
Citation: Almuayqil, S.N.; Elbashir,

M.K.; Ezz, M.; Mohammed, M.;

Mostafa, A.M.; Alruily, M.; Hamouda,

E. An Approach for Cancer-Type

Classification Using Feature Selection

Techniques with Convolutional

Neural Network. Appl. Sci. 2023, 13,

10919. https://doi.org/10.3390/

app131910919

Academic Editor: Zhibin Lv

Received: 8 September 2023

Revised: 29 September 2023

Accepted: 30 September 2023

Published: 2 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Approach for Cancer-Type Classification Using Feature
Selection Techniques with Convolutional Neural Network
Saleh N. Almuayqil 1 , Murtada K. Elbashir 1,* , Mohamed Ezz 2 , Mohanad Mohammed 3 ,
Ayman Mohamed Mostafa 1,* , Meshrif Alruily 2 and Eslam Hamouda 2

1 Department of Information Systems, College of Computer and Information Sciences, Jouf University,
Sakaka 72388, Saudi Arabia; snmuayqil@ju.edu.sa

2 Department of Computer Science, College of Computer and Information Sciences, Jouf University,
Sakaka 72388, Saudi Arabia; maismail@ju.edu.sa (M.E.); mfalruily@ju.edu.sa (M.A.);
efhamouda@ju.edu.sa (E.H.)

3 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg,
Private Bag X01, Scottsville 3209, South Africa; mohanadadam32@gmail.com

* Correspondence: mkelfaki@ju.edu.sa (M.K.E.); amhassane@ju.edu.sa (A.M.M.)

Abstract: Cancer diagnosis and treatment depend on accurate cancer-type prediction. A prediction
model can infer significant cancer features (genes). Gene expression is among the most frequently
used features in cancer detection. Deep Learning (DL) architectures, which demonstrate cutting-edge
performance in many disciplines, are not appropriate for the gene expression data since it contains a
few samples with thousands of features. This study presents an approach that applies three feature
selection techniques (Lasso, Random Forest, and Chi-Square) on gene expression data obtained from
Pan-Cancer Atlas through the TCGA Firehose Data using R statistical software version 4.2.2. We
calculated the feature importance of each selection method. Then we calculated the mean of the
feature importance to determine the threshold for selecting the most relevant features. We constructed
five models with a simple convolutional neural networks (CNNs) architecture, which are trained
using the selected features and then selected the winning model. The winning model achieved a
precision of 94.11%, a recall of 94.26%, an F1-score of 94.14%, and an accuracy of 96.16% on a test set.

Keywords: cancer prediction; gene expression; deep learning; Pan-Cancer Atlas; convolutional
neural networks

1. Introduction

Cancer is a leading cause of death globally, and it is, the second leading cause of death
in the United States after heart disease. In the US, Cancer mortality reached 163.5 per
100,000 persons. Worldwide, 609,820 cancer-related deaths, and more than 1.9 million new
cancer diagnoses are anticipated for 2023 [1]. Furthermore, according to data from 2013 to
2015, 38.4% of Americans will receive a cancer diagnosis at some point in their lifespan.
Cancer detection and treatment methods have been the subject of extensive research to
decrease its negative effects on human health. Cancer prediction places much emphasis on
cancer susceptibility, recurrence, and prognosis. A shift toward multi-omics investigations
is occurring [2,3], focusing strongly on genomes, transcriptomics, and proteomics. The
goal is to give clinicians a more profound understanding of patients’ internal states to
make accurate clinical decisions. A comprehensive understanding of the intricacies of the
patterns involved in the cancer process is provided by recent improvements made through
collaborations between machine learning and gene expression data analysis of cancer [4].
Therefore, gene expression data raises the necessity for cutting-edge machine learning
techniques, which increasingly serve as one of the primary motivators for numerous
clinical and translational applications.

Recently, a combination of new facilities and technologies has generated vast amounts
of cancer data, which hold immense potential for advancing our understanding of cancer.
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Due to the accessibility of publicly available cancer data over the past ten years, traditional
machine learning approaches have been developed [5–10]. On the other hand, a set of
neural network models with multi-layers called deep learning (DL) excels at the challenge of
being trained with large amounts of data. Like traditional machine learning techniques, DL
entails two steps: training, which involves estimating the parameters of the network from a
specified dataset known as the training set, and testing, which uses a testing set to evaluate
the learned network performance. The development of deep learning approaches that
have innovative interpretability and high accuracy in predicting the types of cancers was
made possible by accumulating whole transcriptome profiling of tumor data. One of these
profiling data is the Cancer Genome Atlas (TCGA), a well-known cancer transcriptome
profiling database containing the 33 most common types of cancer [11]. Many models
based on different DL are created for the detection and classification of cancer. Research
that utilized multiple models based on convolutional neural networks (CNNs) built for
various input data types was reported by Milad Mostavi et al. in their publication [12].
These models rigorously examine the ability of the convolution kernels. Milad Mostavi et al.
assessed the performance of their models in predicting tumor types using the TCGA data,
which contains the gene expression of 33 types of cancer. Their models achieved prediction
accuracies ranging from 93.9% to 95%. Four Graph CNNs models were suggested and
trained by Ricardo Ramirez et al. [13] utilizing the whole TCGA gene expression data sets
to classify 33 different cancer types. The models had prediction accuracies from 89.9 to
94.7%. Lyu et al. [14] developed a CNNs model and obtained more than 95% classification
accuracy for 33 cancer types retrieved from TCGA. They mapped the gene expression
samples into two-dimensional matrices for input. Zexian Zeng et al. [15] presented a CNNs
approach for the classification of seven types of cancer retrieved from the TCGA dataset
and obtained an overall accuracy of 77.6%. Our group [16] proposed five 1D-CNN-based
stacking ensemble approaches for classifying the most malignancies affecting women. The
developed model uses RNASeq data obtained from TCGA as an input. The output of these
models is integrated using Neural Network (NN), which is then utilized as a meta-model.

