friried applied
e sciences

Article

SCEHO-IPSO: A Nature-Inspired Meta Heuristic Optimization
for Task-Scheduling Policy in Cloud Computing

Kaidala Jayaram Rajashekar !, Channakrishnaraju 2, Puttamadappa Chaluve Gowda 3 *
and Ananda Babu Jayachandra 4

check for
updates

Citation: Rajashekar, K.J.;
Channakrishnaraju; Gowda, P.C,;
Jayachandra, A.B. SCEHO-IPSO: A
Nature-Inspired Meta Heuristic
Optimization for Task-Scheduling
Policy in Cloud Computing. Appl. Sci.
2023, 13,10850. https://doi.org/
10.3390/app131910850

Academic Editor: Wenzhong Li

Received: 4 August 2023
Revised: 30 August 2023
Accepted: 27 September 2023
Published: 29 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Information Science and Engineering, Kalpataru Institute of Technology,
Tiptur 572201, India; rajkit2006@kittiptur.ac.in

Department of Computer Science and Engineering, Sri Siddhartha Institute of Technology,
Tumakuru 572105, India; rajuck@ssit.edu.in

Department of Electronics and Communication Engineering, Dayananda Sagar University,
Bengaluru 560078, India

Department of Information Science and Engineering, Malnad College of Engineering,
Hassan 573202, India; abj@mcehassan.ac.in

* Correspondence: puttamadappa-ece@dsu.edu.in

Abstract: Task scheduling is an emerging challenge in cloud platforms and is considered a critical
application utilized by the cloud service providers and end users. The main challenge faced by
the task scheduler is to identify the optimal resources for the input task. In this research, a Sine
Cosine-based Elephant Herding Optimization (SCEHO) algorithm is incorporated with the Improved
Particle Swarm Optimization (IPSO) algorithm for enhancing the task scheduling behavior by uti-
lizing parameters like load balancing and resource allocation. The conventional EHO and PSO
algorithms are improved utilizing a sine cosine-based clan-updating operator and human group
optimizer that improve the algorithm’s exploration and exploitation abilities and avoid being trapped
in the local optima problem. The efficacy of the SCEHO-IPSO algorithm is analyzed by using perfor-
mance measures like cost, execution time, makespan, latency, and memory storage. The numerical
investigation indicates that the SCEHO-IPSO algorithm has a minimum memory storage of 309 kb, a
latency of 1510 ms, and an execution time of 612 ms on the Kafka platform, and the obtained results
reveal that the SCEHO-IPSO algorithm outperformed other conventional optimization algorithms.
The SCEHO-IPSO algorithm converges faster than the other algorithms in the large search spaces,
and it is appropriate for large scheduling issues.

Keywords: cloud computing; elephant herding optimization algorithm; load balancing; particle
swarm optimization algorithm; resource allocation; task scheduling

1. Introduction

In recent decades, cloud computing has been one of the growing paradigms which
dynamically virtualizes resources to provide services over web pages [1,2]. The primary
objectives of cloud computing are to achieve high reliability, reputation, throughput, ac-
cessibility, scalability, and ease of use [3]. However, effective scheduling of tasks is a main
concern which facilitates the execution of tasks utilizing the available resources in cloud
computing environments [4]. In cloud computing, the task-scheduling problem has gained
more attention among researchers due to the applications and the growth of cloud systems.
Generally, the jobs scheduled by a user are assigned to capable devices in cloud systems
where every job has consecutive tasks [5]. In cloud platforms, the resources are accessed in
two ways: (i) using service-level agreements for resource allocation that act as an interface
between the resources and applications, and (ii) brokers or users accessing the resources
based on their input [6,7].

Appl. Sci. 2023, 13, 10850. https:/ /doi.org/10.3390/app131910850

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910850
https://doi.org/10.3390/app131910850
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1936-7200
https://orcid.org/0000-0001-6158-7616
https://doi.org/10.3390/app131910850
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910850?type=check_update&version=2

Appl. Sci. 2023,13, 10850

20f 15

The objectives of task scheduling mainly include enhancing load balancing ability
and resource utilization and reducing energy consumption and task completion time [8].
Improving the ability of load balancing prevents Virtual Machines (VMs) from resource
overload, and the reduction of time for task completion improves the users’ experience [9].
In addition to this, task scheduling focuses on many Quality of Service (QoS) factors like
scalability, availability, throughput, and response time. The highly appropriate resources
are utilized for executing tasks based on user requirements [10,11]. In the present decades,
several optimization algorithms have been implemented for task scheduling in cloud
computing. The traditional optimization algorithms are ineffective in obtaining optimal
task allocation due to a poor convergence rate and search ability. The ineffective task
scheduling algorithms increase the execution time of the tasks and reduce the throughput
of the cloud systems [12,13]. Therefore, a novel SCEHO-IPSO algorithm is proposed in this
manuscript for effective task scheduling. The contributions are outlined below:

e Proposed a SCEHO-IPSO algorithm to resolve task-scheduling problems in the cloud
computing platforms. In this scenario, the scheduler effectively ranks user tasks based
on execution time and memory details.

e Based on the capacity criteria, the SCEHO-IPSO algorithm determines the efficient
VMs to execute tasks in the queue. The SCEHO-IPSO algorithm simultaneously
enhances resource utilization and decreases the makespan value.

e The SCEHO-IPSO algorithm optimizes task scheduling by identifying the optimal
solutions with better convergence rates. The effectiveness of the SCEHO-IPSO algo-
rithm is analyzed by conducting different experiments. The performance measures
cost, execution time, makespan, and latency, and memory storage demonstrates the
efficacy of the SCEHO-IPSO algorithm over other optimization algorithms.

This manuscript is arranged in this manner. The research papers on the topic “task
scheduling” are surveyed in Section 2. The methodology details, numerical results, and the
conclusion of this manuscript are denoted in Sections 3-5, respectively.

