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Abstract: Due to the rapid development of the mobile Internet and the Internet of Things, the
volume of generated data keeps growing. The topic of data quality has gained increasing attention
recently. Numerous studies have explored various data quality (DQ) problems across several fields,
with corresponding effective data-cleaning strategies being researched. This paper begins with
a comprehensive and systematic review of studies related to DQ. On the one hand, we classify
these DQ-related studies into six types: redundant data, missing data, noisy data, erroneous data,
conflicting data, and sparse data. On the other hand, we discuss the corresponding data-cleaning
strategies for each DQ type. Secondly, we examine DQ issues and potential solutions for a public
bus transportation system, utilizing a real-world traffic big data platform. Finally, we provide
two representative examples, noise filtering and filling missing values, to demonstrate the DQ
improvement practice. The experimental results show that: (1) The GPS noise filtering solution we
proposed surpasses the baseline and achieves an accuracy of 97%; (2) The multi-source data fusion
method can achieve a 100% missing repair rate (MRR) for bus arrival and departure. The average
relative error (ARE) of bus arrival and departure times at stations is less than 1%, and the correlation
coefficient (R) is also close to 1. Our research can offer guidance and lessons for enhancing data
governance and quality improvement in the bus transportation system.

Keywords: data quality; dirty data; data cleaning; bus transportation system

1. Introduction

In the era of big data, all data-driven applications depend on data quality (DQ). High-
quality data can accurately reflect the true facts and effectively support decision making.
Low-quality data, on the other hand, negatively impacts the accuracy of data analysis and
mining, leading to incorrect decisions [1]. According to an IBM report, the total annual
loss caused by DQ problems in the USA exceeds USD 3 trillion [2]. According to a report
from Gartner, poor quality datasets cost organizations an average of USD 15 million per
year [3]. Therefore, data cleaning to improve data quality is critical. It is a prerequisite for
downstream data mining and analytics tasks.

Data cleaning is the foundation for downstream applications and is one of the most
important stages of the data lifecycle. According to research, data scientists and analysts
spend more than 80% of the time cost on data cleaning in their data analysis projects [4].
With the development of big data technology and industrial digitalization, the topics of
DQ have attracted more and more attention. Numerous studies have been done on data
cleaning and quality improvement across various fields. However, these studies tend to
focus on a specific DQ problem and the corresponding cleaning strategy. Few researchers
have systematically examined DQ issues in a comprehensive manner.

With the development of modern public transportation systems, various sensors such as
card readers, GPS positioning devices, cameras and electronic probes have been deployed on
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public buses running on the urban road network. The datasets generated by the public transit
system include information such as bus routes and stations, vehicle GPS trajectories, card swipe
records, and vehicle schedules. A number of DQ problems arise in the data generation and
transmission stages, which have a negative impact on downstream applications.

In bus transportation systems, certain applications, such as travel time estimation and
traffic flow prediction, require high-quality input data [5]. For instance, in travel time estimation
applications, it is necessary to initially calculate the speeds of road segments within the route.
During this process, it is essential to assess how many vehicles are currently running within
a specific road segment and determine the instantaneous speed of each vehicle using GPS
trajectories. However, many GPS points generated by vehicles deviate from their actual positions
on the digital map. Obtaining accurate speed information for a road segment directly from
these raw GPS points can be challenging. Therefore, we must correct these raw GPS points to
align with the road network and calculate the segment speed using the matched GPS points.

Our present research is a component of an application-driven project for a major Chi-
nese city. The operators of the public bus transportation are designing smart applications to
refine the scheduling tactics of the bus transportation system, enhance service quality, and
decrease operating expenses. The information technology infrastructure is the foundation
that supports the bus transportation system. Over the past decades, many application
systems and sensor networks have been developed and deployed for various operational
and management purposes, including GPS devices, smart card readers, and their associated
data collection systems. However, these application systems were developed by different
providers with different technological architectures. Therefore, all systems operate indepen-
dently and do not interact with one another. Despite each system collecting a substantial
amount of datasets, their values have not been fully explored.

Currently, although a few isolated data-driven applications have been developed
in the bus transportation system, each of them independently addressed its own data
quality issues. Furthermore, most of them did not provide details about the corresponding
data-cleaning solutions for readers. Thus, it is imperative to comprehensively examine DQ
issues and propose an integrated solution that addresses various data quality challenges.

To address this issue, this paper conducts a quantitative analysis of literature published
in recent years [6], to study DQ and governance problems. The data sources include five
public databases: China National Knowledge Internet (CNKI), Web of Science (WOS),
IEEE Xplore (IEEE), Association for Computing Machinery (ACM), and Springer-Verlag
(Springer). Through a comprehensive and systematic exploration, we first classify these
articles into six categories based on the research problems they addressed. Secondly, we
systematically investigate data quality issues on a real-world big data platform within the
context of a public bus transportation system, and present the corresponding solutions.
Finally, two typical DQ problems are used as case studies to introduce DQ improvement
methods and to evaluate their effects. All methods are implemented in Spark, a large-scale
data processing engine, to handle datasets comprising hundreds of gigabytes.

In summary, the contributions of this paper can be outlined as follows:

(1) We conducted a comprehensive quantitative analysis of DQ-related literature pub-
lished in recent years, comprising a total of 26,160 publications sourced from five
renowned databases. Subsequently, we categorized the emerging DQ issues from
this literature into six distinct categories: redundant data, missing data, noisy data,
erroneous data, conflicting data, and sparse data.

(2) We systematically examined DQ problems in the bus transportation system based
on the aforementioned categories. Subsequently, we provided the corresponding
data cleaning methods for each category. Finally, we presented two representative
examples: noise filtering and filling missing values, to illustrate the practical DQ
improvement process. The first example is designed for raw GPS trajectories, while
the second is intended for bus arrival and departure information.