Ramroach et al. [17] assessed the application of five different machine learning
(random forest, GBM, REFRN, SVM, and KNN) with RNAseq data from 17 cancer types.
In a recent study, researchers compared the performance of different machine learning
algorithms for cancer research. They split the data into two sets: 75% for training and 25%
for testing. Their models were built using the training set, and the testing set was used
to evaluate their models performance. The researchers found that ensemble algorithms
performed better than the other methods on the entire gene list. Ensemble algorithms are a
techniques or algorithm that combines the predictions of multiple models. This can help to
enhance the models’ performance by reducing the bias and variance of individual models.
At the same time, the clustering and classification models achieved higher performance
when features (genes) were reduced to 20 genes. Hong et al. [18] created a multitask model
based on deep learning for classifying tissue, disease condition, tissue origin, and neoplastic
subtype using the full transcriptome (RNA-seq) datasets peri-neoplastic, neoplastic, and
non-neoplastic tissue. Their results indicated that the model achieved 99% accuracy for
classifying disease states, an accuracy of 97% for classifying tissue origin, and an accuracy
of 92% for subclassification of neoplastic. Khan and Lee [19] proposed a gene transformer
deep learning-based model to detect the significant biomarkers across different cancer
subtypes. They used gene expression data of 33 tumor types from the TCGA. Their results
indicated that their proposed model outperformed the traditional classification models.
Zhang et al. [20] developed an explainable deep learning model called Transformer for
Gene Expression Modeling (T-GEM) for predicting the cancer types and identifying the
type of immune cell using TCGA and ScRNA-Seq data, respectively. Moreover, they used
their proposed model to obtain the relevant markers. Their results depicted that their de-
veloped model has accuracies of 94.92% and 90.73% for the TCGA and PBMC ScRNA-Seq
datasets, respectively. Lkf Cai et al. [21] created a transformer deep learning model called
DeePathNet that combines omics data and pathways information. They used the datasets
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TCGA, CCLE, and ProCan-DepMapSanger. The performance of their proposed model was
assessed by classifying cancer types and subtypes, in addition to the prediction of the drug
response. Their proposed model outperformed the traditional classifiers by achieving over
95% recall scores for most cancer types.

In this paper, we constructed a CNNs model that classifies 33 cancer types and normal
samples using RNA-Seq gene expressions data as inputs. The Illumina HiSeq platform
and R software are used to obtain gene expression data from Pan-Cancer Atlas [22] via
the RTCGAToolbox package [23,24]. We selected the state run data of 28-01-2016, which
is determined using the getFirehoseRunningDates function. Consequently, the getFire-
hoseData function is used to download the gene expression data. Then, we processed the
downloaded data using a normalization technique to the data to ensure that the expression
could be inferred properly from the gene expression data and prevent the occurrence of
biased expression scores. The normalized data is processed using filtration through the
gene-filter package to filter the genes that exhibit low variation across the samples.

2. Materials and Methods

The R/Bioconductor package RTCGA Toolbox package [24] is used to retrieve the
Pan-Cancer Atlas RNASeq gene expression data via the TCGA Firehose Data. The obtained
data contains 10,456 samples from 33 tumor types with their corresponding normal samples
and it has 20,501 genes in total. The gene expression data was log2 transformed using
the formula log2(value + 1). Thereafter, dataset undergoes normalization and filtration
processes, which reduced the number of genes to 15,271. Figure 1 presents the number of
sample in each cancer type.
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3. Proposed Approach

Figure 2 depicts the complete framework of our proposed method. First, we divided
the entire data into testing and training sets before processing it with feature selection
algorithms to prevent data leakage and model overfitting. Then, we applied feature
selection procedures to the training set. This way, we will ensure no information is shared
between the training and testing sets when applying the features selection algorithm.
Suppose feature selection is used to prepare the data, followed by model selection and
training on the chosen features. In this case, the model will be given the training set as a
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whole for making feature selection decisions. This could lead to models that are improved
by the chosen features over other tested models appearing to have better results when they
have biased results [25]. Three feature selection techniques are used. These techniques are
Lasso, Random Forest, and Chi-Square. These feature selection techniques are essential
because they can identify the most important features that strongly impact the target
variable and remove the less important features. We calculated the feature importance of
each selection method. Then we calculated the mean of the feature importance to determine
the threshold for selecting the most relevant features, which are then reshaped into 2D-
image-like data. The thresholds that we used in this research are µ, 0.5 µ, 2 µ, 4 µ, and
8 µ and they are used to create five classification models. These classification models are
trained based on a 10-fold cross-validation approach.
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Lasso is a regularization technique that enhances the functionality of linear regres-
sion models. To achieve this, a penalty that promotes the coefficients of less important
characteristics to be zero is added to the loss function [26]. This makes the model easier
to understand and more straightforward. Both classification and regression issues can be
solved with Lasso. When there are many features, and the target variable is only affected by
a small number of features, Lasso performs well. A penalty factor determines the number of
features that are maintained. Choosing the penalty factor using cross-validation increases
the likelihood that the model will generalize well to new data sets.