2. Literature Survey

Abualigah and Diabat [14] employed an Ant Lion Optimization (ALO) algorithm
to maximize resource utilization and minimize makespan in the cloud platforms. In
this literature, the traditional ALO algorithm was integrated with elite-based differential
evolutions for enhancing an exploration and exploitation ability that avoids the local
optima problem. The efficacy of the developed optimization algorithm was analyzed on
the real-trace and synthetic databases by utilizing Cloud-Sim. The results demonstrate
that the ALO algorithm outperformed the existing optimization algorithms by means of
processing time.

Zhou et al. [15] integrated a greedy strategy with the Genetic Algorithm (GA) for
optimizing the scheduling of tasks. The developed algorithm’s performance was analyzed
using dissimilar performance measures such as QoS parameters, average response time,
and total completion time. The results showed that the developed algorithm performs
more effectively related to the existing task scheduling algorithms. However, the use of
elite-based differential evolutions and greedy strategy did not provide optimal solutions to
all issues.

In the present scenario, cloud users extensively use cloud-based applications. Kumar
and Venkatesan [16] have developed a hybrid optimization algorithm, the Ant Colony
Optimization (ACO) algorithm with GA, for the effective handling of cloud users’ requests.
This study utilized a Utility-Based Scheduler (UBS) for identifying suitable resources and
order of the tasks. Here, the ACO algorithm was utilized for enhancing the crossover
operation in the GA. The extensive experimental investigation stated that the developed
hybrid optimization algorithm obtained superior performance in ensuring QoS parameters
and task allocation. The efficacy of the hybrid optimization algorithm was validated in
light of throughput, completion time, and response time. However, the integration of the
two optimization algorithms increased the time complexity. In addition to this, Mapetu

Appl. Sci. 2023,13, 10850

30f15

et al. [17] presented a PSO algorithm with low cost and time complexity for the effective
balancing and scheduling of tasks in cloud computing. However, the conventional PSO
algorithm had the problem of a poor convergence rate.

Natesan and Chokkalingam [18] presented a mean Grey Wolf Optimization (GWO)
algorithm to reduce makespan and energy consumption in cloud computing. The aims
of the presented optimization algorithm were analyzed utilizing Cloud-Sim for standard
workloads (right- and left-skewed). The GWO algorithm had high time complexity because
it needed to perform four operations (attacking, encircling, judging, and searching for prey)
for scheduling the tasks.

Shukri et al. [19] integrated two meta-heuristic-based optimization algorithms, the
PSO algorithm and Multi-Verse Optimization (MVO) algorithm, for the effective scheduling
of tasks in the cloud platforms. The obtained numerical results confirmed the effectiveness
of the presented hybrid optimization algorithm, which achieved superior performance in
improving resource utilization and reducing makespan time.

Velliangiri et al. [20] combined GA with electro search for enhancing task scheduling
in cloud platforms by employing different parameters. Here, the electro search provided
the best global optimal solutions and the GA provided the best local optimal solutions. As
discussed in the earlier literature, the integration of two optimization algorithms increased
the time complexity of the system.

Jacob and Pradeep [21] integrated two optimization algorithms, such as the PSO
algorithm and cuckoo search algorithm, that made cloud-computing services faster. The
primary objective of this literature study was to decrease the violation rate and makespan.
On the other hand, Li and Han [22] implemented a discrete Artificial Bee Colony (ABC)
algorithm for flexible task scheduling in the cloud platforms. The experiments conducted on
the benchmark instances showed the effectiveness of the presented optimization algorithms,
but the hybridization of optimization algorithms increased the time complexity.

Alsaidy et al. [23] employed a PSO algorithm for effective task scheduling. The pre-
sented optimization algorithm’s performance was evaluated by means of total energy con-
sumption, degree of imbalance, total execution time, and makespan. Sanaj and Prathap [24]
developed a chaotic-based squirrel search algorithm for optimal multi-task scheduling in
the cloud atmosphere. Correspondingly, Kumar and Venkatesan [25] presented a hybrid
task scheduling algorithm in order to solve NP-hard problems in cloud computing. Here,
the user tasks were stored in the queue manager, and then the priority was estimated.
Based on the estimated priority, the resources were allocated for the task. In this literature,
the GA was integrated with the PSO algorithm for scheduling the tasks.

In addition to this, Pang et al. [26], Elaziz et al. [27], Li and Wu [28], Hasan et al. [29],
Mansouri et al. [30], and Chandrashekar et al. [31] implemented several optimization
algorithms like the GA, moth search algorithm, ACO algorithm, PSO algorithm, modified
PSO algorithm, and hybrid weighted ACO algorithm for task scheduling in the cloud
platforms. The conventional optimization algorithms have poor convergence speed in multi-
objective problem statements and get trapped into local optima problems. To highlight
the aforementioned concerns, an effective optimization algorithm named SCEHO-IPSO is
proposed for task scheduling in cloud computing environments by considering parameters
like load balancing and resource utilization.

3. Methodology

A novel optimization algorithm, SCEHO-IPSO, is introduced for task scheduling. There
are several indicators utilized for evaluating the efficacy of the task-scheduling algorithm.
The following goals are needed to be achieved for an efficient task-scheduling algorithm:

e Minimization of total cost: According to the user’s QoS parameters, the limited total
monetary cost states that the SCEHO-IPSO algorithm is efficient.

e Maximization of the QoS parameters: The QoS parameters play a crucial role in cloud
computing environments and are utilized to analyze the effectiveness of the SCEHO-
IPSO algorithm. The higher QoS is superior, while other parameters remain unchanged.

Appl. Sci. 2023,13, 10850

40f 15

e Workload balancing: Workload balancing is closely related to the resource utilization
rate. If it is an excellent task-scheduling algorithm, the majority of resources should be
fully used in cloud environments.

e Minimization of makespan: It represents that the proposed optimization algorithm
completes the scheduling of tasks with limited execution time.

e Minimization of latency: Latency is an important measure for evaluating the proposed
task-scheduling algorithm. The latency and response time should be limited if it is
an excellent task-scheduling algorithm. The flow diagram of the proposed work is
mentioned in Figure 1.

‘ User submitted tasks ‘

|

‘. Queue manager J

Priority queue .IJ | :lT On-demand queue J

—ﬂ SCEHO-IPSO ““—
!