(3) We validated these two approaches utilizing a real-world big data platform. Exper-
imental results demonstrate that: (1) The GPS noise filtering solution we proposed
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surpassed the baseline and achieved an accuracy of 97%; (2) The multi-source data
fusion method can achieve a 100% missing repair rate (MRR) for bus arrival and
departure, and the average relative error (ARE) of bus arrival and departure times at
stations was less than 1%; the correlation coefficient (R) was also close to 1.

(4) We designed and implemented a pipeline-based solution on the Spark platform
that automatically conducts preprocessing and data quality cleaning algorithms.
Participants can customize their own algorithms based on this solution to enhance
data quality for large-scale datasets.

2. Related Work

In our investigation of DQ-related research, we used Web of Science (WOS), IEEE
Xplore (IEEE), the Association for Computing Machinery (ACM), Springer-Verlag (Springer),
and China National Knowledge Internet (CNKI) as the data sources. On one hand, WOS,
IEE, ACM, and Springer are four mainstream academic databases used worldwide, where
most valuable research papers written in English are collected. On the other hand, CNKI
is a widely used academic database in China, where the most valuable research papers
written in Chinese are archived. Considering that our research datasets were collected
from a major Chinese city, we also chose CNKI as a data source. In the search procedure,
we employed the search terms “data quality” and “data cleaning”, and specified the time
range of 2000–2022 to retrieve literature from each database (retrieval date: 7 April 2023).
After filtering literature that was clearly inconsistent with our research topic, a total of
26,160 papers were obtained as the original papers for this study.

Figure 1 shows the distribution of the related literature from 2000 to 2022. We can
clearly see that research on the topic of data quality has experienced explosive growth in
recent years. It can be seen that there were relatively few academic studies on data quality
in the 2000s, with a total of 134 published papers. A total of 756 papers was published in
2011, while a total of 3552 papers was published in 2022. This indicates that data quality
has attracted extensive attention from both domestic and international scholars.
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For example, in ref. [7], the authors propose an intelligent preprocessing method for
textual data that cleans data containing missing values, grammatical errors, and spelling
mistakes. Similarly, ref. [8] explores the impact of noise issues such as misspellings and
missing data on the task of detecting different records that refer to the same entity. In the
smart grid domain, ref. [9] explores related applications and classifies dirty data into three
categories: duplicate data, anomalous data, and incomplete data. Ref. [10] investigates DQ
issues such as outliers, incomplete data, duplicate data, and conflicts and develops a tool
called Cleanix, which is a prototype system used to clean up these issues. In addition, ref. [1]
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summarizes data-cleaning techniques and defines four types of DQ problems: missing
data, redundant data, data conflicts, and erroneous data. Ref. [11] describes DQ issues such
as inconsistency, noise, incomplete, or duplicate values in real-world data.

DQ problems in the public bus transportation system have also been addressed. For
example, ref. [12] divided the scope of research on intelligent traffic prediction into four
parts: spatiotemporal data, pre-processing, traffic prediction, and traffic applications, where
problems such as data anomalies and missing data were analyzed in the data pre-processing
stage. Ref. [13] examined issues with data sparsity in bus data, including inconsistencies
between operators, GPS location errors, and sporadic GPS sampling. In a similar vein,
ref. [14] categorized bus anomalous data into four groups based on the characteristics of
bus big data: redundant data, range anomalous data, abnormal data, and missing data.
Finally, ref. [15] analyzed four types of DQ problems, namely noisy data, missing values,
inconsistency, and redundant data, in taxi track data.

3. Data Quality Taxonomy

In our investigation of DQ-related research, we identified two issues among the
existing DQ categories. The first issue is that the same specific data quality problem is
assigned two or even several different names. The second issue is that the same specific
data quality problem is classified into different categories. We aim to address these two
minor issues within our proposed strategies.

Based on 26,160 papers obtained from five databases, we performed a comprehensive
statistical analysis of the types of DQ problems found in the literature and classified them
into six categories: redundant data, missing data, noisy data, erroneous data, conflicting
data, and sparse data. These six categories encompass a range of DQ problems that may be
present in a dataset and serve as crucial guides for subsequent data quality improvements
for downstream applications.

Table 1 provides specific definitions for each category of data quality issues, along with
the types of DQ problems identified in the literature and their corresponding references.
This classification offers a framework for a thorough and detailed understanding of data
quality issues, thereby enabling us to address them more effectively. All the data quality
issues mentioned in the cited papers and their studies can be found in Table 1, and all of
them can be mapped to the categories we have defined.

Table 1. Summarizing and defining data quality issues.

No. Dirty Data Category Definition Statistics on Dirty Data Types in Literature Literature

1 Redundant data
Data in which the same content
appears repeatedly, or there are

similar duplicate records.

Duplicate data; duplicate records; duplicate
values; duplicate data instances; duplicate
data attributes; similar duplicate records

[1,9–11,14–20]

2 Missing data Missing data in database tables;
incomplete data collected.

Incomplete data; missing data; missing values;
null values [1,7–12,14,15,21–28]

3 Noisy data Attribute domain error; refers to
data with large deviation.

Incorrect data; anomalous data; range
anomalies; inaccurate data; illogical data;
invalid data (data taking default values);

irrelevant data; noisy data; outliers

[9–15,23]

4 Erroneous data Format-related errors, including
misspelled attribute values.

Incorrect data; incorrect attributes; incorrect
input; spelling errors; incorrect words;
incorrect units; incorrect date format

[1,7,8,17,29]

5 Conflicting data
Inconsistent field identification in
stored data fields, syntactically or
semantically heterogeneous data.

Data inconsistencies; conflicting data;
conflicting information; structural errors;
conflicting data structures from multiple
sources; conflicting naming of data from

multiple sources; value-field mismatch; single
field holding multiple types of values

[1,10,11,13,15–17,30–32]

6 Sparse data

The data collected are not evenly
distributed in the temporal or
spatial dimension, making the

data appear discontinuous
and incomplete.