If we consider a multinomial response with more than two levels (K > 2), we can sup-
pose that pl(gi) = Pr(C = ci|gi), where ci ∈ {1, 2, 3, . . . , K} represents the probability of
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observing ith response. The multinomial LASSO model’s log-likelihood can be expressed
as follows [27]:

max{
β0l, βl

}
ssK

1 ∈ RK(p+1)

[
1
N ∑N

i=1 log pci (gi)− λ ∑K
l=1 Pα

(
βl

)]
(1)

The aforementioned log-likelihood can be optimized through a penalized approach.
Therefore, the regularized log-likelihood in Equation (1) can be represented in more detailed
as follow

l
({

β0l, βl

}K

1

)
=

1
N ∑N

i=1

[
∑K
l=1 yil

(
β0l + gT

i βl

)
− log

(
∑K
l=1 eβ0l+ gT

i βl
)]

(2)

Pα(β) = (1− α)
1
2
||β ||2L2

+ α ||β ||L1 = ∑p
j=1

[
1
2
(1− α)β2

j + α
∣∣β j
∣∣] (3)

The target variable can be represented by a matrix Y, where Y has a dimension of NxK,
and yil = I(ci = l). βl is a vector that represents the regression parameters, the penalty
component of the equation above denoted by Pα, the level of expression for the gene of
sample i is represented by gi, and the response value yil for sample i. The penalty of LASSO
regression can be achieved by setting α = 1 in Equation (3).

The reason that LASSO was chosen as the penalty term is that it uses the total actual pa-
rameters’ values used in the model, which are constrained to be lower than a predetermined
threshold. In statistics, the chi-square test determines if two events are independent [28].
Equation (4) shows the calculation of chi-Square statistics where we can obtain the actual
count O and the expected value E from two variables’ data. Chi-Square determines the dis-
crepancy between the anticipated count E and the actual count O. While choosing features.
Our goal is to select those that depend heavily on the outcome. The observed count will be
relatively close to the expected count if the two features are independent. Hence, the value
of the Chi-Square statistics will be smaller. A high Chi-Square statistic indicates that the
independence hypothesis is not true. As a result, features with higher Chi-Square statistics
will be selected for training the model.

χ2
c = ∑

(Oi + Ei)
2

Ei
(4)

Random Forests (RF) is a learning method based on an ensemble approach that builds
many decision trees during training and returns each tree’s mean prediction or mode of
the classes [29]. Problems involving classification and regression are both addressed by RF.
RF chooses the most crucial features based on the impurity reduction they offer, and the
most vital characteristics offer the most significant impurity reduction. The RF algorithm
procedure is presented in Algorithm 1 [25].
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Algorithm 1. Random Forests Pseudocode
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{

Ĉr f (s)
}C

r f=1

4. Performance Score

In this work, we used four metrics to assess our proposed model. These metrics,
namely, F1-score, precision, recall, and classification accuracy are frequently used to assess
a model’s performance on bioinformatics data. F1- score and accuracy are used to assess
the model’s overall performance. In addition, the sensitivity and recognition rate are scored
by recall and precision, respectively. The mathematical expressions for these metrics are
provided below. The percentage of correctly recognized cancer is the classification accuracy,
which is computed as follows:

Accuracyj =
∑i mii

∑i,j mij
(5)

Recall is a metric used in machine learning to assess a model’s capacity to locate all
pertinent instances within a set of data. The ratio of true positives to the total of true
positives and false negatives is used to compute it and its equation is as follows:

Recallj =
mjj

∑i mji
(6)
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A classification model’s precision is its capacity to recognize only the relevant data
points, which is given by:

Precisionj =
mjj

∑j mji
(7)

A model’s accuracy on a binary classification process is called the F1 score. It is
calculated as the mean of recall and precision, where 1 reflects the highest value and 0
reflects the worst value. Precision and recall both contribute the same percentages to the F1
score. The F1 score can be presented as follows:

F1 scorej =
2 × Recallj × Precisionj

Recallj + Precisionj
(8)

where: i and j represent the different classes.

5. Results and Discussion

Keras Library [30] was used to implement our deep-learning approach. The original
dataset contains 15,271 genes (features). As mentioned in the proposed method section,
we initially split the entire dataset into testing and training sets. The training data was
then used to create our model. We designed a CNN models that is very simple in which
we limited the number of convolutional layers to one convolutional layer. That is because
Increased CNN model depth does not necessarily improve the performance on bioinformat-
ics data [31], even though deeper models based on CNN have shown great performance in
computer vision problems [32]. For problems like the prediction of a cancer type, shallower
models are recommended when the samples’ number is quite tiny compared to the number
of factors. Such simple models use fewer training resources and prevent overfitting [33].
Based on these two factors, we built a CNN model that adheres to the most often used
models in computer vision when the input has a two-dimension format, such as an image.
The 2D kernels in this CNN are used to extract local features. The size, number, and stride
of the kernel parameters, as well as the total amount of nodes in the fully linked layers, are
tuned using the grid search method [34].

We first started by training our designed CNN model using the entire features (genes).
The features are reshaped into 2D-image-like data to be appropriate for our designed CNN
model. Since the training data has imbalanced classes, we set the class weight parameter
to ‘’balanced” to automatically adjust the weights based on the class frequencies in the
training data. We utilized the cross-validation method with a leave-one-out to assess the
correctness of our model. Our training data set was initially divided into ten roughly equal
sets. The validation set was represented by the elimination of one set, and the training set
was created by pooling the remaining nine sets. We carried out this procedure ten times,
substituting one set for the validation set each time. We will have a different validation set
each time this way, allowing us to assess the generalizability of our model. We evaluated
the model on the test set and the obtained results are shown in Table 1.

Table 1. Models’ accuracies when using the entire features.

Model No.
CV Tuning

Average
Accuracy

Tuning Std
Threshold
(Feature

Coefficient)
No. of Features

1 95.83% (+/−1.28%) No 15,271

We applied Lasso, Chi-Square, and Random Forest features selection to select the
genes that significantly affect the class by calculating their feature importance. To select the
most relevant features, we used five thresholds µ, 0.5 µ, 2 µ, 4 µ, and 8 µ on each feature
selection method. We used the features selected by these five thresholds to create five CNN
classification models each model has the same setting that we adjust for the entire features.
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The number of features that resulted from the different feature selection methods (Lasso
Random Forest, Chi-Square) using the five thresholds together with their corresponding
model tuning accuracy based on 10-fold cross validation are presented in Tables 2–4.