‘ Cloud environment ‘

Figure 1. Flow diagram of the proposed work.

3.1. Resource Allocation to the VMs

In this section, resource allocation is considered as the optimization problem, which is
mathematically represented in Equation (1).

PCPU PMEM PBW
Resource allocation = Maximize / + +) 1
Cru MEM BW
< M; VM; VM;
where P]-CP u P].MEM, and P]-B W are denoted as the Computer Processing Unit (CPU), mem-

ory, and Bandwidth (BW) of physical machines. Similarly, VMPY, vV MMEM and v MEW
are indicated as the CPU, memory, and bandwidth of the VMs. The proposed optimization
algorithm SCEHO-IPSO detects the hosts with higher units based on the following four con-
ditions. The proposed SCEHO-IPSO algorithm detects the hosts with maximum resources.

N N\ CPU CPU
Vlezl Yij = 1and VIZj:1 yijVMi < P]‘

A MEM MEM j— BW BW
Vlzjzl YyiiVM; < P; and szj:l yi VMY < P

where the binary variable is represented as y;;, the task count is denoted as M, and the
number of tasks is indicated as n. The VMs are positioned on appropriate physical machines
if the aforementioned conditions are satisfied.

3.2. Load Balancing in the VMs

The VM load status is estimated based on parameters like bandwidth, memory storage,
and processor load. These parameters are responsible for pre-determining the VM load
status, which is mathematically defined in Equations (2)—(5).

L ={Ly, Ly and L3} 2

Appl. Sci. 2023,13, 10850 50f 15
where

Ly = CPU usage of VM;/ P 3)

Ly = Memory usage of VMZ-/P]-MEM 4)

L3 = Bandwidth usage of VMZ'/P]‘BW (5)

where L;(t) = Yi'y % is the degree of load. If the following two conditions are satisfied—

idle, L;(t) = Lifle(t) = 0 q normal, L""(t) < L;(t) < L"*¥(¢) 0

. , an —the
under load, Li¢(t) < L;(t) < LMn(t) overload, L;(t) > LI"™*(t)

load status of the VMs is determined. In addition, L/**(t) and L (t) are represented as

the maximum and minimum load in the host.

3.3. Task Scheduling

The process of allocating tasks to the VMs in cloud computing is called task scheduling.
In the context of the cloud, the scheduling algorithm maximizes resource usage, reduces the
total processing time, saves expenses and energy, and enhances the system’s load balance
and throughput. In this section, the proposed optimization algorithm, SCEHO-IPSO,
satisfies the following three conditions (‘v’iZ}“:l tii=1,F, < Ay, + Dy, and Et; + Dy, < Ct;)
for effective task scheduling. The tasks allocated to the jth VM is represented as tij, F, is
stated as the finishing time of task t;, Ay, is represented as the arrival time of task ¢;, Dy, is
denoted as the dead-line of task t;, and E;, and Ct; are the execution and completion times
of task ¢;. The mathematical presentation of Ct; is presented in Equation (6).

Ct; = Et; + Wt; (6)
where Wt; is the waiting time of the ith task.

3.4. SCEHO Algorithm

The EHO algorithm is one of the effective metaheuristic-based optimization algorithms
which follows the herding behavior of elephants [32,33]. The SCEHO uses a sine cosine-
based clan-updating operator for updating the distance between elephants in every clan
based on the matriarch elephant’s position. The SCEHO algorithm follows three rules in
optimization problems: (i) elephants live peacefully in each clan under the leadership of
matriarch elephant; (ii) after a specific time period, the male elephants leave their clans
and live solely; and (iii) elephants are divided into many clans, where each clan has a fixed
population [34-36].

3.4.1. Process of Clan Updating

As discussed earlier, all the elephants live together under the leadership of a matriarch
elephant. Generally, the positions of the elephants are influenced by a matriarch elephant
based on Equation (7). In this scenario, the sine cosine-based clan-updating operator is
employed for updating the clans, which is mathematically determined in Equation (8). The
use of the sine cosine-based clan-updating operator enhances the optimization algorithm'’s
exploration and exploitation abilities and avoids being trapped in local optima problems.

new

4 t t
Xej = Xej T X <xhest,c,- - xci,j) x rl (7)

t : ¢ t;
e Xe i rlx sin(r2) x ‘r3 X Xpost e, — Xe,j|1f 74 < 0.5 ®
xY =
irf xt 471 x cos(r2) x ”GXXZestc._x{t:,-j‘if”4205
i .

Cis]

Appl. Sci. 2023,13, 10850

6 of 15

where «a is represented as a scaling factor, which influences the matriarch elephant on
le_, i x?le]w are denoted as old and new positions of the jth elephant in clan ¢;; x}, i, is stated
as a global or best-fitted position of a matriarch elephant in clan ¢;; t is indicated as an
iteration; and the random numbers 1, 2,3, and r4 perform uniform distribution which
ranges between zero and one. On the other hand, the position of a matriarch elephant is

updated based on Equation (9).

new __ t
xcl-,j - .B X xcenter,ci (9)
where the term S influences xéemer ¢ on x??}”, which ranges between zero and one. The
, "

t

center of the clan x;,,,, ,

Equation (10).

in the dth dimensional space is mathematically determined in

¢ 1

e,
Xeenter,c; — . j:ll Xeijd (10)

e,

1

where 7, is represented as the number of elephants in clan c;. The architecture of the
SCEHO algorithm is mentioned in Figure 2.

Start

|

Initialize the population —_—
+
Division of entire population info some classes
+
Clan updating by sine cosine based clan-
updating operator
4
Separating operator
|
Elitizm strategy

'

o No
Is a termination

condition met?

Yes ‘
Report the best solution

|

Stop

Figure 2. Architecture of SCEHO algorithm.

