
discriminator’s prediction in the image space is used to quantify the reconstruction er-
ror. Li et al. [19] propose an augmented time-regularized generative adversarial network
to generate effective artificial samples for novelty detection. Chen et al. [20] leverage
an encoder–decoder reconstruction network and a CNN-based discrimination network
to recognize noisy novel samples. Almohsen et al. [10] exploit an isometric adversarial
auto-encoder to obtain stable detection results.
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Nevertheless, the aforementioned approaches primarily concentrate on extracting
and generating features from the foreground, neglecting the significant correlation that it
shares with the background, especially for complex background cases. These methods
depend solely on foreground information to detect novel targets. Highlighting the
aforementioned concerns, this paper posits that complex backgrounds, with their implicit
association with the foreground, can be leveraged to enable the detection of novel targets.
By integrating both the foreground and background, the accuracy of novelty detection
can be significantly enhanced.

MMD: MMD (Maximum Mean Discrepancy) is a statistical hypothesis aiming to
measure the distance between two probability distributions. Schölkopf et al. [21] first
proposed the criterion to replace the hard minimax objective function used in generative
adversarial network training. The generative moment matching network (GMMN) [22,23]
is a generative model that replaces the discriminator in the GAN with a two-sample test
based on kernel MMD. The visualization result of the generated moment matching net-
work is somewhat disappointing; Li et al. [22] improved it by combining the generated
moment matching network with the auto-encoder. However, the empirical performance
of GMMN and the computational efficiency of GMMN is not as competitive as that of
GAN on challenging benchmark datasets. MMD-GAN [11] combines the key ideas of
both GMMN and GAN; the authors proposed a method to improve both the expressive
ability and computational efficiency of the model by replacing the fixed Gaussian kernel
in the original GMMN with adversarial kernel learning techniques.

Metric Learning: Metric learning, also known as similarity learning, aims to learn by
measuring the similarity between pairs of images, which is essential in many computer vi-
sion tasks, such as image retrieval, image matching, image verification, and multi-category
tasks. Chopra et al. [24], Hadsell et al. [25] proposed the Siamese architecture for this
purpose, and these are two important works often cited in this subject. Unlike the clas-
sification network, the goal of metric learning is to learn by measuring the similarity of
the two instances in terms of the Euclidean distance, rather than the representation of the
classification. Another popular architecture is the Triple Network [26]. For both of them,
many authors have realized that it is important to mine a sample of the training set to
find difficult or challenging pairs or triplets in order to converge faster or better reach the
minimum [27].

3. Methodology

In this section, we introduce our model as a method for one-class novelty detection.
The framework of the proposed method is illustrated in Figure 2. This model consists
of two components: (1) the reconstruction network (RNet) for the reconstruction of the
image; (2) the mutual information Simaese metwork (MNet) for the measurement of the
similarity between the original image and the reconstructed image. These two components
are trained in an adversarial and unsupervised manner.
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Figure 2. The framework of the our model. There are two cascaded components: the image recon-
struction network (RNet) and metric network. Actually, the metric network is a mutual information
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Siamese network (MNet). The model is trained on samples from the normal class. The RNet is
optimized by the MMD loss in order to make the distribution of the reconstructed image x̂ similar
to the input image x’s. The inputs of MNet are x and x̂. We minimize the distance d〈 f (x), f (x̂)〉
between f (x) and f (x̂) while training MNet, where f (·) denotes a function of the feature extractor in
E f . During testing, we calculate the distance between f (x) and f (x̂); if d〈 f (x), f (x̂)〉 is not greater
than the given threshold τ, x is considered as a novelty sample; otherwise, it is a normal sample.

3.1. Problem Settings

In the one-class novelty detection task, our goal is to train an unsupervised novelty
detection network that performs well on samples subjected to a dispersed data distribution.
We notice that these samples tend to have large variance and the backgrounds show
great variety.

The formal definition of the task is as follows. Consider a training datasetD = {xD
i }N

i=1
with N normal samples, and a testing dataset D̂ = {(xD̂

i , yD̂
i )}M

i=1 with M normal and
novelty samples, where yD̂

i ∈ {0, 1} denotes the sample label. Here, yD̂
i = 0 means that

xD̂
i is classified as a normal sample, whereas yD̂

i = 1 means that the corresponding xD̂
i is

classified as a novel sample. The goal of the task is to train a model on D to optimize a
novelty score function S(·). For a given testing sample x∗ ∈ D̂ and a given threshold τ, if
S(x∗) > τ, x∗ is a detected novelty.