Table 2. Models accuracies and the number of features when using Lasso with the different thresholds.

Model No.
CV Tuning

Average
Accuracy

Tuning Std
Threshold
(Feature

Coefficient)
No. of Features

1 96.76% (+/−0.41%) 1
2 µ 7535

2 97.03% (+/−0.37%) µ 4865
3 96.98% (+/−0.43%) 2 µ 2356
4 97.11% (+/−0.42%) 4 µ 597
5 95.18% (+/−0.80%) 8 µ 81

Table 3. Models accuracies and the number of features when using Random Forest with the different
thresholds.

Model No.
CV Tuning

Average
Accuracy

Tuning Std
Threshold
(Feature

Coefficient)
No. of Features

1 96.83% (+/−0.25%) 1
2 µ 5166

2 96.93% (+/−0.08%) µ 2896
3 96.94% (+/−0.28%) 2 µ 1656
4 96.92% (+/−0.14%) 4 µ 870
5 96.59% (+/−0.15%) 8 µ 321

Table 4. Models accuracies and the number of features when using Chi-Square with the different
thresholds.

Model No.
CV Tuning

Average
Accuracy

Tuning Std
Threshold
(Feature

Coefficient)
No. of Features

1 96.69% (+/−0.30%) 1
2 µ 7137

2 96.52% (+/−0.30%) µ 4432
3 96.29% (+/−0.41%) 2 µ 2220
4 95.06% (+/−0.34%) 4 µ 688
5 85.59% (+/−1.08%) 8 µ 64

Tables 2–4 show that the model performance on the features that are selected using
the features selection method is better compared to it is performance on the entire set of
features. As revealed in Table 2, model 4 achieved a tuning accuracy of 97.11% and that
makes it as the best model. The features for model 4 are selected using Lasso with feature
importance threshold set to 4 µ. The selected threshold produces 597 features that will be
used to score the model accuracy on the test data. The best model in Table 3 is model 3,
which achieved a tuning accuracy of 96.94%. The features for model 3 are selected using
Random Forest. 2 µ is used as feature importance threshold and that produces 1656 features.
Table 4 shows that the best model when using Chi-Square as a feature selection method
is model 1 with a tuning accuracy of 96.69% at a feature importance threshold equal to
0.5 µ which produces 7137 features. From the above results, it is clear that the best model is
the model that resulted from using the Lasso as a features selection method at a feature
importance threshold equal to 4 µ. The accuracy obtained from evaluating the best model
on the test set is 96.16% with test std: (+/−0.40%). The classification report of the best
model for each cancer type and the normal cases is depicted in Table 4. Table 4 shows that
the f1-score provides the mean of precision and recall.
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The scores given to each class will show how well the classifier classified the data
points within that class in relation to all other classes. Table 5 shows that the proposed model
has very high identification ability on the classes BRCA, CESC, HNSC, LGG, PCPG, PRAD,
SKCM, TGCT, THCA, and UCEC with F1-score ranging between 98% and 99%. In addition,
the table shows that the proposed model performed very weak in classifying CHOL class,
where only 35 samples from CHOL class were included in the modeling process.

Table 5. The classification report for each cancer type in addition to the normal cases.

Class Precision Recall F1-Score

Normal 91% 93% 92%
ACC 100% 93% 96%

BLCA 94% 96% 95%
BRCA 99% 98% 99%
CESC 99% 97% 98%
CHOL 62% 57% 60%
COAD 86% 88% 87%
DLBC 100% 100% 100%
ESCA 89% 85% 87%
GBM 100% 100% 100%

HNSC 99% 99% 99%
KICH 77% 88% 82%
KIRC 96% 97% 97%
KIRP 98% 91% 94%

LAML 100% 100% 100%
LGG 99% 99% 99%
LIHC 97% 94% 95%
LUAD 94% 93% 94%
LUSC 94% 95% 94%
MESO 93% 100% 97%

OV 100% 100% 100%
PAAD 93% 97% 95%
PCPG 100% 97% 99%
PRAD 98% 99% 98%
READ 65% 61% 63%
SARC 95% 98% 96%
SKCM 98% 99% 99%
STAD 94% 96% 95%
TGCT 100% 97% 98%
THCA 100% 99% 99%
THYM 100% 100% 100%
UCEC 99% 99% 99%
UCS 91% 100% 95%
UVM 100% 100% 100%

Figure 3 shows the proposed model Confusion matrix on 33 tumor types in addition
to the normal samples. By examining the confusion matrix carefully, it is clear that the
majority of errors are in the classification of READ, KICH, ESCA, and CHOL. For the
READ (Rectum adenocarcinoma or rectal cancer) cancer type, 39% of the samples were
misclassified as COAD (colon adenocarcinoma), while 12% of the samples of COAD were
misclassified as READ. In the rectal cancer, the tissues of the rectum evolve into cancerous
(malignant) cells. The rectum is the last several inches of the large intestine, connecting
it to the anus while the colon cancer starts in the colon, which is the longest part of the
large intestine. Adeno-matous polyps, which are tiny, noncancerous (benign) cell clusters,
are the precursors to both types of cancer and some of these polyps may develop into
cancer over time. This misclassification between READ and COAD is observed in the
study [13]. Also, Study [14] discovered that the patterns of genetic alterations in rectum
and colon tumors were quite comparable. The same goes for the incorrect classification of
29% and 14% of cholangiocarcinoma (CHOL), a kind of liver cancer that develops in the
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bile duct, into liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD)
respectively. It’s crucial to remember that CHOL and LIHC are the two most prevalent
primary liver malignancies worldwide. The biopotential for liver stem cells to develop
into either hepatocytes or cholangiocytes has been accepted as a continuous liver cancer
spectrum [35]. Figure 3 also shows that the proposed model is able to classify the eight
classes (UVM, UCS, THYM, OV, MESO, LAML, GBM, and DLBC) into their corresponding
class. These eight cancers types were classified with 100% accuracy because they have small
sample sizes, which is a challenge of many medical data. Since we are aiming for robustness,
generalization, and realistic performance on unseen data it’s crucial to take steps to address
this issue in our future study because realistic performance is more important than perfect
accuracy on the training data.
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Table 6 shows the comparison between our proposed method, Mostavi et al. [12],
and Ramirez, Ricardo [13]. Mostavi et al. and Ramirez, Ricardo used the same RNA-
Seq gene expression data that we used, which covered 33 different cancer types. With
accuracy of (96.16% +/−0.40%), precision of 94.11%, recall of 94.26%, and F-score of
94.14, our suggested technique outperforms these other methods. The precision, recall,
and F1-score of the PPI + singleton GCNN model were calculated from their constructed
confusion matrix. Also, the recall and F1-score for Mostavi et al. were calculated from their
constructed confusion matrix. The calculation was done using the caret package in R via
the confusion Matrix function, which retrieves each class’s precision, recall, and F1-score.
Then we calculated the average of these scores from the different classes.
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Table 6. Evaluation of proposed approach with existing techniques for classifying cancer types.

