
Citation: Rasool, G.; Hussain, Y.;

Umer, T.; Rasheed, J.; Yeo, S.F.; Sahin,

F. Design Patterns for Mobile Games

Based on Structural Similarity. Appl.

Sci. 2023, 13, 1198. https://doi.org/

10.3390/app13021198

Academic Editor: Paweł

Weichbroth

Received: 6 December 2022

Revised: 6 January 2023

Accepted: 8 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Design Patterns for Mobile Games Based on Structural Similarity
Ghulam Rasool 1, Yasir Hussain 2, Tariq Umer 1 , Jawad Rasheed 3 , Sook Fern Yeo 4,5,* and Fatih Sahin 6

1 Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
2 Department of Computer Science, Virtual University of Pakistan, Lahore 51000, Pakistan
3 Department of Software Engineering, Nisantasi University, Istanbul 34398, Turkey
4 Faculty of Business, Multimedia University, Melaka 75450, Malaysia
5 Department of Business Administration, Daffodil International University, Dhaka 1207, Bangladesh
6 Department of Computer Engineering, Nisantasi University, Istanbul 34398, Turkey
* Correspondence: yeo.sook.fern@mmu.edu.my

Abstract: Software design patterns have a proven impact on the quality of software applications and
the development process of an application. The success of design patterns in the software industry
has attracted mobile game developers and researchers to apply patterns in the context of mobile
games. Researchers have already proposed different frameworks and design patterns, but they are
not truly beneficial for game developers. The high-level taxonomies can be adjuvant while proposing
useful design patterns. The existing taxonomies for mobile games do not consider different parts of a
game that outline top-level structure. In this paper, we propose a new taxonomy that emphasizes
the top-level structure for identifying new design patterns for mobile games. We propose five novel
generic design patterns that might be applied to the development of mobile games and other software
applications. The presented design patterns are, in a true sense, programming patterns that outline
top-level generic classes and interfaces, and that could be the basis for the development of new
games. We developed four demo games by using these patterns for the realization of taxonomy and
design patterns.

Keywords: design patterns; mobile games; taxonomy of games; consumer product; product reusability;
game interaction

1. Introduction

Games have become an essential field of research due to the evolution and advance-
ment of technology. Computer games are widely used for learning, skill enhancement,
entertainment, and engagement. Computer games have roots in simple handheld devices
such as feature phones. The use of games on mobile devices has been increasing, but
the hardware space for mobile devices requires more attention from researchers. Mobile
devices have transformed into smart devices (a.k.a., smartphones) from simple commu-
nication devices, attracting almost all the technologies that were intended for Personal
Computers (PCs). Today, any popular application running on a PC is expected to have
a mobile version. Mobile devices seem incomplete if they do not offer features for fun
and leisure. The trend of playing games on smartphones is continuously increasing. Over
the last one and a half decades, mobile games have dramatically increased in popularity,
and they have become a source of unprecedented growth in revenue for the mobile game
industry. It is estimated that 50% of the global game market will be from mobile games
until 2020, (https://www.gameprime.org/2018/01/global-game-market-prediction-2020,
accessed on 16 March 2020). The revenue of the global mobile game industry was over $115
billion in 2019, (http://mediakix.com/2018/03/mobile-gaming-industry-statistics-market-
revenue/#gs.M2_ISeU, accessed on 16 March 2020). Industry professionals and academic
researchers have argued to separate the field of mobile games from other software fields
(e.g., calculator games and PC games [1–4]) and other disciplines (e.g., films, stories). Terms
like Ludology [5,6], Gameplay [7], and Funware [8] have already come into existence.

Appl. Sci. 2023, 13, 1198. https://doi.org/10.3390/app13021198 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13021198
https://doi.org/10.3390/app13021198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3333-8142
https://orcid.org/0000-0003-3761-1641
https://orcid.org/0000-0002-8060-5872
https://orcid.org/0000-0002-8036-3156
https://www.gameprime.org/2018/01/global-game-market-prediction-2020
http://mediakix.com/2018/03/mobile-gaming-industry-statistics-market-revenue/#gs.M2_ISeU
http://mediakix.com/2018/03/mobile-gaming-industry-statistics-market-revenue/#gs.M2_ISeU
https://doi.org/10.3390/app13021198
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13021198?type=check_update&version=1

Appl. Sci. 2023, 13, 1198 2 of 36

Design patterns have a proven impact on software quality [9], development produc-
tivity [10], maintenance [11] and continuous involvement in almost all the disciplines of
software since they were first proposed by Gamma et al. [12]. The proper application of
design patterns improves the quality and increases the productivity of developers up to
40% [13]. By definition, a design pattern is a well-documented template to be used in
developing new products rather than reinventing the wheel. A design pattern can be a
behavior or a structure frequently occurring in related products. A pattern can be as simple
as Singleton with only one class, or it can be complex such as Observer, Mediator including
Singleton and other patterns in its structure. The set of 23 design patterns presented by
Gamma et al. [12] is notably essential, but still, there is a need to think beyond them.
The application of design patterns for developing mobile games is receiving attention
from academia, developers, and researchers. Although there is significant progress, there
is space to contribute by identifying new design patterns, in particular, for developing
mobile games.