3.4.2. Process of Separation

When the male elephants attain puberty, they leave the clan and live alone. The
process of separation is modeled by a separating operator which helps in resolving the
optimization problems. The elephants with the worst fitness are removed by using the
separating operator that superiorly enhances the searching ability of the conventional EHO
algorithm. The separating operator is a fitness function in this study that is mathematically
denoted in Equation (11).

xgoorst,ci = Xin + (xmax — Xpmin + 1) x rand (11)

Appl. Sci. 2023,13, 10850

7 of 15

where the lower and upper bounds of the elephant position are denoted as x,;, and Xax,
xfw,strcl_ is stated as the worst elephants in clan ¢;, and the term rande[0, 1] is represented as
the stochastic distribution function. The assumed parameters of the SCEHO algorithm are
represented as follows: the iteration number is 100, the population number is 100, « = 0.5,
the upper bound is 0.9, the number of clans is 10, the set elitism is 2, the lower bound is 0.3,
and g = 1.

3.5. IPSO Algorithm

After finding the best local optimal solutions with the SCEHO algorithm, the best
global optimal solutions are determined with the IPSO algorithm. The PSO algorithm
is one of the stochastic optimization algorithms which follows swarm movement and
intelligence behaviors [37-39]. The social interaction concept is used in the conventional
PSO algorithm for resolving the optimization problems. The PSO algorithm makes use
of agents (particles) which constitute the swarms that move in the search space [40,41].
For every iteration, the agents (particles) update their positions in order to obtain optimal
solutions. In the swarm, every particle moves towards its prior global and personal best
position. The Equations (12) and (13) are used to update the velocity and position of the
agents (particles). The architecture of the IPSO algorithm is specified in Figure 3.

Start

+
| Initialize group of particles |
+
| Ewvaluate personal best of the particles by HGO |
¥

Yes ——M
| Update personal ‘
best

Is current position is
better than the
personal best?

No*

| Assign personal best to the global best #—————
+

| Compute velocity |
i

| Update particle position |
'

| Target reached |

!

Stop

Figure 3. Architecture of IPSO algorithm.

Og(t +1) = Ly X vig(t) +acy X ry X [pig(t) — 0ja(t)] +acy X rp x {pgd(t) - Oid(f)} (12)

0ia(t+1) = 04(t) +vjg(t +1) (13)

where the random numbers are represented as r; and 7, the acceleration coefficients are
denoted as ac; and acy, and the inertia weight used to balance local and global search is
specified as I;,. The particles’ global best position and the personal best position are denoted
as pgg and pjy. In the IPSO algorithm, a novel Human Group Optimizer (HGO) is used
to influence the agents (particles). The HGO uses an adaptive uniform mutation operator
for enhancing the convergence speed of the conventional PSO algorithm. Additionally,
nonlinear function py, is used in the IPSO algorithm for controlling the range and decision

Appl. Sci. 2023,13, 10850

8 of 15

of the mutation on each particle. The nonlinear function p;, is updated after every iteration
and it is mathematically specified in Equation (14).

i

pm = 0.5 x e710%1) 10,01 (14)

where T indicates the maximum iteration, and ¢ denotes the total number of iterations. The
assumed parameters of the IPSO algorithm are listed as follows: the iteration number is
100, the population number is 100, the cognitive constant ac; is two, and the social constant
acq is three. The numerical analysis of the proposed SCEHO-IPSO algorithm is detailed in
Section 4, and the steps involved in the Algorithm 1 are described below:

Algorithm 1. SCEHO-IPSO algorithm.

Step 1: Initialize the objective functions.

Step 2: Create initial population.

Step 3: Evaluate fitness value.

Step 4: For every task, find the best local optimal solutions using SCEHO algorithm.
Step 5: For every task, find the best global optimal solutions using IPSO algorithm.
Step 6: Find the hybrid solutions.

Step 7: If the hybrid new solution value is higher than the current value,

then

Step 8: replace the current value with the hybrid new solution.

Step 9: Select any resources among the population.

Step 10: If the execution time is higher for the selected resource, then eliminate the respective
resource and select another resource.

Step 11: Update personal best and global best solutions.

Step 12: Retain it and rank the best solutions.

Step 13: End.

4. Simulation Results

In this manuscript, the SCEHO-IPSO algorithm is simulated utilizing a Cloud-Sim
toolkit, which effectively supports on-demand resource provisioning. In addition, it offers
a wide range of features, including support for multi-objective optimization scenarios, the
dynamic scaling of resources, the modeling of several application characteristics, and an
ability to simulate different cloud deployment models. The performance of the SCEHO-
IPSO algorithm is analyzed using a system with an Intel core i9 12th generation processor,
Linux-operating system, 128 GB random access memory, and 36 GB virtual storage. The
load balancing on Kafka is a straightforward and simple process that is managed by the
Kafka producers. The efficacy of the SCEHO-IPSO algorithm is compared with other
optimization algorithms like ALO, GA, ACO, PSO, GWO, and MVO by means of cost,
execution time, makespan, latency, and memory storage. The parameters considered for
experimental analysis are mentioned in Table 1.

Table 1. Parameters considered for experimental analysis.

Datacenter
Number of hosts 2
Number of datacenters 10
VMs
Number of processing elements 2
Bandwidth 500
Million instructions per seconds 500
Number of VMs 1000
Number of service providers 5
Task (cloud-let)
Number of tasks 1000

Task length 1000

Appl. Sci. 2023,13, 10850

9of 15

4.1. Performance Measures

As mentioned earlier, the efficacy of the SCEHO-IPSO algorithm is analyzed by using
performance measures like cost, execution time, makespan, latency, and memory storage.
At first, the cost represents the total cost (dollars) required for task scheduling in the cloud
environments and it is mathematically depicted in Equation (15). Then, makespan is the
completion time of the last task to leave the system, and it is mathematically stated in
Equation (16). The term F;, is stated as the finishing time of task t;, ECy,, is denoted as the
execution cost of task ¢; on resource r,,, and # is indicated as the number of tasks.

Cost =Y | ECyy, (15)

Makespan = Z?:l F, (16)

The execution time of the task is defined as the time consumed by the system for
executing a specific task. The mathematical formula for execution time E;, is given in
Equation (17). The term Pp, is represented as the processing power of the VMs, §;, is
specified as the task size, and Ly, is indicated as the execution time of task ¢; on the VMs.