Classification Method Accuracy Precision Recall F1-Score

Our proposed approach (33 cancer
types + Normal) 96.16% 94.11% 94.26% 94.14%

Mostavi et al. [12] 95.00% 92.50% 93.17% 93.32%
Ramirez et al. [13] 94.61% 92.29% 91.38% 91.53%
De Guia et al. [36] 95.65% 95.55% 95.69% 94.45%
Khalifa et al. [37] 96.90% - - -

The impact of the features selection techniques on the classification accuracy is de-
picted in Table 7 below. Despite the fact that our method was applied to 33 cancer kinds,
the genetic algorithm features selection obtained an accuracy of 90% when employed
with the k-nearest neighbors (KNN) algorithm, which is lower than our attained accuracy.
In contrast, the work that used a genetic algorithm with a KNN classifier is applied to
31 cancer types. The Table also shows Garcia-Diaz et al. [38] scored an accuracy of 98.81%.
Although the accuracy achieved by Garcia-Diaz et al. is greater than our model, the authors
applied their methods to only five cancer types.

Table 7. A comparison with recent methods of features selection.

Features Selection
Method

Classification
Method Cancer Types Accuracy Precision Recall F1-Score

Proposed Features
Selection Methods CNN 33 Cancer Types 96.16% 94.11% 94.26% 94.14%

Grouping Genetic
Algorithm [38] Voting Classifier 5 Cancer Types 98.81% - - -

Genetic Algorithm [9] KNN 31 Cancer Types 90% - - -

6. Analysis of the Protein-Protein Association Network

Identifying protein-protein interactions (PPIs) is highly significant when verifying
gene selection in the context of various biological and biomedical research areas because
it places selected genes in a functional and biological context. It helps to confirm the
relevance of chosen genes in various biological processes. To construct the PPI, we obtained
the intersection of the lists of the genes that are obtained by each of the three feature
selection methods (Chi square (7137 genes), RF (1656 genes), and LASSO (597 genes). The
intersection yielded 301 genes that are commonly significantly associated with the 33 cancer
types. The STRING database and the Cytoscape tool were used to build the protein-protein
interaction network (PPI). Figure 4 illustrates the developed PPI network. The eccentricity
of a node in a biological network is scored by how easily all other proteins in the network
may functionally reach that node.

To obtain the most significant genes and get a clear understanding of the top genes that
can identify the cancer type we constructed the network for genes that have high degree
(number of edges) using the two methods maximum neighborhood component (MCN) and
maximal clique centrality (MCC). We used CytoHubba plugin by setting its parameters
to the default values to select the to 10 genes from the PPI network. The 10 genes that are
obtained by the two aforementioned methods are depicted in Figure 5.
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Figure 5. The Top 10 genes that are obtained using maximum neighborhood component (MCN) and
maximal clique centrality (MCC). (a) Top 10 hub genes using MCC method. (b) Top 10 hub genes
using MNC method.

The six common hub genes can be obtained by taking the intersection of the MCC and
MNC methods. These six genes are PAX8, KRT5, CDKN2A, EPCAM, WT1, NKX2-1. To
show the effectiveness of our features selection method we further studied the impact of
these top 6 selected genes in cancer using previous studies. I.e. Di Palma et al. [39] show
that the organogenesis of the thyroid gland, kidney, neurological system, and Müllerian
system depends on PAX8. Also, they demonstrate in earlier research that PAX8 is essential
for thyroid differentiated epithelial cells’ cell cycle progression and survival [40,41]. The
tumors of gliomas, well-differentiated pancreatic neuroendocrine malignancies, renal,
thyroid, ovarian, Wilms, and other cancers have all exhibited PAX8 positivity [42]. In
addition, PAX8 is a helpful marker for primary or metastatic neoplasms diagnosis because
it is not expressed in primary tumors of the breast, lung, or mesothelium [43]. PAX8 was
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found to be a survival gene important for ovarian cancer cells’ capacity to proliferate in the
OC scenario by the Cancer Genome Atlas (TGCA) Project [44].

In general, PAX8 belongs to a group of lineage-survival genes that are critical for the
growth of cancer cells as well as the normal development of specific organs [45]. Regarding
KRT5, Ricciardelli et al. [46] found that serous ovarian carcinomas had higher than average
KRT5 and KRT6 mRNA expression, which enhanced the likelihood of a disease relapse.
Mohtar, M. Aiman [47] show that the basolateral membrane of healthy epithelial cells
expresses EpCAM at basal levels. However, solid epithelial malignancies and stem cells
produce EpCAM at higher levels. Additionally, circulating tumor cells and disseminated
tumor cells also include EpCAM.