3.2. Reconstruction Network (RNet)

In previous work [14], samples were typically reconstructed using auto-encoders and
by generating normal samples against network training. The essential goal of reconstruction
is to classify different object categories by calculating the reconstruction error between
x and x̂. By reviewing the previous work [28], we find that most of the methods do
not perform well on some datasets (e.g., CIFAR-10). There exist studies showing that
making the distribution of real data similar to that of reconstructed data can benefit image
generation [11]. Inspired by these studies, we still adopt the strategy of deep reconstruction
networks, but we replace the discriminator in GAN with a two-sample test based on MMD.

Specifically, our RNet consists of three subnetworks: (1) the encoding subnetwork
E to map the image x to the latent representation z, (2) the reconstruction subnetwork G
to reconstruct x̂ by decoding z, and (3) the discrimination subnetwork D. In the recon-
struction network, we employ a classical GAN architecture to extract background features.
In the encoder part, we utilize the Maximum Mean Discrepancy (MMD) as a measure
of dissimilarity between the original and generated images. This choice is motivated by
the fact that, compared to other distance measures between distributions, such as the
Kullback–Leibler (KL) divergence, which either require density estimation (either paramet-
ric or nonparametric) or space partitioning/bias correction strategies, MMD can be easily
estimated as an empirical mean that converges to the true value of the MMD. Thus, MMD
exhibits superior performance in the scenario of unknown image distributions. Moreover,
MMD is equivalent to finding the Reproducing Kernel Hilbert Space (RKHS) function that
maximizes the expectation difference between the two probability distributions, indicating
its strong solution coherence. In the reconstruction part, we utilize the 1-norm to promote
sparse features.

Adversarial Loss: Following the trend in current novelty detection methods [2], we
use the feature distribution loss for adversarial learning. Studies have shown that feature
matching loss can reduce the instability of GAN training [29].

MMD distance was first proposed for the two-sample test problem, which aims
to determine whether two given distributions are the same. It uses kernel embedding
φ(x) = k(·, x) associated with a characteristic kernel k, where φ is infinite-dimensional
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and 〈φ(x), φ(y)〉H = k(x, y). Given two distributions P and Q, and a kernel k, the squared
MMD distance is defined as

M2
k(P,Q) =

∥∥∥µP − µQ

∥∥∥2

H
= Ex,x′∼P

[
k
(
x, x′

)]
+Ey,y′∼Q

[
k
(
y, y′

)]
− 2Ex∼P,y∼Q[k(x, y)]. (1)

where µ and E[·] denote the mean value of the distribution and the expectation of the kernel
function, respectively. The kernel k(x, y) measures the similarity between two samples x
and y. x and x′ represent two random variables subjected to P, and y and y′ represent
random variables subjected to Q.

With respect to the square of the MMD distance, we have the theorem below.

Theorem 1. Given a kernel k, if k is a characteristic kernel, then M2
k(P,Q) = 0 if P = Q.

Theorem 1 [30] shows that the more similar the two distributions are, the smaller
the MMD distance between them is. In this work, we input the original image and the
reconstructed image into the discriminator D to obtain the corresponding features D(x) and
D(x̂). The feature distribution matching computes the similarity between the distributions
of D(x) and D(x̂), which is measured by the MMD distance.

Formally, let f (·) denote the function that outputs an intermediate layer of the
encoder D for a given input x sampled from the input data distribution P; the function
of the discriminator D can be considered as forming a new kernel with k: k ◦ D(a, b) =
k(D(a), D(b)) = kD(a, b). Thus, the adversarial loss can be defined as

Ladv = M2
k◦D( f (x), f (x̂)). (2)

Reconstruction Loss: In RNet, the reconstructed image is obtained by decoding the
latent representation of the samples. In order to optimize the decoder, the reconstruction
loss is defined as

Lcon = Ex∼pX‖x− x̂‖1. (3)

Encoder Loss: Both losses above are designed to force the generator to reconstruct the
input sample better. Moreover, we add a loss to minimize the MMD distance between the
distributions of E1(x) and E2(x̂). The encoder loss is in the same form as the adversarial
loss, which is defined as

Lenc = M2
k

(
E(x), D ˆ(x)

)
. (4)

To summarize, the loss function of RNet is a linear combination of the reconstruction
loss, the adversarial loss, and the encoder loss:

LRNet = Lcon + γLadv + δLenc. (5)

where γ and δ are weighting factors of the adversarial loss and the encoder loss, respectively.