St

= = 17
= P, (17)

E;

The latency is defined as the time consumed for balancing the data load. The effec-
tiveness of the system is improved by decreasing the latency. The mathematical formula to
compute latency is specified in Equation (18). The term f; is represented as the instances
generated from the source code, k; is stated as the number of instances per unit, and u(t)
is indicated as the total count of the workload. In addition to this, the memory storage is
defined as the space required by the proposed optimization algorithm in order to execute a
specific task. The execution time is minimized by reducing the memory storage.

Latency = ('121) (u(t) +1) (18)

]

4.2. Quantitative Analysis

The experimental results of different optimization algorithms by means of execution
time and cost are presented in Table 2. In addition to this, the performances of the optimiza-
tion algorithms are analyzed on different platforms such as Storm, Flink, Spark, and Kafka.
By inspecting Table 2, the SCEHO-IPSO algorithm is seen to obtain a minimum execution
time of 612 milliseconds (ms) and a cost of 62 on the Kafka platform, which are superior
compared to other optimization algorithms (ALO, GA, ACO, PSO, GWO, MVO, and EHO)
and other platforms (Storm, Flink, and Spark). The two common parameters assumed in the
comparative optimization algorithms are a population size of 100 and a maximum iteration
of 100. The specific parameters of ALO are as follows: the number of dimensions is five,
the lower bound is 0.1, and the upper bound is 0.8. The assumed parameters of GA are as
follows: the mutation probability is 0.02, the crossover probability is 0.60, and the number
of demes is six. The parameters of ACO are as follows: the time factor is two, the saving
matrix factor is two, the visibility coefficient is three, and the pheromone concentration
coefficient is one. The maximum initial velocity is 15, the minimal initial velocity is five,
the alpha is 0.8, and the beta is 0.8; these are the specific parameters considered in the PSO
algorithm. The assumed parameters of the GWO and MVO algorithms are as follows: the
number of appliances is 12, the coefficient vector is one, the TDR is one, and the WEP is 0.2.
The parameters of EHO are as follows: the alpha is 0.5, the beta is one, the upper bound is
0.9, the number of clans is 10, the set elitism is two, and the lower bound is 0.3. Generally,
the highly available fault-tolerant task scheduling helps in improving the business goals.
The Kafka platform includes advantages such as high enterprise security, real time analysis,

Appl. Sci. 2023,13, 10850

10 of 15

effective management of clouds, platform scalability, and better processing speed over
other platforms. A visual comparison of different optimization algorithms by means of
execution time and cost is represented in Figures 4 and 5.

Table 2. Results of different optimization algorithms in light of execution time and cost.

Execution Time (ms)

Platform ALO GA ACO PSO GWO MVO EHO SCEHO-IPSO

Storm 894 1203 910 887 978 963 834 733
Flink 873 1129 905 876 956 904 820 720
Spark 802 1082 890 864 944 896 802 652
Kafka 772 910 787 793 892 834 772 612
Cost
Platform ALO GA ACO PSO GWO MVO EHO SCEHO-IPSO
Storm 202 190 208 152 188 192 116 102
Flink 193 182 201 144 172 188 102 88
Spark 170 177 188 138 166 177 92 82
Kafka 154 173 177 122 152 152 72 62
1400
1200
EIUUU
g s
.E 600
E 400
200
! ALO GA ACO PSO GWo MVO EHO SCEHO-IPSO
Optimization algorithms

m Storm u Flink uSpark Kafka

Figure 4. Visual comparison of different optimization algorithms in light of execution time.

SCEHO-IPSO

MVO
GWO

Optimization algorithms
g

=

30 100 150 200 250
Cost

Kafka mSpark ®Flink =Storm
Figure 5. Visual comparison of different optimization algorithms in terms of cost.

The experimental results of different optimization algorithms by means of latency are
presented in Table 3. Similar to Table 2, the SCEHO-IPSO algorithm has a lower latency
value than conventional optimization algorithms such as ALO, GA, ACO, PSO, GWO,
MVO, and EHO. Here, the proposed SCEHO-IPSO algorithm has latency of 1630 m:s,
1626 ms, 1550 ms, and 1510 ms on the Storm, Flink, Spark, and Kafka platforms. A visual
comparison of different optimization algorithms in terms of latency is depicted in Figure 6.

Appl. Sci. 2023,13, 10850 110f15
Table 3. Results of different optimization algorithms in light of latency.
Latency (ms)
Platform ALO GA ACO PSO GWO MVO EHO SCEHO-IPSO
Storm 2800 2914 3018 3920 2990 2560 1982 1630
Flink 2773 2888 2822 3892 2967 2521 1928 1626
Spark 2822 2880 2902 3620 2940 2490 1802 1550
Kafka 2754 2635 2772 3450 2829 2339 1820 1510

4500

4000

3500
3000

Latency (ms)

=
=

= 2500
2000
1500
1000
5
0
ALO GA ACO PSO

GWO

Optimization algorithms
u Storm Flink

Spark

MVO

Kafla

EHO SCEHO-IPSO

Figure 6. Visual comparison of different optimization algorithms in terms of latency.

Correspondingly, the experimental results of different optimization algorithms in
light of makespan and memory storage are specified in Table 4. As seen in Table 4, the
proposed SCEHO-IPSO algorithm has minimum makespan values of 88, 73, 45, and 44 on
the platforms Storm, Flink, Spark, and Kafka. On the other hand, the proposed SCEHO-
IPSO algorithm has a consumed minimal memory storage of 338 kb, 336 kb, 322 kb, and
309 kb on the platforms Storm, Flink, Spark, and Kafka. The achieved results are superior
when compared to traditional optimization algorithms such as ALO, GA, ACO, PSO, GWO,
MVO, and EHO. Visual comparisons of different optimization algorithms in terms of

makespan and memory storage are specified in Figures 7 and 8.

Table 4. Results of different optimization algorithms in light of makespan and memory storage.