The adhesion molecule for epithelial cells EpCAM, which is overexpressed on malig-
nant cells from a range of different tumor types, is only produced by a small percentage
of normal epithelia, as demonstrated by Mrich, Sannia, and colleagues [48]. This over-
expression is significantly more pronounced in the so-called tumor-initiating cells (TICs)
of numerous carcinomas. Chen et al. [49] show that CDKN2A encodes the INK4 family
member multiple tumor suppressor 1 (MTS1), which. In comparison to normal tissue,
CDKN2A has high levels of expression in tumor tissue, which is indicative of a patient’s
prognosis. They concentrated on assessing CDKN2A expression in 33 malignancies, patient
prognosis, tumor immunity roles, and clinical characteristics. The amount of CDKN2A
expression was highly correlated with the tumor mutation burden (TMB) in 10 tumors,
and the same tumors showed a significant correlation between CDKN2A expression and
MSI (microsatellite instability). There may be a connection between CDKN2A expression
and tumor immunity, as evidenced by the correlation between CDKN2A expression and
infiltrating lymphocyte (TIL) levels in 22 pancancers. Chen et al. conducted enrichment
analysis, and they found that CDKN2A expression was linked to several malignancies’
control of the autophagy route, olfactory transduction pathways, processing, and dissemi-
nation of the antigen and pathways for natural killer cell-mediated cytotoxicity. CDKN2A
is also known as cyclin-dependent kinase inhibitor 2A and it plays a vital role in regulating
the cell cycle, and its relevance in cancer is significant. It encodes two major protein prod-
ucts (p16INK4a and p14ARF). These proteins are applied in controlling the progression of
the cell cycle, preventing uncontrolled cell division, and maintaining genomic stability.

The WT1 gene encodes the crucial transcription factor for normal cellular growth
and cell survival, according to Yang, L. et al. [50]. A tumor suppressor gene called WT1
has mutations that have been associated to kidney cancer development and urogenital
disease. It was first identified as the causal gene in an autosomal-recessive syndrome. Non-
small cell lung cancer (NSCLC), particularly lung adenocarcinoma (ADK), has enhanced
expression of NKX2-1, which is an essential molecule in lung development, according to
Moisés et al. [51]. In addition, the authors of [52,53] found and evidence suggests that
NKX2-1 and TTF-1 play opposing roles in the initiation and progression of lung cancer.
These findings may also apply to thyroid tumors and hematological malignancies.

7. Conclusions

In this study, using RNA-Seq gene expression data, we built a deep-learning model to
categorize different cancer kinds. To choose the best traits that can be utilized to identify
different cancer kinds, we used three different feature selection techniques. For each feature
selection method, we calculated the feature’s importance that rate input features according
to how well they are able to predict a given target variable. Based on the importance of the
features, we devised different thresholds for extracting the best features and then trained
five CNN models based on a ten-fold cross-validation approach. For each feature selection
approach, we select the most accurate model, and then we select the highest validation
accuracy model. The winning model performs well on the test set, with accuracy.



Appl. Sci. 2023, 13, 10919 14 of 16

Author Contributions: Data curation, S.N.A.; formal analysis, M.K.E. and M.E.; investigation, M.M,
A.M.M. and M.A.; supervision, E.H.; writing—original draft, M.K.E. and M.E.; writing—review and
editing, S.N.A., M.M. and A.M.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Deanship of Scientific Research–Jouf University, grant
number DSR2022-RG-0104.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Furnished on request.

Acknowledgments: The authors acknowledge the Deanship of Scientific research at Jouf University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siegel, R.L.; Siegel, R.L.; Miller, K.; Fuchs, H.; Jemal, A. Cancer statistics. CA A Cancer J. Clin. 2022, 72, 7–33. [CrossRef] [PubMed]
2. Bersanelli, M.; Mosca, E.; Remondini, D.; Giampieri, E.; Sala, C.; Castellani, G.; Milanesi, L. Methods for the integration of

multi-omics data: Mathematical aspects. BMC Bioinform. 2016, 17, 167–177. [CrossRef]
3. Kim, M.; Tagkopoulos, I. Data integration and predictive modeling methods for multi-omics datasets. Mol. Omics 2018, 14, 8–25.

[CrossRef] [PubMed]
4. De Anda-Jáuregui, G.; Hernández-Lemus, E. Computational oncology in the multi-omics era: State of the art. Front. Oncol. 2020,

10, 1–21. [CrossRef] [PubMed]
5. Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and

prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [CrossRef]
6. Statnikov, A.; Wang, L.; Aliferis, C.F. A comprehensive comparison of random forests and support vector machines for microarray-

based cancer classification. BMC Bioinform. 2008, 9, 1–10. [CrossRef]
7. Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2006, 2,

117693510600200030. [CrossRef]
8. Liu, J.J.; Cutler, G.; Li, W.; Pan, Z.; Peng, S.; Hoey, T.; Chen, L.; Ling, X.B. Multiclass cancer classification and biomarker discovery

using GA-based algorithms. Bioinformatics 2005, 21, 2691–2697. [CrossRef]
9. Li, Y.; Kang, K.; Krahn, J.; Crouwater, N.; Lee, K.; Umbach, D.; Li, L. A comprehensive genomic pan-cancer classification using

The Cancer Genome Atlas gene expression data. BMC Genom. 2017, 18, 508. [CrossRef]
10. Holzinger, A.; Kieseberg, P.; Weippl, E.; Tjoa, A.M. Current advances, trends and challenges of machine learning and knowledge

extraction: From machine learning to explainable AI. In Proceedings of the Machine Learning and Knowledge Extraction: Second
IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2018, Hamburg, Germany,
27–30 August 2018; Springer: Berlin/Heidelberg, Germany, 2018.