3.3. Mutual Information Siamese Network (MNet)

We proposed a network called the mutual information Siamese network (MNet) to
measure the similarity between reconstructed images and original images. The similar-
ity judges the quality of the reconstructed image and determines whether the images
are novelties.

In the previous methods of novelty detection based on GAN/AE, they detect whether
the sample is a novelty by calculating the reconstruction error of the input image x and the
reconstruction image x̂. The general selection for the reconstruction error is the mean square
error (MSE). However, RNet pays more attention to the object rather than the background
for images with complex backgrounds. In this case, the quality of reconstruction is limited.
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In this work, we employ ideas from metric learning based on deep features. Chopra
et al. [24] introduced the Siamese neural network to solve signature verification as an
image matching problem. The Siamese neural network is made up of twin networks, and
the parameters between them are shared. These two networks’ distinct inputs are joined
by an energy function in the end. Note that the Siamese network effectively mitigates
the issue of imbalanced samples, making it particularly suitable in the current one-shot
environment, which is suitable for the present case. The energy function computes some
metrics between the highest-level feature representation on each side. As Figure 3 shows,
we feed x and x̂ into the encoder network E to map them to the feature vectors in the
feature space, and we determine whether the two samples are similar by calculating the
distance between the two feature vectors.

��
���
("#)

������
#

%

����	�
���&' # , &'("#) �

&'

&' # &'("#�

��	���������	
�� ��	��������� &' # − &'("#) *

+ +

Figure 3. Mutual information Siamese network. Its purpose is to measure the similarity between the
reconstructed image x̂ and the original image x. E is the mutual information feature extractor, which
extracts the features of x and x̂. Then, we measure the distance of Ew(x) and Ew(x̂).

In one-class novelty detection, only samples from the normal class can be provided
for training. Therefore, we lack the label when training with the Siamese neural network
because we do not have an accurate measure of the reconstructed images of input samples.
Thus, we train the network to extract the features of the training target in the input space
without supervision.

Mutual Information Maximization Loss: Based on [31], we use a training encoder to
maximize the mutual information between original samples and reconstructed samples, so
that the features of reconstructed ones can better represent the features of input ones.

Let X denote the set of original images, and x ∈ X is an original sample. Z is the
combination of encoder vectors. z ∈ Z is the encoding vector corresponding to x. p(z|x)
denotes the distribution of coding vectors produced by x, which estimates the mutual
information by training the discriminator to distinguish between samples coming from
the joint J, and the product of marginals M. I(X, Z) denotes the mutual information
between x and z and indicates the correlation between them. We hope that the encoder
E extracts X more discriminative features Z as much as possible, which lets I(X, Z) be as
large as possible:
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p(z, x) = arg max
p(z,x)

I(X, Z) (6)

Following the formulation provided in Hjelm et al. [31], we take Jensen–Shannon
divergence (JSD) as the mutual information estimation. Therefore, the loss is defined as

Lin f o = maxÎ (JSD)(X; Z)

= maxEJ[log σ(T(x, z))]−EM
[
log σ

(
T
(
x′, z

))]
, (7)

where x is an input sample, z is the high-level representation related to x, and x′ is another
input sample unrelated to z.

We also perform an a priori constraint on the encoder to give the encoder an a priori
specific expected statistical feature. Here, we use a variational auto-encoder (VAE) to
constrain this a priori information. q(z) is a standard normal distribution as

Lpri = minEx∼ p̃(x)[KL(p(z|x)‖q(z))]. (8)

Thus, we arrive at our complete objective for mutual information feature extraction as

LE = min
p(z|x)

{
−β · Lin f o + γ · Lpri

}
. (9)

Similarity Metric Loss: We directly take the reconstructed image from RNet as one of
the inputs in MNet. However, since we did not discriminate between the reconstructed
images during the training process, samples with large reconstruction errors can degrade
the performance of MNet. To tackle this problem, we use Huberś loss [32] as the similarity
metric loss to reduce the penalty for samples with large reconstruction errors. In our
method, the loss is defined as

Lmetric = min Lδ(Ew(x), Ew(x̂))

=

{ 1
2 d2, for|d| ≤ δ
δ · (|d| − δ/2), otherwise

(10)

where d = (Ew(x)− Ew(x̂)).
As shown in Equation (10), when the predicted value is less than δ, Huberś loss

becomes a square error or it becomes a linear error, which reduces the penalties on samples
with large reconstruction errors to reduce the effect caused by them. Therefore, Huber’s
loss enhances the robustness of our model.