Uneven data distribution; discontinuous data;
sparse trajectories [13,33–36]
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In fact, several pieces of literature have already proposed different categorization
strategies for DQ problems. We identified two primary challenges during our investigation
process. The aforementioned issues are common in current solutions. Firstly, we observed
that the same specific data quality issue was assigned different names in different papers in
the literature. For instance, as shown in the fourth category in Table 1, some studies describe
data errors as “incorrect data”, others as “incorrect attributes”, and yet others use terms like
“incorrect input”, “spelling errors”, “incorrect words”, “incorrect units”, “incorrect date
format”, etc. These all describe formatting-type errors, but there is no uniform terminology.

Secondly, we also found that the same specific data quality issue was classified into
different categories in different studies. For example, some scholars define data anomalies
as a type of data error, i.e., data errors contain attribute domain errors and formatting
errors. However, most of the papers discuss range anomalies and noisy data separately.
Therefore, we further defined attribute domain-related noisy data as data anomalies and
format-related dirty data as data errors. Additionally, we noted that there is a significant
amount of literature that analyzes inconsistent data in detail. Given that the essence of it is
that the stored data are inconsistent with the field identifiers, we categorized this type of
dirty data as data conflicts.

In summary, we investigated the data quality issues already present in the literature and
reclassified them into new categories. This will facilitate classifying data quality issues into
appropriate categories and will be more conducive to subsequent data-cleansing efforts.

4. Data-Cleaning Methods

This study focuses on DQ problems in a real-world big data platform for a city
public bus transportation system in China. The corresponding dataset was collected from
July 2021 to February 2022. The size of the dataset is 364.6 GB, and the record number of
the dataset is 544.48 million. Details about this dataset are listed in Table 2, in which the
second column is the table name, the third column is the number of attributes, and the
fourth is the description for each data table. In this paper, we will systematically discuss
the DQ problems related to the aforementioned six DQ categories. Firstly, we introduce
redundant data, conflicting and erroneous data, and the corresponding data-cleaning
methods. Secondly, we describe noisy data in GPS trajectories and propose a solution for
noise filtering. Thirdly, we illuminate missing values in the spatiotemporal information of
bus arrivals and departures and propose a solution to repair these missing values. We then
introduce the pipeline and workflow of noise filtering and map matching in Spark.

Table 2. Data table information for a domestic city bus dataset.

No. Table Name # of Attributes Description

1 QR_code 15 QR code table
2 Swipe 15 Swipe card table
3 IAO_station 15 Inbound and outbound information table
4 Bluetooth 38 Bluetooth table
5 GPS 13 GPS table
6 Wi-Fi 38 Wi-Fi table
7 Bus_first 28 Vehicle Table 1
8 Bus_second 9 Vehicle Table 2
9 Route 12 Route table

10 Station 12 Station table
11 Route_station 17 Route station table
12 Install_register 25 Vehicle registration table

4.1. Cleaning Methods for Redundant, Conflicting, and Erroneous Data

There are many participants in a distributed data collection system. These include
the terminal, the message middleware, and the backend storage system. Redundant data
are caused by network instability and limitations of the data transmission protocol among
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different participants. For example, a terminal may submit a record to the backend mul-
tiple times as the connection is lost and the storage system does not have the ability to
detect duplicate data. This ultimately results in the creation of duplicate records within
the data-storage system. Several cleaning strategies have been proposed to address this
problem. These representative solutions include buffering methods [14], entity recogni-
tion methods [16], sorting methods [37], redundant data models/frameworks [38], machine
learning [39], and other methods. In this paper, we implement redundant data cleaning on
Apache Spark for “QR_code”, “Swipe”, “IAO_station”, “Bluetooth”, “GPS”, and “Wi-Fi” tables.

Conflicting data include DQ issues such as value–field mismatches, a single field
containing multiple value types, structural errors, and inconsistent naming of data from
multiple data sources. This paper addresses two conflicting data issues: naming conflicts
in the “Bus_first”, “Bus_second”, and “Install_register” tables for multi-source data, and
inconsistent data in the “Route” and “Install_register” tables, and uses data standardization
methods to resolve data conflicts.

Erroneous data include spelling errors in attribute values and other related format-
ting errors such as misspellings, typos, inconsistent units, inconsistent date formats, and
inconsistent value formats. In this paper, we use a customized date conversion function to
convert inconsistent date formats in dynamic and static data tables to a standard format,
thus completing the cleaning process for erroneous data.

4.2. Cleaning Method for Noisy Data

In GPS trajectory data, anomalous data are referred to as outliers or noisy points.
These data usually present scattered, irregular characteristics and are difficult to detect
in large volumes of trajectory data. Noise data may place a significant negative impact
on trajectory data mining applications. To improve the accuracy of data analysis, these
anomalous points in GPS trajectory data need to be cleaned. Generally, GPS anomalous
points can be classified into the following two categories:

(1) Range anomalies: The longitude or latitude of a GPS point outside the specified range,
i.e., longitude range between 0 and 180◦ and latitude range between 0 and 90◦. Note
that these GPS points outside this area are also considered as anomalous outliers.

(2) Jump anomalies: Both the longitude and latitude of a GPS point are within the normal
range, but there is an extreme distance between a given point and its consecutive
points. It means that the GPS point deviates significantly from the original trajectory,
resulting in “Jump points” in the trajectory.