11. Grossman, R.L.; Health, A.; Ferretti, V.; Varmus, H.; Lowy, D.; Kibbe, W. Toward a shared vision for cancer genomic data. N. Engl.
J. Med. 2016, 375, 1109–1112. [CrossRef]

12. Mostavi, M.; Chiu, Y.; Huang, Y.; Chen, Y. Convolutional neural network models for cancer type prediction based on gene
expression. BMC Med. Genom. 2020, 13, 44. [CrossRef] [PubMed]

13. Ramirez, R.; Chiu, Y.-C.; Hererra, A.; Mostavi, M.; Ramirez, J.; Chen, Y.; Huang, Y.; Jin, Y.-F. Classification of Cancer Types Using
Graph Convolutional Neural Networks. Front. Phys. 2020, 8, 203. [CrossRef] [PubMed]

14. Lyu, B.; Haque, A. Deep learning based tumor type classification using gene expression data. In Proceedings of the 2018 ACM
International Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA, 29 August 2018.

15. Zeng, Z.; Mao, C.; Vo, A.; Li, X.; Nugent, J.; Khan, S.; Clare, S.; Luo, Y. Deep learning for cancer type classification and driver gene
identification. BMC Bioinform. 2021, 22, 491. [CrossRef] [PubMed]

16. Mohammed, M.; Mwambi, H.; Mboya, I.B.; Elbashir, M.K.; Omolo, B. A stacking ensemble deep learning approach to cancer type
classification based on TCGA data. Sci. Rep. 2021, 11, 15626. [CrossRef] [PubMed]

17. Ramroach, S.; John, M.; Joshi, A. The efficacy of various machine learning models for multi-class classification of rna-seq
expression data. In Proceedings of the Intelligent Computing: Proceedings of the 2019 Computing Conference, 23 June 2019;
Springer: London, UK, 2019; Volume 1.

18. Hong, J.; Hachem, L.D.; Fehlings, M.G. A deep learning model to classify neoplastic state and tissue origin from transcriptomic
data. Sci. Rep. 2022, 12, 9669. [CrossRef] [PubMed]

19. Khan, A.; Lee, B. Gene transformer: Transformers for the gene expression-based classification of lung cancer subtypes. arXiv 2021,
arXiv:2108.11833.

20. Zhang, T.-H.; Hasib, M.M.; Chiu, Y.; Han, Z.; Jin, Y.; Flores, M.; Chen, Y.; Huang, Y. Transformer for Gene Expression Modeling
(T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions. Cancers 2022, 14, 4763.
[CrossRef]

https://doi.org/10.3322/caac.21708
https://www.ncbi.nlm.nih.gov/pubmed/35020204
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1039/C7MO00051K
https://www.ncbi.nlm.nih.gov/pubmed/29725673
https://doi.org/10.3389/fonc.2020.00423
https://www.ncbi.nlm.nih.gov/pubmed/32318338
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1186/1471-2105-9-319
https://doi.org/10.1177/117693510600200030
https://doi.org/10.1093/bioinformatics/bti419
https://doi.org/10.1186/s12864-017-3906-0
https://doi.org/10.1056/NEJMp1607591
https://doi.org/10.1186/s12920-020-0677-2
https://www.ncbi.nlm.nih.gov/pubmed/32241303
https://doi.org/10.3389/fphy.2020.00203
https://www.ncbi.nlm.nih.gov/pubmed/33437754
https://doi.org/10.1186/s12859-021-04400-4
https://www.ncbi.nlm.nih.gov/pubmed/34689757
https://doi.org/10.1038/s41598-021-95128-x
https://www.ncbi.nlm.nih.gov/pubmed/34341396
https://doi.org/10.1038/s41598-022-13665-5
https://www.ncbi.nlm.nih.gov/pubmed/35690622
https://doi.org/10.3390/cancers14194763


Appl. Sci. 2023, 13, 10919 15 of 16

21. Cai, Z.; Poulos, R.; Aref, A.; Robinson, P.; Reddel, R.; Zhong, Q. Transformer-based deep learning integrates multi-omic data with
cancer pathways. bioRxiv 2022. [CrossRef]

22. Weinstein, J.; Collisson, E.; Mills, G.; Shaw, K.; Ozenberger, B.; Ellrott, K.; Shmulevich, L.; Sander, C.; Stuart, J. The cancer genome
atlas pan-cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [CrossRef]

23. Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni,
I.; et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016, 44, e71.
[CrossRef]

24. Samur, M.K. RTCGAToolbox: A New Tool for Exporting TCGA Firehose Data. PLoS ONE 2014, 9, e106397. [CrossRef]
25. Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning: Data mining, inference, and prediction. In Data Mining,

Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [CrossRef]
26. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [CrossRef]
27. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw.

2010, 33, 1–22. [CrossRef] [PubMed]
28. Plackett, R.L. Karl Pearson and the chi-squared test. Int. Stat. Rev. Rev. Int. De Stat. 1983, 51, 59–72. [CrossRef]
29. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
30. Keras, C.F. GitHub. Available online: https://github.com/keras-team/keras (accessed on 15 July 2023).
31. Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [CrossRef]
32. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
33. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6 July 2015; pp. 448–456.
34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.

2011, 12, 2825–2830.
35. Kang, X.; Bai, L.; Xiaoguang, Q.I.; Wang, J. Screening and identification of key genes between liver hepatocellular carcinoma

(LIHC) and cholangiocarcinoma (CHOL) by bioinformatic analysis. Medicine 2020, 99, e23563. [CrossRef]
36. De Guia, J.M.; Devaraj, M.; Leung, C.K. DeepGx: Deep learning using gene expression for cancer classification. In Proceedings of

the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada,
27 August 2019. Available online: https://doi.ieeecomputersociety.org/10.1145/3341161.3343516 (accessed on 17 August 2023).