To summarize, the loss function of MNet is a linear combination of the mutual infor-
mation maximization loss and the similarity metrics loss.

LMNet = LE + αLmetric (11)

where α is the weighting factor of the similarity metric loss.

4. Discussion

In this section, we deliberate on the restrictions and validity of our proposed solution.
The Maximum Mean Discrepancy (MMD) technique requires the presence of comparable
distributions that can be effectively mapped to Hilbert space and are amenable to kernel
methods. The Siamese Network, while proficient in measuring similarity and distance, dis-
plays dependence on the assigned task. Consequently, the network’s efficacy may fluctuate
depending on the particular undertaking it is employed for. However, the prerequisites
for the Siamese network to exhibit commendable performance are satisfactorily fulfilled
within the context of this study.
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It is important to note that the proposed methods, such as MMD and the L1-norm for
sparsity promotion, demonstrate considerable robustness and can be applied to diverse
scenarios. The use of empirical means in MMD avoids the need for a priori knowledge of
the data distribution, making it suitable for scenarios with unknown image distributions.
The L1-norm encourages parameter sparsity, aiding in the extraction of essential features.
The choice of the Siamese network helps to mitigate the imbalance issue typically found
in one-shot learning environments. This network architecture is less sensitive to sample
imbalance, which is beneficial for the novelty detection problem discussed.

The primary focus of this work is image background detection, which involves decom-
posing motion images into frames for processing. This allows for minimal requirements on
the dynamism of the environment, making the proposed approach adaptable to varying
levels of motion or scene changes.

5. Experiment

In this section, we validate the effectiveness of our method on two publicly available
multi-class object recognition datasets.

5.1. Dataset and Measurement Metric
5.1.1. Dataset Description

CIFAR-10: CIFAR-10 [33] contains 60,000 color images in 10 classes with the resolution
of 32×32. CIFAR-10 contains objects in the real world. CIFAR-10 is not only highly noisy,
but also varies in terms of the appearance and scale of target objects, which brings great
difficulties to identification. Therefore, several methods of one-class novelty detection
obtain relatively poor results on CIFAR-10. In our experiment, we choose one of the classes
as the normal class, and samples from the remaining classes are taken as novelty classes;
90% of samples from the normal class are used for training. The remaining 10% of samples
from the normal class and samples randomly selected from the novelty classes with a
proportion ranging between 10% and 50% are used for testing.

Caltech-256: Caltech-256 [34] is a dataset for image object recognition containing
30,608 images in 256 classes. The number of images per class ranges between 80 and 827.
In Caltech-256, there is also an additional class called “clutter” that contains 827 images
that are considered as outliers. Similar to the previous work [1,35], we randomly select n
classes as normal classes, where n ∈ {1, 3, 5}. If there are enough images in the selected
class, we use first 150 images, or we use the entirety of the images in it. At the testing stage,
we randomly select a certain number of images from the “clutter” class as novelty samples
with a proportion of 50%.

5.1.2. Measurement Metric

ROC analysis provides tools to select possibly optimal models independently of
(and prior to specifying) the cost context or the class distribution. The receiver operating
characteristic (ROC) curve is the plot of the true positive rate against the false positive
rate, at various threshold settings. The area under the curve (AUC) represents the overall
performance of the model (“1” means perfect and “0.5” means uselessness) and is a measure
of aggregated classification performance. Hence, we evaluate these methods by the area
under the curve (AUC) of the ROC.