To solve the above problem, this paper proposes a solution, which combines the heuristic-
based GPS anomaly filtering and Fast Map Matching (FMM) [40] framework for correcting
anomalous points in GPS trajectories. Key steps are as follows: Firstly, it applies a heuristic-
based GPS anomaly filtering algorithm to the raw GPS trajectory dataset to remove all range
anomalies and the obvious jump anomalies. Then, it takes the filtered dataset as input for
the FMM algorithm, which incorporates Hidden Markov Models and pre-computation, to
correct jump anomalies. This solution not only effectively removes the noises from the raw
GPS trajectory dataset but also further improves GPS positioning accuracy.

In the first step, Algorithm 1 is performed to conduct heuristic GPS anomaly filtering.
The core idea of this algorithm is to calculate the distance and time difference between two
adjacent points, to calculate the instantaneous speed of a bus, and to determine whether it
is an anomalous point by a pre-defined speed threshold. During the detection process, we
keep and store these weights of the anomalous points. Finally, the anomalies with high
weight values are removed from the raw GPS trajectory dataset and the filtered GPS dataset
is returned.
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Algorithm 1. Heuristic-based GPS anomaly filtering algorithm.

Input: An original GPS trajectory: rawTR,/* each point is a tuple like (numberPlate, timestamp,
longitude, latitude)*/Instantaneous speed threshold: threshold.
Output: The result after removal of abnormal data: filteredTR.
1 Initialize an empty list: filteredTR
2 for i = 0; i < rawTR.len; i + + do
3 distance = calculateDistance(rawTR [i], rawTR [i + 1])
4 /* calculateDistance() to calculate the distance between two GPS points */
5 time = rawTR [i + 1].timestamp–rawTR [i].timestamp
6 speed = distance/time /* For calculating instantaneous speed */
7 if speed < threshold then
8 rawTR [i + 1].set_weight(rawTR [i + 1].get_weight() + 1)
9 /* If the instantaneous speed is greater than the threshold, add 1 to its weight */
10 rawTR [i + 1].set_is_outlier(true)
11 Else
12 filteredTR.append(rawTR [i])
13 end if
14 end for
15 filteredTR.append(rawTR[last])
16 return filteredTR

In the second step, the FMM (as Algorithm 2 described) matches each trajectory of the
filtered GPS dataset to the road network. The FMM algorithm takes a GPS trajectory and the
road network as inputs, and outputs a matched GPS trajectory. In detail, it consists of two
stages: precomputation and map matching. In the initial stage, the framework precomputes
all pairs of shortest paths in the road network below a certain threshold and substitutes
these repetitive queries in map matching using a hash table. This hash table is called
an Upper Bound Origin Destination Table (UBODT). In the second stage, the framework
integrates the Hidden Markov Model (HMM) with precomputation to deduce vehicle
paths, taking into account GPS positioning errors and topological constraints. This stage
consists of four sub-steps: candidate search (CS), optimal path inference (OPI), complete
path construction (CPC), and geometric construction (GC).

Algorithm 2. The fast map matching algorithm.

Input: The original GPS trajectory: rawTR; The road network: network < V, E >; An upper bound
origin destination table: ubodt.
Output: A matched path: matchedPath.
1 HashMap < point,segment> psegKV = null/* save point and candidate segment */
2 RTree rtree = buildRTree(network)
3 for i = 0; i < rawTR.len; i + + do
4 Point = rawTR[i]
5 proPoint = getProjectPoint(Point,rtree)
6 canSegments = getCandidateSegments(proPoint,rtree)
7 psegKV.put(proPoint,canSegments)
8 end for
9 transitGraph = constructTransitGraph(rawTR,psegKV,rtree)
10 optimalPath = pathInference(transitGraph,ubodt)
11 return optimalPath

The CS step searches the corresponding candidate edges for each point in the trajectory.
Based on the HMM model, the OPI step firstly constructs a transition graph of candidate
trajectories, and queries the SP (shortest path pair) distance among candidate trajectories.
Then, it derives the optimal path of the trajectory. In the CPC step, the SPs of continuous
candidate paths in the optimal path will be connected to construct a complete path. The
GC step constructs corresponding geometry. Finally, after the above processes, the original
GPS trajectory can be corrected onto the road network of the digital map.
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In this paper, the accuracy rate is used as a metric to evaluate the algorithm. It is the
ratio of the number of successfully matched GPS points to the total number of GPS points.
For a given matched GPS point, it must satisfy the following conditions: (a) The GPS point
should be located on the road network or very close to the road section; (b) The matched
road segments are attached to an actual driving route; (c) The matching error is less than a
predefined threshold.

4.3. Cleaning Method for Missing Data

In this section, we introduce missing values in the spatiotemporal information of bus
arrivals and departures and then propose a corresponding solution. In this city, each bus
has been equipped with a GPS device, which continuously reports its position information
to the backend via the mobile internet. When a bus is entering a station, the driver manually
reports a message by pressing a button attached to the GPS device. Ideally, it will produce
a full ordered sequence for each bus trip, and each element in this sequence contains
information about when a bus enters a station and where the station is located, and other
information such as “numberPlate”, “routeCode”, and “stopCode”. However, on occasion,
some drivers may forget to press the button when the bus arrives at a station, leading to
data gaps in the corresponding table.

We propose a solution based on multi-source data fusion to repair the missing data
to complete the information on bus arrival and departure. The detailed steps are as
follows. Firstly, we check the continuity of “stopCode” by the “Route_station” table to
determine whether there are missing data on the information of entering a station. Secondly,
missing spatiotemporal information is filled with information “stopCode”, “routeCode”,
and “direction”, and then filled with “stationName”, “longitude”, and “latitude” according
to information from the “Route_station” table. Finally, we repair the entry “timestamp” in
conjunction with each bus’s corresponding GPS trajectory.