In most of the cases, game developers do not follow patterns; rather, they develop
their games using personalized techniques and foundation classes [14]. Such developers
are unaware of the true benefits of using design patterns for solving recurring design and
development problems. Some design patterns cover programming aspects; however, they
do not give a starting point for the developers, or they are not intended for mobile games.
We derived new design patterns based on a new taxonomy that emphasizes the top-level
structure of mobile games to classify them. The degree of differences and similarities in
different parts of a game devise a category of a game. We propose design patterns for each
of the identified categories.

We also propose a top-level design pattern for a complete game that includes menus
and characters. It might include all four distinct patterns depending on the requirements
of game developers. The motivation and discussion on four patterns are presented in
Section 4. The top-level pattern is applied in our four demo games discussed in Section 5.
Although, these design patterns may be adapted to any programming language, we prefer
to use Java Micro Edition (ME) for sample source code examples and library classes. Java
ME is popular for feature phones. The proposed design patterns are introduced for the first
time based on the proposed taxonomy. The major contributions of this paper are as follows:

• A new taxonomy for the categorization of design patterns in mobile games;
• Derivation of five design patterns based on the proposed taxonomy;
• Evaluation of design patterns on four demo mobile games.

The rest of the paper is organized as follows. In Section 2, we provide a detailed review
of related work from the literature. In Section 3, we present a new taxonomy for mobile
games that is the basis for our design patterns for mobile games. The proposed design
patterns are discussed and presented in Section 4. We present a case study evaluating
the proposed design patterns in Section 5. The conclusion and future work are discussed
in Section 6.

2. Literature Review

A general review of computer and video games related to learning was presented by
Mitchell et al. [15]. Similarly, a systematic review of empirical evidence on computer games
and serious games was presented by Connolly et al. [16]. Some researchers have turned
their attention towards design patterns and their applications regarding the development
of games for educational purposes and learning outcomes [17–38]. We discuss the previous
research contributions in two categories. Research for the common vocabulary of games
includes works from Church [1], Costikyan [2], Bjork et al. [3], and Davidsson et al. [17].
These works do not directly influence our work, but they are important because they can be
the basis for comprehensive frameworks. In addition, they emphasize bringing all games
(naturally including mobile games) into one vocabulary to be used by game designers,
developers, and players.

Appl. Sci. 2023, 13, 1198 3 of 36

The second category includes research contributions that are related and are the basis
for this work. The authors of these papers discuss the identification or use of programming
patterns directly (unlike ones that cannot be programmed and only define design space).
We include works from Hui [39], Narsoo and Mohamudally [40], Narsoo et al. [41], Ilja [42],
and Nystrom [43] under this category.

2.1. Research for Common Vocabulary of the Games

Church was one of the pioneer game designers that paid attention to common design
vocabulary for games. He emphasized that, like other disciplines such as sports and
movies, game designers and players should express and discuss games in terms of that
vocabulary [1]. Church suggested developing a shared framework, and he named that
framework FADTs (Formal Abstract Design Tools). Church explained the term “Formal”
because it gives a precise definition, and “Abstract” because it focuses on underlying ideas,
not specific game constructs. The terms “Design” and “Tools” are self-explanatory. FADTs
cannot be directly used to develop games.

Church [1] argued his work would motivate game developers and researchers to
discover new ways for successful design and possibly expand the FADTs framework.
Church’s work is no doubt impressive as this was the first attempt to propose a shared
vocabulary. Later, researchers have some degree of influence from his work, and they
have references to his work (e.g., [44]). Despite this, FADTs have not been expanded;
instead, researchers have proposed their own ways to talk about game design, gameplay,
and mechanics (e.g., [3,44]). It is clear from the nature of FADTs that they cannot be
implemented using code—a feature that our paper emphasizes. However, there may
be exceptions.

Costikyan [2] also emphasized on a common vocabulary for computer games because
they all share aspects that keep them apart from other software design. The author for-
malizes the terms Interaction, Goal, Structure, and Struggle to make a complete functional
definition of a game. These terms can be used to discuss the vast variety of games from
board games to sports and from real-world games to web-based multiplayer games.

All games need Interaction in any form, especially the player and the game. A game
is simply not a game if interaction with the player is not required. Thus, interaction is
considered at the top for games by Björk et al. [3]. However, the authors explained that
games require interactions for some purpose. The interaction will be meaningless if there
is no Goal to be achieved by the player. Hence, nearly all types of computer games have
their goals. These goals may be set by the player if the game requires it. The next term in
the author’s list is Struggle. This suggests the player has to struggle to achieve his/her
objectives in the game. The structure of a game covers codified game rules, the interaction
of game rules, tables, algorithms, modules, and software. Although, the structure of
a computer game is invisible to the player, he/she agrees to achieve the goal through
the structure of the game. The authors also used the term Endogenous Meaning, which
means that the game’s structure creates its own meanings. For example, an image of an
arrow has no real value, but in the computer game “Bows and Arrows” the same image
becomes valuable.