5.2. Training Strategy

The detailed training strategy is as follows: (1) We train RNet in an alternative way
first. Specifically, we first optimize D. After this, we fix the parameters of D and switch to
optimize E and G. We also use the mutual information loss to update the feature extraction
subnetwork of E f . (2) We train MNet after RNet converges. We use the mutual information
loss and Huber’s loss to optimize E f . We apply a novel self-looping training trick to
optimize the training process. In detail, we take the reconstructed image as an input in the
metric network. The trick enhances the robustness of the reconstruction network.
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5.3. Novelty Detection Result

Result on CIFAR-10: We compare our method with several conventional deep-
learning-based methods for general anomaly detection as baselines, including one-class
SVM (OC-SVM) [12], kernel density estimation (KDE) [36], and deep variational auto-
encoder (VAE) [37].

Table 1 shows the experimental results on CIFAR-10, where the samples are com-
plicated. Among the baseline methods, the performance of OCGAN is [28] considerably
greater than that of the others. The method that we propose has comparable performance
to OCGAN, with an average AUC (see Section 5.1.2) of 73.48%, as shown in Table 2(d).

Table 1. Average AUCs in % one-class novelty detection for CIFAR-10 dataset. The top three results
are marked in bold.

Normal Class OC-SVM KDE VAE GAN AnoGAN DSVDD OCGAN Ours
(MSE)

Ours
(MNet)

AIRPLANE 61.6 61.2 70.0 70.8 67.1 61.7 75.7 89.6 86.7
AUTOMOBILE 63.8 64.0 38.6 45.8 54.7 65.9 53.3 47.3 70.5
BIRD 50.0 50.1 67.9 66.4 52.9 50.8 64.0 71.5 63.4
CAT 55.9 56.4 53.5 51.0 54.5 59.1 62.0 62.1 60.1
DEER 66.0 66.2 74.8 72.2 65.1 60.9 72.3 83.5 78.4
DOG 62.4 62.4 52.3 50.5 60.3 65.7 62.0 61.2 64.7
FROG 74.7 74.9 68.7 70.7 58.5 67.7 72.3 88.8 86.2
HORSE 62.6 62.6 49.3 47.1 62.5 67.3 57.5 56.0 65.7
SHIP 74.9 75.1 69.6 71.3 75.8 75.9 82.0 89.5 82.4
TRUCK 75.9 76.0 38.6 45.8 66.5 73.1 55.4 50.8 76.8

Table 2. Ablation experiment for our method performed on CIFAR-10.

Experiment Average AUC %

(a) RNet + self-looping 70.03
(b) MNet + self-looping 68.41
(c) RNet + MNet 71.73
(d) RNet + MNet +self-looping 73.48

Result on Caltech-256: Table 3 shows the results on Caltech-256. We compare our
method with several previous methods designed specifically for detecting novelties,
including Coherence Pursuit (CoP) [38], OutlierPursuit [39], REAPER [40], Dual Principal
Component Pursuit (DPCP) [41], Low-Rank Representation (LRR) [42], OutRank [43],
R-graph [35], and ALOCC [1]. The results show that our method has better performance
on Caltech-256.

Table 3. Results on Caltech-256. Normal samples are images from n randomly selected classes, and
novelty samples are randomly selected from the “clutter” class. The top three results are marked
in bold.

CoP REAPER OutlierPursuit LRR DPCP R-Graph ALOCC Ours
(MSE) Ours (MNet)

AUC1 90.5 81.6 83.7 90.7 78.3 94.8 94.2 94.2 94.1
AUC3 67.6 79.6 78.8 47.9 79.8 92.9 93.8 93.8 94.1
AUC5 48.7 65.7 62.9 33.7 67.6 91.3 92.3 90.8 92.7

5.4. Ablation Study

In order to investigate the effectiveness of each subnetwork of our method, we conduct
several further ablation studies.
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How important is MNet? We firstly use MSE instead of MNet to measure the re-
construction error. The penultimate columns of Tables 1 and 2(a) show the results of the
method without MNet. The result shown in Table 2(a) is also slightly greater than the
one of OCGAN but is inferior to ours. We conjecture that the reason is that the metric
network extracts discriminative characteristics of the target, especially for objects with
high complexity.