In this dataset, the “GPS” table includes eight fields: “numberPlate”, “timestamp”,
“longitude”, “latitude”, “runningStatus”, “vehicleCode”, “speed”, and “direction”, respec-
tively. In the previous steps, we have already successfully repaired the information about
“longitude” and “latitude”. In this step, we will find the timestamp Trepair

k,in , at which the

bus enters the station Sk and the time Trepair
k,out , at which the bus leaves the station Sk. The

method is to measure two different spatiotemporal points: one is the location of a station
denoted by a GPS point, and the other is a location listed in the “IAO_station” table. If
the distance between these two points is less than the threshold dt, then we can fill the
temporal information about the bus’s arrival and departure. The implementation principle
is shown in Figure 2:
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Figure 2. Schematic diagram of bus arrival and departure time recovery.

We choose two metrics from ref. [39] to evaluate our algorithm.

(1) The Missing Repair Rate (MRR) is a metric to measure the repairing accuracy of the
spatial information, which includes ”routeCode”, “stopCode”, “direction”, “station
Name”, “longitude”, and “latitude”. MRR is defined by Formulas (1) and (2):



Appl. Sci. 2023, 13, 11020 9 of 19

MRR =
1
N ∑N

k=1 δ
(

xk,original ,xk,repair

)
× 100% (1)

δ
(

xk,original ,xk,repair

)
=

{
1, xk,original=xk,repair
0, xk,original 6= xk,repair

(2)

In Formulas (1) and (2), xk,original represents the true value of the missing information
of station Sk and xk,repair is the corresponding repaired value. Note that the value in this

context is a set of aforementioned fields about spatial information. δ
(

xk,original , xk,repair

)
is a Boolean function that is used to compare two different variables. If two variables are
equal, the function returns 1; otherwise, the function returns 0. We take each combination
of the original and repair values as a sample. N is the number of samples. The steps of
calculating MRR are as follows. Firstly, the algorithm applies the Boolean function to each
sample and collects the return value. Secondly, it sums all the returned values. Finally, it
calculates the average by the sum and the number of samples.

(2) The Average Relative Error (ARE) is a metric to measure the repairing accuracy of time
dimension. The value of this metric is between 0 and 1. The smaller the value, the closer
the repaired value is to the actual value. For example, a value of 0 means the repaired
timestamp is equal to the original timestamp. ARE is given in Formula (3):

ARE =
∑N

k=1

∣∣∣ Trepair
k − Toriginal

k

∣∣∣
∑N

k=1 Toriginal
k

(3)

where Toriginal
k is the actual arrival or departure timestamp at station Sk, and Trepair

k is the
corresponding repaired timestamp of the missing data. Note that the time is converted to
seconds relative to a reference time of “00:00:00”.

(3) The correlation coefficient (R) is a metric to measure the relationship between a
sequence of the repaired values and a sequence of the original values. The value of
R is between 0 and 1, and the repairing accuracy is not affected by the number of
missing stations if R is equal to 1. R is defined by Formulas (4)–(6):

R =
∑N

k=1

(
Trepair

k − Trepair
)(

Toriginal
k − Toriginal

)
√

∑N
k=1

(
Trepair

k − Trepair
)2
√

∑N
k=1

(
Toriginal

k − Toriginal
)2

(4)

Trepair =
1
N

N

∑
k=1

Trepair
k (5)

Toriginal =
1
N

N

∑
k=1

Toriginal
k (6)

Similarly, where Toriginal
k is the actual arrival or departure timestamp at station Sk, and

Trepair
k is the timestamp that was repaired for the missing data of station Sk.

4.4. Parallel Implementation Based on RDD

Figure 3 depicts workflow of noise filtering and map matching for a large-scale GPS
trajectory dataset. The input dataset is GPS positioning records stored in HDFS. A dotted box
stands for an RDD, and a gray square represents a partition. An arrow denotes the dependency
among different RDDs. All of these RDDs form a pipeline to implement noise filtering and
map matching for the GPS trajectory dataset. The left side lists the operators being applied to
different RDDs, and the right side shows the corresponding RDDs and data structures within
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them. At each stage in this pipeline, it takes an RDD as input and generates a new RDD by
applying an operator to the input RDD. The primary steps are as follows:
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Step 1: GPS records input. It loads the GPS record dataset from HDFS into memory
and initializes the first RDD. Each element within the RDD represents a GPS record with a
set of associated fields.

Step 2: Data extraction. It extracts a set of fields from the original GPS record, including
vehicle identity, timestamp, latitude, and longitude. Each element represents a single GPS point.

Step 3: Trajectory generation. It employs the GroupBy operator on the RDD generated
in Step 2. Specifically, this operator groups and aggregates trajectory points based on
their vehicle identities; it then sorts all points within each group by time and generates a
complete trajectory for each vehicle.

Step 4: Data partition. It utilizes the rePartition operator and a User-Defined Function
UDF) partitioner on the RDD generated in Step 3, resulting in a new RDD with a varying
number of partitions. This data partitioning aims to alleviate data skew among different
partitions and enhance the parallelized tasks in subsequent stages. In the newly generated
RDD, each element represents a trajectory segment rather than a complete trajectory.

Step 5: Noise filtering. It employs the MapValues and a UDF operator on the RDD
generated in Step 4. This UDF implemented a heuristic noise-filtering method (Algorithm 1)
to generate filtered trajectory segments.

Step 6: Map matching. It employs the MapValues and a UDF operator on the RDD
generated in Step 5. This UDF implements the FMM algorithm (Algorithm 2) to conduct
map matching, in which it takes a filtered trajectory segment as input and outputs a
matched trajectory segment.

Step 7: Trajectory rebuild. It employs the GroupBy operator on the RDD generated
in Step 6. Specifically, this operator groups and aggregates the trajectory segments based
on their vehicle identities, sorts all segments by time, merges these sorted segments, and
ultimately generates a complete matched trajectory for each vehicle.