Makespan

Platform ALO GA ACO PSO GWO MVO EHO SCEHO-IPSO
Storm 288 283 193 188 190 144 94 88
Flink 276 279 187 176 158 142 90 73
Spark 244 232 143 165 148 122 88 45
Kafka 240 212 123 142 122 110 78 44

Memory storage (kb)

Platform ALO GA ACO PSO GWO MVO EHO SCEHO-IPSO
Storm 512 538 727 721 573 698 413 338
Flink 532 521 632 658 549 690 479 336
Spark 454 477 553 630 490 532 493 322
Kafka 380 392 442 532 422 504 379 309

Appl. Sci. 2023,13, 10850

12 0f 15

350

300

ALO GA

ACO PS5O GWO MVO EHO SCEHO-IPSO
Optimization algorithms

b

Makespan
= = 2
(=] i (=] n
= = = =]

]

u Storm m Flink Spark Kafka

Figure 7. Visual comparison of different optimization algorithms in terms of makespan.

SCEHO-IPS0

MVO
GWO

Optimization algorithms
2

=
=
S
[=]
=
=]

300 400 500 600 700 800
Memory storage (lkb)

Kafka wSpark wFlink mStorm
Figure 8. Visual comparison of different optimization algorithms in light of memory storage.

4.3. Discussion

The extensive experimental evaluation shows that the proposed SCEHO-IPSO algo-
rithm has achieved better task scheduling in the cloud platforms by considering parameters
like load balancing and resource utilization. The traditional optimization algorithms have
poor convergence speed in multi-objective problem statements and become trapped in local
optima problems. Compared to existing optimization algorithms like ALO, GA, ACO, PSO,
GWO, MVO, and EHO, the proposed SCEHO-IPSO algorithm has the advantages of strong
search ability and faster convergence speed, particularly in the context of task scheduling.
The performance measures of cost, execution time, makespan, latency, and memory storage
demonstrate the efficacy of the proposed SCEHO-IPSO algorithm over other algorithms,
which is specifically stated in Tables 2—4. Additionally, related to other platforms, Kafka
is extremely fast and massively scalable because it efficiently decouples the data streams,
which results in lower latency, cost, execution time, makespan, and sufficient memory
storage. The Kafka replicates and distributes partitions across several servers that protect
against server failures.

5. Conclusions

In this manuscript, a novel optimization algorithm, SCEHO-IPSO, was implemented
for the effective scheduling of tasks in cloud platforms. Here, the proposed SCEHO-IPSO
algorithm was implemented using a Cloud-Sim toolkit and was compared with other
optimization algorithms like ALO, GA, ACO, PSO, GWO, MVO, and EHO. The proposed
SCEHO-IPSO algorithm was analyzed on different platforms, namely Storm, Flink, Spark,
and Kafka, and validated by means of cost, execution time, makespan, latency, and memory
storage. The extensive experimental investigation states that the proposed SCEHO-IPSO
algorithm has a minimum makespan of 44, a memory storage of 309 kb, a latency of 1510 ms,
an execution time of 612 ms, and a cost of 62 on the Kafka platform, which are superior to

Appl. Sci. 2023,13, 10850

13 of 15

other optimization algorithms and platforms. Still, the proposed SCEHO-IPSO algorithm
has the two major issues of limited energy efficiency and the degree of imbalance.

As a future extension, the proposed optimization algorithm will be implemented
in other applications like earth science and climate modeling. Additionally, a hybrid
optimization algorithm will be developed and more parameters will be considered for
comparisons like energy efficiency and degree of imbalance.

Author Contributions: The paper investigation, resources, data curation, writing—original draft
preparation, writing—review and editing, and visualization were performed by K.J.R. The paper
conceptualization and software were conducted by C. The validation and formal analysis, method-
ology, supervision, project administration, and funding acquisition of the version to be published
were conducted by P.C.G. and A.B.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACO Ant Colony Optimization

ALO Ant Lion Optimization

ABC Artificial Bee Colony

BW Bandwidth

CPU Computer Processing Unit

GA Genetic Algorithm

GWO Grey Wolf Optimization

HGO Human Group Optimizer

IPSO Improved Particle Swarm Optimization
MVO Multi-Verse Optimization

QoS Quality of Service

SCEHO Sine Cosine based Elephant Herding Optimization
UBS Utility Based Scheduler

VMs Virtual Machines

Parameters Definition

P]CP u Computer processing unit of the physical machines
P]MEM Memory of the physical machines
P].BW Bandwidth of the physical machines
VMlCP u Computer processing unit of the VMs
VM?AEM Memory of the VMs

VM?W Bandwidth of the VMs

Yij Binary variable

M Task count

n Number of tasks

Li(t) Degree of load

Lmex(t) Maximum load in the host

L (t) Minimum load in the host

F, Finishing time of the task t;,

Ay, Arrival time of the task t;,

Dy, Dead-line of the task ¢;

Ey, Execution time of the task ;.

Ct; Completion time of the task ¢;
Wt; Waiting time of the ith task

Appl. Sci. 2023,13, 10850

14 0of 15

o Scaling factor
xéi’ j Old positions of jth elephant in a clan ¢;
C”f]w New positions of jth elephant in a clan ¢;,
Xpost c: Global or best fitted positions of a matriarch elephant in a clan c;

rl,72,r3, and r4
Xyin and Xpax
Xt

Random numbers performs uniform distribution
Lower and upper bounds of the elephant position
Worst elephants in a clan ¢;

worst,c;
acy and acy Acceleration coefficients
Iy Inertia weight used to balance local and global search
Pgq and pig Particles” global best position and the personal best position
Pm Nonlinear function
ECyy, Execution cost of the task #; on a resource r,
Pp, Processing power of the VMs
St; Task size
Bi Instances generated from the source code
kj Number of instances per unit
u(t) Total count of the workload
References
1. Jana, B.; Chakraborty, M.; Mandal, T. A task scheduling technique based on particle swarm optimization algorithm in cloud

10.

11.

12.

13.

14.

15.

16.