However, the comparison between the last two columns of Table 1 indicates that MSE
is superior to MNet when some classes (e.g., deer, birds) are selected as the normal classes
and MNet performs better when others (e.g., car, truck) are. We conduct an analysis on this
result. First, we calculate the variance of each sample by class. The variance represents
the dispersion level of the data. The larger the variance, the more dispersed the data
distribution is. As can be seen from Tables 1 and 4, for the three classes with the most
discrete image distribution, TRUCK, AUTOMOBILE, and HORSE, our method with the
MNet function outperforms the state-of-the-art methods. However, the results obtained
using the MSE function are reduced by 33.2%, 28.2%, and 16.8% compared to the state-of-
the-art methods. At the same time, for the other seven classes with a relatively concentrated
image distribution, our method can achieve very good results by applying both the MSE
function and MNet function. Therefore, compared with the MSE function, our proposed
MNet function can more stably achieve excellent results on different discrete-level datasets.
Some different discrete-level samples are shown in Figure 4.

Table 4. Variance of each class on CIFAR-10.

Normal Class R-Channel G-Channel B-Channel

airplane 0.500 0.481 0.531
automobile 0.536 0.531 0.548

bird 0.454 0.441 0.486
cat 0.513 0.504 0.515

deer 0.434 0.413 0.423
dog 0.500 0.487 0.497
frog 0.457 0.437 0.440

horse 0.486 0.487 0.503
ship 0.499 0.481 0.502
truck 0.536 0.538 0.562

(a) The normal class is Deer (b) The normal class is Bird

(c) The normal class is Car (d) The normal class is Truck

Figure 4. Reconstructed images of classes. In each group of images, a, b, c, and d, the first row is the
normal sample and its reconstruction sample, and the second row is the corresponding novelty sample
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and its reconstruction sample. In (a,b), the variance of normal samples is small and the distributions’
discrete levels are lowest. In (c,d), the variance of novelty samples is large and the distributions’
discrete levels are highest. The reconstructed image of the normal class sample in the first row of
each group also shows that our method can reconstruct the background.

Meanwhile, we also conduct experiments aimed at adjusting the number of selected
normal classes on Caltech-256. We randomly select n ∈ {1, 3, 5, 7, 9} classes as normal
classes. During testing, we randomly select a certain number of images from the “clutter”
category as novelty samples, with a proportion of 50%. As shown in the Figure 5, as the
amount of classes increases, since the data distribution becomes more dispersed, MNet
performs better than MSE.

1 3 5 7 9
Number of normal classes

80%

85%

90%

95%

M
ea

n 
AU

C

MNet
MSE

Figure 5. Mean AUC in % for one-class novelty detection. n ∈ {1, 3, 5, 7, 9} classes are randomly
selected as normal classes from Caltech-256.

How important is RNet? We replace the image reconstruction network with the auto-
encoder and GAN from the previous work and use our proposed work metric network
part to detect the novelty samples. Table 2(b) shows the results of our method without the
image reconstruction network. The last two columns in Table 1 also show the results of
using our reconstruction network. The experimental results show that the method of using
MMD loss can improve the detection results. MMD loss minimizes the distance between
the reconstructed sample and the original sample distribution. Specifically, the two samples
are closer together in terms of statistics. The background can also be reconstructed to some
extent for images with background. Then, in the process of novel class detection, we can
not only use the characteristics of the target itself, but also use global context information to
assist detection. Figure 4 shows the results of using RNet to reconstruct the sample. It can
be seen that the background is reconstructed to some extent in the image. We believe that
our approach focuses on background information, so our results show good performance.

How important is self-looping training? We do not use the above training trick. The
results of our training without the self-looping trick are shown in Table 2(c). Compared with
our overall experiment, using this method can improve the accuracy of novelty detection.
We feed reconstructed images into the network for training, which takes advantage of
the ability to generate network for data augmentation. Thus, we find that these data are
enhanced by the advantages of the network itself.

6. Conclusions

In this paper, we present a novel and sophisticated network architecture for complex
background reconstruction, specifically tailored to the task of one-class novelty detection.
We highlight the inherent correlation between complex backgrounds and the foreground
object, as well as the rich information encapsulated within the foreground. As a result,
we assert that harnessing the power of background reconstruction significantly enhances
the detection of novel samples. To achieve this, we employ the MMD loss function to
effectively mitigate background interference and we introduce MNet, a metric to measure
the background similarity to minimize their divergence. The experiments show that our
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method exhibits an enhancement of approximately 0.3% in both the CIFAR-10 and Caltech-
256 datasets.
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