Step 8: Matched trajectory output. It saves the RDD generated in Step 7 to HDFS.
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Note that it is worth to further discuss the data partitioning technique used in Step 4.
The re-partitioning process consists of the following steps: Firstly, the algorithm divides
the geographical space into a set of uniform grids. Subsequently, it carries out a spatial
intersection between each trajectory in the original RDD and the aforementioned uniform
grids. During this process, a complete trajectory might be divided into distinct trajectory
segments, with each segment being assigned a unique grid identity. Thirdly, it organizes all
segments into separate partitions based on their grid identities, resulting in the creation of
the second RDD. Within this RDD, every partition contains all trajectory segments assigned
to the same grid.

5. Experimental Setup
5.1. Experimental Environment

All experiments in this paper were performed on an 8-node Spark cluster, with each
node equipped with the same hardware and software. The specific hardware configuration
information is: 16-core Intel (R) Xeon (R) Silver 4110 CPU @ 2.10 GHz CPU, the memory is
16 GB, the hard disk is 2 TB, and CentOS 7.6 is the node operating system. The software
configurations used in the experiments are Hadoop-3.2.0, Spark-3.2.0, Scala-2.12.12, JDK
1.8.0_181, and SBT-1.2.7.

5.2. Experimental Data

This study uses a real-world traffic dataset from a public bus transportation system
in a Chinese city. The dataset was collected from July 2021 to February 2022. The dataset
is 344.4 GB in size and contains a total of 544.48 million records. It contains 12 differ-
ent tables covering route stops, vehicle scheduling, and GPS-related information for the
bus transportation system. In addition, the specific table information is as follows: The
“QR_code” table is 0.3 GB in size and contains 622,900 records; the “Swipe” table is 1.3 GB
in size and contains 3,197,700 records; the “IAO_station” table is 4.1 GB in size and contains
10.62 million records; the “Bluetooth” table is 53.9 GB in size and contains 77.84 million
records; the “GPS” table is 70.7 GB in size and contains 187.99 million records; and the
“Wi-Fi” table is 214.1 GB in size and contains 264.0452 million records. In addition, the
basic-static table is 19.82 MB in size and contains 157,100 records.

6. Experimental Results and Analysis

In this section, we first provide an overview of data quality issues across 12 different
tables gathered within a real-world urban traffic big data platform. We secondly intro-
duce our methods for cleaning redundant, conflicting, and erroneous data. Finally, we
present solutions for filtering GPS noisy data and cleaning missing data. All methods are
implemented in Spark, a large-scale data-processing engine, to handle datasets comprising
hundreds of gigabytes.

Figure 4 illustrates an overview of data quality issues across 12 different tables collected
from a real-world urban traffic big data platform. This figure enumerates data quality
issues, identifies the associated tables, and presents representative examples of data quality
problems. The data quality issues encompass redundant data, conflicting data, erroneous
data, noisy data, and missing data. As an example, we will use the “Install_register” table
and the “install_time” field to illustrate a data quality issue. “install_time” is a timestamp
that records information about when the operator deployed the data collection terminal on
a bus. As we can clearly see from this figure, there are seven different time formats for the
same value. On 16 November 2021, a group of construction workers installed numerous
data collectors on various public buses. When entering data records into the database
tables, seven different time formats were used. Specifically, three of them did not include
information about the year. Various characters were used to separate the year, month, and
day in the data. We can conclude that a flaw existed in the table design, as it lacked input
content format checks, enabling unrestricted user data input.
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6.1. Results of Cleaning Redundant, Conflicting, and Erroneous Data
6.1.1. Results of Cleaning Redundant Data

According to the statistics, it can be seen that there are some redundant data in the
“QR_code”, “Swipe”, “IAO_station”, “Bluetooth”, “GPS”, and “Wi-Fi” tables. Among
them, the “Bluetooth” table has the highest redundancy rate. Specifically, the number
of redundant records is 2.98 million, which accounts for 3.8% of the total records. The
“QR_code” table has the second highest redundancy rate with a value of 2.8%, which
contains 20,828 redundant records. The “Swipe” table has the lowest redundancy rate with
a value of 0.17%, which contains 5413 duplicate records. We used the method described
in Section 2 to clean the redundant data. The method firstly utilizes Spark to load the raw
dataset from HDFS into the memory and transforms it as a dataframe(RDD) for subsequent
processing. It then calls the distinct() function to remove the redundant records from the
dataframe, creating a filtered dataframe. Finally, it saves the filtered dataframe to HDFS.

6.1.2. Results of Cleaning Conflicting Data

In the field of bus transportation systems, the types of conflicting data are twofold:
multi-source data naming conflicts and data inconsistency. The first type refers to the
fact that a particular attribute is contained in different tables, but each table has a unique
attribute name for that attribute. We used the rule-based approach [41] to identify the
relevant data conflict issues. For example, the license plate number has three different
attribute names in different tables. The corresponding attribute name in “Bus_first” is called
“numberPlate”, in “Bus_second” it is represented by “plateNo”, and in the “Install_register”
it is represented by “carNum”. Data inconsistency means that the same entity is named
differently in different tables. For instance, consider an entity connected to a specific bus
line that requires a unique identifier. In the “Route table”, it is marked as “Business Line 2,”
while in the “Install_register” table, it is labeled as “Business 2”. Similarly, “Fan 186 Road”
in the “Route” table corresponds to “Fan 186 Line” in the “Install_register” table, and so on.

To address the first issue, this paper uses the data standardization method described in
Section 2, which takes “numberPlate” as the unique attribute name for the number plate in
all related tables. Furthermore, to address the second issue, this paper provides a catalog of
distinct representations of identical entities. By cross-referencing the descriptions of these
entities across various tables, it aims to standardize the entity identifiers originating from
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different sources, ensuring uniformity in format and content. Consequently, this approach
safeguards data consistency and facilitates the creation of a conflict-free dataset.