17.

environment. In Soft Computing: Theories and Applications, Advances in Intelligent Systems and Computing; Ray, K., Sharma, T.,
Rawat, S., Saini, R., Bandyopadhyay, A., Eds.; Springer: Singapore, 2019; Volume 742, pp. 525-536. [CrossRef]

Houssein, E.H.; Gad, A.G.; Wazery, Y.M.; Suganthan, PN. Task scheduling in cloud computing based on meta-heuristics: Review,
taxonomy, open challenges, and future trends. Swarm Evol. Comput. 2021, 62, 100841. [CrossRef]

Arunarani, A.R.; Manjula, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener.
Comput. Syst. 2019, 91, 407-415. [CrossRef]

Gupta, S,; Iyer, S.; Agarwal, G.; Manoharan, P.; Algarni, A.D.; Aldehim, G.; Raahemifar, K. Efficient Prioritization and Processor
Selection Schemes for HEFT Algorithm: A Makespan Optimizer for Task Scheduling in Cloud Environment. Electronics 2022,
11, 2557. [CrossRef]

Guo, X. Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm. Alex. Eng.].
2021, 60, 5603-5609. [CrossRef]

Ding, D.; Fan, X.; Zhao, Y.; Kang, K,; Yin, Q.; Zeng, J. Q-learning based dynamic task scheduling for energy-efficient cloud
computing. Future Gener. Comput. Syst. 2020, 108, 361-371. [CrossRef]

Hussain, M.; Wei, L.-E; Lakhan, A.; Wali, S.; Ali, S.; Hussain, A. Energy and performance-efficient task scheduling in heteroge-
neous virtualized cloud computing. Sustain. Comput. Inform. Syst. 2021, 30, 100517. [CrossRef]

Cai, X.; Geng, S.; Wu, D.; Cai, J.; Chen, J. A multicloud-model-based many-objective intelligent algorithm for efficient task
scheduling in internet of things. IEEE Internet Things J. 2021, 8, 9645-9653. [CrossRef]

Bezdan, T.; Zivkovic, M.,; Tuba, E.; Strumberger, I.; Bacanin, N.; Tuba, M. Multi-objective Task Scheduling in Cloud Computing
Environment by Hybridized Bat Algorithm. In Intelligent and Fuzzy Techniques: Smart and Innovative Solutions. INFUS 2020.
Advances in Intelligent Systems and Computing; Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I, Cebi, S., Tolga, A., Eds.; Springer:
Cham, Switzerland, 2021; Volume 1197, pp. 718-725. [CrossRef]

Yuan, H; Bi, J.; Zhou, M,; Liu, Q.; Ammari, A.C. Biobjective task scheduling for distributed green data centers. IEEE Trans. Autom.
Sci. Eng. 2021, 18, 731-742. [CrossRef]

Zhou, J.; Sun, J.; Cong, P; Liu, Z.; Zhou, X.; Wei, T,; Hu, S. Security-critical energy-aware task scheduling for heterogeneous
real-time MPSoCs in IoT. IEEE Trans. Serv. Comput. 2020, 13, 745-758. [CrossRef]

Wang, J.; Li, D. Task Scheduling Based on a Hybrid Heuristic Algorithm for Smart Production Line with Fog Computing. Sensors
2019, 19, 1023. [CrossRef]

Boveiri, H.R.; Khayami, R.; Elhoseny, M.; Gunasekaran, M. An efficient Swarm-Intelligence approach for task scheduling in
cloud-based internet of things applications. J. Ambient Intell. Hum. Comput. 2019, 10, 3469-3479. [CrossRef]

Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud
computing environments. Clust. Comput. 2021, 24, 205-223. [CrossRef]

Zhou, Z.; Li, F; Zhu, H.; Xie, H.; Abawajy,].H.; Chowdhury, M.U. An improved genetic algorithm using greedy strategy toward
task scheduling optimization in cloud environments. Neural Comput. Appl. 2020, 32, 1531-1541. [CrossRef]

Kumar, A.M.S.; Venkatesan, M. Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud
environment. Wirel. Pers. Commun. 2019, 107, 1835-1848. [CrossRef]

Mapetu,].P.B.; Chen, Z.; Kong, L. Low-time complexity and low-cost binary particle swarm optimization algorithm for task
scheduling and load balancing in cloud computing. Appl. Intell. 2019, 49, 3308-3330. [CrossRef]

https://doi.org/10.1007/978-981-13-0589-4_49
https://doi.org/10.1016/j.swevo.2021.100841
https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.3390/electronics11162557
https://doi.org/10.1016/j.aej.2021.04.051
https://doi.org/10.1016/j.future.2020.02.018
https://doi.org/10.1016/j.suscom.2021.100517
https://doi.org/10.1109/JIOT.2020.3040019
https://doi.org/10.1007/978-3-030-51156-2_83
https://doi.org/10.1109/TASE.2019.2958979
https://doi.org/10.1109/TSC.2019.2963301
https://doi.org/10.3390/s19051023
https://doi.org/10.1007/s12652-018-1071-1
https://doi.org/10.1007/s10586-020-03075-5
https://doi.org/10.1007/s00521-019-04119-7
https://doi.org/10.1007/s11277-019-06360-8
https://doi.org/10.1007/s10489-019-01448-x

Appl. Sci. 2023,13, 10850 150f 15

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Natesan, G.; Chokkalingam, A. Task scheduling in heterogeneous cloud environment using mean grey wolf optimization
algorithm. ICT Express 2019, 5, 110-114. [CrossRef]

Shukri, S.E.; Al-Sayyed, R.; Hudaib, A.; Mirjalili, S. Enhanced multi-verse optimizer for task scheduling in cloud computing
environments. Expert Syst. Appl. 2021, 168, 114230. [CrossRef]

Velliangiri, S.; Karthikeyan, P.; Xavier, V.M.A.; Baswaraj, D. Hybrid electro search with genetic algorithm for task scheduling in
cloud computing. Ain Shams Eng.]. 2021, 12, 631-639. [CrossRef]

Jacob, T.P,; Pradeep, K. A multi-objective optimal task scheduling in cloud environment using cuckoo particle swarm optimization.
Wirel. Pers. Commun. 2019, 109, 315-331. [CrossRef]

Li, J.; Han, Y. A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing
system. Clust. Comput. 2020, 23, 2483-2499. [CrossRef]