37. Khalifa, N.E.; Taha, M.H.; Ezzat, D.; Slowik, A. Artificial intelligence technique for gene expression by tumor RNA-Seq data: A
novel optimized deep learning approach. IEEE Access 2020, 8, 22874–22883. [CrossRef]

38. Garcia-Diaz, P.; Berriel, I.; Rojas, J.; Pascual, A. Unsupervised feature selection algorithm for multiclass cancer classification of
gene expression RNA-Seq data. Genomics 2020, 112, 1916–1925. [CrossRef]

39. Di Palma, T.; Zannini, M. PAX8 as a potential target for ovarian cancer: What we know so far. OncoTargets Ther. 2022, 15,
1273–1280. [CrossRef]

40. Bouchard, M.; Souabni, A.; Mandler, M.; Neubuser, A.; Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev.
2002, 16, 2958–2970. [CrossRef]

41. Plachov, D.; Chowdhury, K.; Walther, C.; Simon, D.; Guenet, J.L.; Gruss, P. Pax8, a murine paired box gene expressed in the
developing excretory system and thyroid gland. Development 1990, 110, 643–651. [CrossRef]

42. Di Palma, T.; Filippone, M.G.; Pierantoni, G.M.; Fusco, A.; Soddu, S.; Zannini, M. Pax8 has a critical role in epithelial cell survival
and proliferation. Cell Death Dis. 2013, 4, e729. [CrossRef]

43. Hardy, L.R.; Salvi, A.; Burdette, J.E. UnPAXing the Divergent Roles of PAX2 and PAX8 in High-Grade Serous Ovarian Cancer.
Cancers 2018, 10, 262. [CrossRef]

44. Ye, J.; Hameed, O.; Findeis-Hosey, J.J.; Fan, L.; McMahon, L.A.; Yang, Q.; Wang, H.L.; Xu, H. Diagnostic utility of PAX8, TTF-1
and napsin A for discriminating metastatic carcinoma from primary adenocarcinoma of the lung. Biotech. Histochem. 2012, 87,
30–34. [CrossRef]

45. Cheung, H.W.; Cowley, G.S.; Weir, B.A.; Boehm, J.S.; Rusin, S.; Scott, J.A.; East, A.; Ali, L.D.; Lizotte, P.H.; Wong, T.C.; et al.
Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer.
Proc. Natl. Acad. Sci. USA 2011, 108, 12372–12377. [CrossRef]

46. Ricciardelli, C.; Lokman, N.; Pyragius, C.; Ween, M.; Macpherson, A.; Ruszkiewicz, A.; Hoffmann, P.; Oehler, M. Keratin 5
overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance. Oncotarget 2017, 8, 17819–17832.
[CrossRef]

47. Mohtar, A.; Syafruddin, S.; Nasir, S.; Low, T. Revisiting the roles of pro-metastatic EpCAM in cancer. Biomolecules 2020, 10, 255.
[CrossRef]

48. Imrich, S.; Hachmeister, M.; Gires, O. EpCAM and its potential role in tumor-initiating cells. Cell Adhes. Migr. 2012, 6, 30–38.
[CrossRef]

49. Chen, Z.; Guo, Y.; Zhao, D.; Zou, Q.; Yu, F.; Zhang, L.; Xu, L. Comprehensive analysis revealed that CDKN2A is a biomarker for
immune infiltrates in multiple cancers. Front. Cell Dev. Biol. 2021, 9, 808208. [CrossRef]

50. Yang, L.; Han, Y.; Saiz, F.; Minden, M. A tumor suppressor and oncogene: The WT1 story. Leukemia 2007, 21, 868–876. [CrossRef]
51. Moisés, J.; Navarro, A.; Santasusagna, S.; Viñolas, N.; Molins, L.; Ramirez, J.; Osorio, J.; Saco, A.; Castellano, J.J.; Muñoz, C.; et al.

NKX2–1 expression as a prognostic marker in early-stage non-small-cell lung cancer. BMC Pulm. Med. 2017, 17, 197. [CrossRef]

https://doi.org/10.1101/2022.10.27.514141
https://doi.org/10.1038/ng.2764
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1371/journal.pone.0106397
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.18637/jss.v033.i01
https://www.ncbi.nlm.nih.gov/pubmed/20808728
https://doi.org/10.2307/1402731
https://doi.org/10.1023/A:1010933404324
https://github.com/keras-team/keras
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1097/MD.0000000000023563
https://doi.ieeecomputersociety.org/10.1145/3341161.3343516
https://doi.org/10.1109/ACCESS.2020.2970210
https://doi.org/10.1016/j.ygeno.2019.11.004
https://doi.org/10.2147/OTT.S361511
https://doi.org/10.1101/gad.240102
https://doi.org/10.1242/dev.110.2.643
https://doi.org/10.1038/cddis.2013.262
https://doi.org/10.3390/cancers10080262
https://doi.org/10.3109/10520295.2011.591838
https://doi.org/10.1073/pnas.1109363108
https://doi.org/10.18632/oncotarget.14867
https://doi.org/10.3390/biom10020255
https://doi.org/10.4161/cam.18953
https://doi.org/10.3389/fcell.2021.808208
https://doi.org/10.1038/sj.leu.2404624
https://doi.org/10.1186/s12890-017-0542-z


Appl. Sci. 2023, 13, 10919 16 of 16

52. Yamaguchi, T.; Hosono, Y.; Yanagisawa, K.; Takahashi, T. NKX2-1/TTF-1: An enigmatic oncogene that functions as a double-edged
sword for cancer cell survival and progression. Cancer Cell 2013, 23, 718–723. [CrossRef]

53. The Cancer Genome Atlas (TCGA) Research Network. Comprehensive molecular characterization of human colon and rectal
cancer. Nature 2012, 487, 330–337. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ccr.2013.04.002
https://doi.org/10.1038/nature11252

	Introduction 
	Materials and Methods 
	Proposed Approach 
	Performance Score 
	Results and Discussion 
	Analysis of the Protein-Protein Association Network 
	Conclusions 
	References