6.1.3. Results of Cleaning Erroneous Data

In the scenario of a bus transportation system, erroneous data are mainly reflected in
irregular date formats. This problem is common in several different tables. The date format in
the dynamic table contains only two types, while the date format in the static table is diversified.
Specifically, there are several different date formats in the static data tables, including timestamp
format, pseudo-standard format data “MM/dd/yyyy HH:mm:ss.ms”, and multi-type format
data such as “yyyy.MM.dd”, “yyyy/MM/dd”, “MM.dd”, and “MM-dd”, and so on.

To solve the date format problem, we implemented a User-Defined Function (UDF) to
convert all dates into a standard format of “yyyy-MM-dd HH:mm:ss”. Data standardization
can not only reduce errors and complete the cleaning of data errors, but also help to make data
management easier and more effective. It is also very important to improve data quality.

6.2. Results of Cleaning Noisy Data

Based on data exploration, we found a large number of anomalies in the GPS trajectory
dataset. We selected a trajectory, produced by bus “A000**” on 1 January 2022, to illustrate
anomalies and normal GPS points. Note that we replaced part of the true bus number
with “**” for privacy reasons. Figure 5 represents a trajectory comprising a sequence of
GPS points in order. Upon observing the figure, it becomes evident that numerous range
anomalies exist among these points, as exemplified by the rectangular boxes, and there
are instances of jump anomalies, illustrated within the oval. This observation signifies the
presence of substantial noisy data points within the GPS trajectory dataset. Consequently,
the upcoming focus is on designing an effective data-cleaning strategy to eliminate the
noise within the GPS trajectory data.
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Figure 5. Noisy data sample.

In this subsection, we employ 17.01 million GPS records generated by 132 different
buses over the course of one month (January 2022, with 31 days) as input for the data
noise-cleaning process. Each record includes a series of fields, such as “numberPlate”,
“timestamp”, “longitude”, and “latitude”. Applying Algorithm 1 detected 834,393 abnor-
mal data points, constituting 4.9% of the total data points. Subsequently, we transformed
these GPS records into trajectories corresponding to each bus trip, yielding a total of
253,797 GPS trajectories. Additionally, the urban road network data comprises 65,882 nodes
and 147,472 directed edges. To compare the effects before and after noise removal, we
visualized both the original GPS trajectory and the trajectory after noise removal. Figure 6
shows the original GPS trajectory, revealing that GPS points are scattered around the road,
with some not aligning precisely with the road segments.
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Figure 6. The original GPS points.

Figure 7 displays a section of the trajectory after map matching. The left side visualizes
trajectory 1, while the right side visualizes trajectory 2. In the figure, the orange circles represent
the trajectory before matching, whereas the blue circles represent the trajectory after matching.
As depicted, the map matching process has successfully aligned the GPS trajectory.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21 
 

“timestamp”, “longitude”, and “latitude”. Applying Algorithm 1 detected 834,393 abnor-

mal data points, constituting 4.9% of the total data points. Subsequently, we transformed 

these GPS records into trajectories corresponding to each bus trip, yielding a total of 

253,797 GPS trajectories. Additionally, the urban road network data comprises 65,882 

nodes and 147,472 directed edges. To compare the effects before and after noise removal, 

we visualized both the original GPS trajectory and the trajectory after noise removal. Figure 6 

shows the original GPS trajectory, revealing that GPS points are scattered around the road, 

with some not aligning precisely with the road segments. 

 

Figure 6. The original GPS points. 

Figure 7 displays a section of the trajectory after map matching. The left side visual-

izes trajectory 1, while the right side visualizes trajectory 2. In the figure, the orange circles 

represent the trajectory before matching, whereas the blue circles represent the trajectory 

after matching. As depicted, the map matching process has successfully aligned the GPS 

trajectory. 

  

(a) (b) 

Figure 7. The original GPS trajectory (orange points) and the matched GPS trajectory (blue points). 

(a) Example trajectory 1; (b) Example trajectory 2. 

In this section, we performed noise elimination on the GPS trajectory dataset using a 

combination of heuristic-based anomaly filtering and the FMM algorithm. The experi-

mental results demonstrate that this filtering algorithm significantly enhances the accu-

racy of GPS map matching. The combined cleaning method achieves an accuracy rate of 

97%, a notable improvement compared to using map matching alone. Figure 8 illustrates 

the accuracy comparison between our proposed solution and the default solution. 

Figure 7. The original GPS trajectory (orange points) and the matched GPS trajectory (blue points).
(a) Example trajectory 1; (b) Example trajectory 2.

In this section, we performed noise elimination on the GPS trajectory dataset using a
combination of heuristic-based anomaly filtering and the FMM algorithm. The experimental
results demonstrate that this filtering algorithm significantly enhances the accuracy of GPS
map matching. The combined cleaning method achieves an accuracy rate of 97%, a notable
improvement compared to using map matching alone. Figure 8 illustrates the accuracy
comparison between our proposed solution and the default solution.
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6.3. Results of Cleaning Missing Data