Alsaidy, S.A.; Abbood, A.D.; Sahib, M. A. Heuristic initialization of PSO task scheduling algorithm in cloud computing. J. King
Saud Univ.-Comput. Inf. Sci. 2022, 34, 2370-2382. [CrossRef]

Sanaj, M.S.; Prathap, PM.]. Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an
TAAS cloud computing atmosphere. Eng. Sci. Technol. Int. J. 2020, 23, 891-902. [CrossRef]

Kumar, AM.S.; Venkatesan, M. Task scheduling in a cloud computing environment using HGPSO algorithm. Clust. Comput.
2019, 22 (Suppl. 1), 2179-2185. [CrossRef]

Pang, S.; Li, W.; He, H.; Shan, Z.; Wang, X. An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing.
IEEE Access 2019, 7, 146379-146389. [CrossRef]

Elaziz, M.A; Xiong, S.; Jayasena, K.P.N.; Li, L. Task scheduling in cloud computing based on hybrid moth search algorithm and
differential evolution. Knowl.-Based Syst. 2019, 169, 39-52. [CrossRef]

Li, G.; Wu, Z. Ant Colony Optimization Task Scheduling Algorithm for SWIM Based on Load Balancing. Future Internet 2019,
11, 90. [CrossRef]

Hasan, M.Z.; Al-Rizzo, H.; Al-Turjman, F; Rodriguez, J.; Radwan, A. Internet of Things Task Scheduling in Cloud Environment
Using Particle Swarm Optimization. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM),
Abu Dhabi, United Arab Emirates, 9-13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1-6. [CrossRef]

Mansouri, N.; Zade, B.M.H.; Javidi, M.M. Hybrid task scheduling strategy for cloud computing by modified particle swarm
optimization and fuzzy theory. Comput. Ind. Eng. 2019, 130, 597-633. [CrossRef]

Chandrashekar, C.; Krishnadoss, P.; Kedalu Poornachary, V.; Ananthakrishnan, B.; Rangasamy, K. HWACOA Scheduler: Hybrid
Weighted Ant Colony Optimization Algorithm for Task Scheduling in Cloud Computing. Appl. Sci. 2023, 13, 3433. [CrossRef]
Li, J.; Lei, H.; Alavi, A.H.; Wang, G.-G. Elephant Herding Optimization: Variants, Hybrids, and Applications. Mathematics 2020, 8,
1415. [CrossRef]

Li, W,; Wang, G.-G.; Alavi, A.H. Learning-based elephant herding optimization algorithm for solving numerical optimization
problems. Knowl.-Based Syst. 2020, 195, 105675. [CrossRef]

Li, W.; Wang, G.-G. Elephant herding optimization using dynamic topology and biogeography-based optimization based on
learning for numerical optimization. Eng. Comput. 2022, 38 (Suppl. 2), 1585-1613. [CrossRef]

Strumberger, I.; Minovic, M.; Tuba, M.; Bacanin, N. Performance of Elephant Herding Optimization and Tree Growth Algorithm
Adapted for Node Localization in Wireless Sensor Networks. Sensors 2019, 19, 2515. [CrossRef] [PubMed]

Elhosseini, M. A ; El Sehiemy, R.A.; Rashwan, Y.I; Gao, X.Z. On the performance improvement of elephant herding optimization
algorithm. Knowl.-Based Syst. 2019, 166, 58-70. [CrossRef]

Wang, X.; Yao, W. A Discrete Particle Swarm Optimization Algorithm for Dynamic Scheduling of Transmission Tasks. Appl. Sci.
2023, 13, 4353. [CrossRef]

Pradhan, A.; Bisoy, S.K,; Das, A. A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment.
J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 4888-4901. [CrossRef]

Ramirez-Ochoa, D.-D.; Pérez-Dominguez, L.A.; Martinez-Gémez, E.-A.; Luviano-Cruz, D. PSO, a Swarm Intelligence-Based
Evolutionary Algorithm as a Decision-Making Strategy: A Review. Symmetry 2022, 14, 455. [CrossRef]

Jiang, H.; He, Z.; Ye, G.; Zhang, H. Network intrusion detection based on PSO-XGBoost model. IEEE Access 2020, 8, 58392-58401.
[CrossRef]

Deng, W.; Xu, J.; Zhao, H.; Song, Y. A novel gate resource allocation method using improved PSO-based QEA. IEEE Trans. Intell.
Transp. Syst. 2022, 23, 1737-1745. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.icte.2018.07.002
https://doi.org/10.1016/j.eswa.2020.114230
https://doi.org/10.1016/j.asej.2020.07.003
https://doi.org/10.1007/s11277-019-06566-w
https://doi.org/10.1007/s10586-019-03022-z
https://doi.org/10.1016/j.jksuci.2020.11.002
https://doi.org/10.1016/j.jestch.2019.11.002
https://doi.org/10.1007/s10586-018-2515-2
https://doi.org/10.1109/ACCESS.2019.2946216
https://doi.org/10.1016/j.knosys.2019.01.023
https://doi.org/10.3390/fi11040090
https://doi.org/10.1109/GLOCOM.2018.8647917
https://doi.org/10.1016/j.cie.2019.03.006
https://doi.org/10.3390/app13063433
https://doi.org/10.3390/math8091415
https://doi.org/10.1016/j.knosys.2020.105675
https://doi.org/10.1007/s00366-021-01293-y
https://doi.org/10.3390/s19112515
https://www.ncbi.nlm.nih.gov/pubmed/31159373
https://doi.org/10.1016/j.knosys.2018.12.012
https://doi.org/10.3390/app13074353
https://doi.org/10.1016/j.jksuci.2021.01.003
https://doi.org/10.3390/sym14030455
https://doi.org/10.1109/ACCESS.2020.2982418
https://doi.org/10.1109/TITS.2020.3025796

	Introduction
	Literature Survey
	Methodology
	Resource Allocation to the VMs
	Load Balancing in the VMs
	Task Scheduling
	SCEHO Algorithm
	Process of Clan Updating
	Process of Separation

	IPSO Algorithm

	Simulation Results
	Performance Measures
	Quantitative Analysis
	Discussion

	Conclusions
	References