To investigate the distribution of missing data, we employed a data integration operator
that connects various tables, including the “IAO_station”, “Bus_first”, and “Route_station”
tables. This integration results in the creation of a new table, referred to as “table1,”
which encompasses fields such as “numberPlate”, “timestamp”, “routeCode”, “stopCode”,
“direction”, “stationName”, “latitude”, and “longitude”. After sorting the records in the
temporary table based on the “numberPlate” and “timestamp” fields, we derived “table2”,
which contains information about bus arrivals and departures during a given time period.
As the “stopCode” on a fixed line is continuous, it can be used as a criterion to determine
whether the information on bus arrival and departure is missing. This study shows that
there are many gaps in the records on bus arrival and departure stations. As shown in
Figure 9, the x-axis represents different bus lines, the y-axis shows the number of records.
We found that many records were missing from the records about different bus lines. For
instance, Line 1 had 441,986 records in the original data for January 2022. Upon inspecting
the “stopCode” field in “Table 2”, we identified a total of 40,756 missing records, equating
to a missing rate of 8.44%. This highlights a significant amount of missing data in the
“IAO_station” table.
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From Table 3, we can see that there is missing “stopCode” information between
08,360,102 and 08,360,107 for this bus. Considering that bus lines are usually stable, they
can be fixed with static line and station information and dynamic GPS trajectory. The
specific procedure is as follows: First, it checks the continuity of the “stopCode” through
the “Route_station” table to determine whether there are any missing data. Second, for
the missing bus arrival and departure information, it fills in information such as “stop-
Code”, “routeCode”, and “direction”, and then fills in information such as “stationName”,
“longitude”, and “latitude” according to the “Route_station” table. At this point, only
the “timestamp” information for bus arrival and departure has not been imputed. Finally,
combined with the GPS trajectory of the bus, the restoration of the time stamp information
of the bus arrival and departure at a station is completed.

Table 3. An example of missing data for bus arrival and departure stations. Note that part of the true
bus number was replaced with “**” for privacy reasons.

NumberPlate Timestamp RouteCode StopCode Direction StationName Latitude Longitude

A001 ** 1640993736 08360 08360101 2 Station 1 23.066658 113.294601
A001 ** 1640993805 08360 08360101 2 Station 1 23.066658 113.294601
A001 ** 1640994539 08360 08360108 2 Station 8 23.075899 113.307739
A001 ** 1640994567 08360 08360108 2 Station 8 23.075899 113.307739
A001 ** 1640994641 08360 08360109 2 Station 9 23.085596 113.310631
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In order to validate the missing data imputation solution, we randomly selected a set
of samples, each of which has a complete sequence of arrival and departure information for
a particular bus trip. We selected one of them to illuminate how we conducted this solution.
Table 3 describes this sample, the corresponding license plate number is A001**, the route
is 08360, and the time period is from 1 January 2022 07:35:00 to 1 January 2022 08:33:00. The
dataset contains complete arrival and departure information for 28 stations, each with two
separate records for inbound and outbound. Thus, there are a total of 56 data records. First,
the arrival and departure information between (02,07) and (18,23) is randomly removed,
and then we apply the aforementioned multi-source data fusion method to impute this
sample. The results of three evaluation metrics are shown in Table 4, and the details about
these repaired values of the arrival and departure timestamps are shown in Figure 7.

Table 4. Results of cleaning bus arrival and departure time data.

Evaluation Metrics MRR/% ARE/% R

Arrival time 100 0.0690 0.9966
Departure time 100 0.0139 0.9984

Arrival and departure time 100 0.0418 0.9974

From Table 4, it can be seen that for the missing repair ratio of the “routeCode”,
“stopCode”, “direction”, “stationName”, “longitude,” and “latitude” repair, the value of
MRR achieves 100% and R is also close to 1. The ARE values demonstrate a consistent
stabilization below the threshold of 1.0%, which means that most repaired timestamps are
very close to the corresponding original values. The above experimental results illustrate
that the solution we proposed works well in missing data imputation on bus arrival and
departure timestamps. Figure 10 also proves this conclusion.
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As shown in Figure 10, the x-axis represents a set of different stations belonging to
a particular bus route, and the y-axis represents the timeline of the bus trip. The figure
shows that the time difference between arrival and departure bus repairs is very small. The
sum of time differences in arrivals is 241 s on this trip, and the sum of time differences in
departures is 48 s. Among these, 66.67% of the time difference between the original and
the repaired timestamps is less than 10 s, 91.67% of the time difference is less than 30 s,
and 95.83% of the time difference is less than 60 s. In summary, the effectiveness of the
multi-source data fusion cleaning method has been thoroughly demonstrated.



Appl. Sci. 2023, 13, 11020 17 of 19

7. Conclusions and Future Work
7.1. Conclusions

In this paper, we began by examining over 20,000 articles related to data quality from five
renowned databases. Subsequently, we categorized these studies into six distinct categories
based on the specific DQ problems they address. These categories include redundant data,
missing data, noisy data, erroneous data, conflicting data, and sparse data. We further delved
into the corresponding data-cleaning strategies associated with each category.

Second, we utilized a real-world traffic big data platform and dataset to systematically
investigate data quality issues and their corresponding solutions within the realm of
public bus transportation systems. Finally, we provided two representative examples: one
demonstrating GPS noise filtering and the other addressing missing-value cleaning, both
illustrating the effectiveness of our data quality improvement efforts.

The experimental results demonstrate that our GPS noise-filtering solution achieved
an accuracy rate of 97%, surpassing the baseline method. Furthermore, our multi-source
data fusion approach attained a 100% correct repair rate for bus arrival and departure
information in the spatial dimension. The error margin between the repaired timestamps
and the actual timestamps was less than 1%, and the correlation coefficient R was also close
to 1. These findings provide valuable insights and lessons for enhancing data governance
and improving data quality within the public transportation industry.

7.2. Future Work

While this approach provides a validated solution for improving data quality in bus
transportation systems, there are still two limitations that need to be addressed: perfor-
mance and real-time requirements.

On one hand, we have implemented the solution and workflow with multiple stages,
but there is room for performance improvement. Data skew exists in these stages due to
the default partitioning method. To enhance performance, we plan to implement spatial–
temporal partitioning and indexing to efficiently organize datasets in the pipeline. On the
other hand, the current solution operates in batch-processing mode, which is insufficient
for handling real-time data streaming generated in bus transportation systems. Our next
step is to implement our solution using stream-processing engines like Spark Streaming
and Flink [41]. This will enable the quick transformation of raw datasets with different data
quality problems into high-quality datasets.

By addressing these limitations, we anticipate achieving higher performance and
efficiency compared to the current version.
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