Combining all these terms, Costikyan [2] finalized the functional definition of a game
as “an interactive structure of endogenous meaning that require players to struggle towards
a goal”. Finally, the author asserts that the functional definition of a game and taxonomy
of a game presented by Marc LeBlanc et al. [44] together can be beneficial for designing
games. Whereas the common terminology emphasized by Costikyan [2] applies to games,
tools discussed under the title of design patterns by other researchers have gained much
more acceptance in the industry.

Björk et al. [3] broadened Kreimeier’s idea [45] of games in terms of design patterns.
They collected about 300 game design patterns for all types of games. However, they
redefined game design patterns as descriptions of recurring interaction elements relevant to
gameplay. By design patterns, they do not mean only some frequently occurring problems

Appl. Sci. 2023, 13, 1198 4 of 36

requiring a similar solution, but also frequently occurring game mechanics. These can be
thought of as general tools to be used in different ways by different stakeholders in industry
and academia rather than problem-solving tools during game development. The authors
have, therefore, kept interaction (between players and between players and other game
components) a foundation for collecting patterns, which is an essential element in games.

Meanwhile, they have given importance to the structural framework of games, which
consists of game instance, game session, and play session [46]. The authors have created
their interaction-centric model from two independent, but interchangeable parts. The first
is a structural framework that describes the components of a game, while the second is
game design patterns that describe the interaction of players.

Unlike the known definition of patterns as “problem-solving” tools, the authors per-
ceive their identified patterns as a tool that could be used in various ways. The uses that are
listed are idea generation, development of game concepts, pre-production process, identify-
ing competition and patent issues, problem-solving during development, analyzing games,
categorizing games and genres, and support to explore new platforms and mediums.

The applications of the design patterns discussed above are essential, but we do not
see any potential use of these patterns for game developers. For example, the pattern
“Paper Rock Scissors” means guess what the opponent will do and then play to oust him
based on the guess. This pattern occurs in different games such as checkers, chess, and
card games. Although the pattern is the same, checkers and paper rock scissors (if a video
game is developed) will have an entirely different code (e.g., classes and methods), and it is
much too abstract to be a programming pattern. Thus, the knowledge of this pattern may
not be helpful to avoid reinventing the wheel.

2.2. Research on Design Patterns Related to Computer and Mobile Games

Hui [39], a professional mobile application developer, presented a framework of
four design patterns to develop interactive content on mobile devices. These patterns are
targeted for J2ME mobile applications. One crucial factor in Hui’s work is that he has given
due consideration to constraints posed by the limitation of mobiles such as small memory
and screen size. The author examined Cascading Menu, Wizard Dialog, Pagination, and
Slide Show design patterns.

Cascading Menu pattern is a scaled-down form of the popular Model-View-Controller
architecture pattern. A user can insert new menu items without complication by using this
design pattern. Wizard Dialog pattern is used to implement a mobile-suited version of
desktop Wizard (set of dialogs, e.g., during the installation of software). This pattern is
designed using another pattern Mediator, which works like a middleman controlling some
related components. The Pagination pattern is used to divide a large number of menu items
into smaller groups to show them on a small screen in the form of pages. Pagination loads
or creates and displays only the current page, thus saving memory. Finally, the Slide Show
pattern is used to switch between different displays of an application in the form of a slide
show. A sort of Cascading pattern can also be observed in mobile games. The difference is
that this pattern suggests that each slide should be a separate displayable object, whereas,
in mobile games, common practice (and maybe a requirement to save memory) is that the
slides are made from a single displayable (i.e., Game Canvas, a subclass of Canvas) using
paint(), repaint(), and/or update() methods.

Several games may use the patterns outlined by [39] or customized versions of those
patterns. The limitation of this framework is that it addresses the interaction of an applica-
tion with the user only. Moreover, common and desired practices for games are different
from other applications, thus making these patterns either unsuitable or insufficient for
most games.

Narsoo and Mohamudally [40] introduced the notion of a one-function design pattern
for mobile services that use J2ME (now Java ME). They took two different applications as
test cases; Phone Book and Reminder. These two applications perform similar functions on
different types of data. They present a similar interface while their internal workings in

Appl. Sci. 2023, 13, 1198 5 of 36

private methods and classes are hidden from the user. For example, both can add, delete,
edit, and search their respective data, which would be the contact names and numbers
for the phone book, and reminder time and message for a reminder. Thus, they have the
same pattern concerning their interfaces. Authors call this an integrated behavior structure
because this structure suggests integrating all tasks into one pattern. Applications using
the integrated framework may customize different arguments.

The other option that authors suggested is a one-function structure in which a pattern
performs a single task. For example, now there will be four patterns, Add, Erase, Edit, and
Search, for each of the Phone Book and Reminder applications. Moreover, Add and Edit
are similar; thus, a single pattern with an additional parameter would be better. There
may be several other functions that can be used by applications like Chat, SMS, and Calls
Management. The integrated behavior structure for a phone book looks like the class
shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 40

to save memory) is that the slides are made from a single displayable (i.e., Game Canvas,

a subclass of Canvas) using paint(), repaint(), and/or update() methods.

Several games may use the patterns outlined by [39] or customized versions of those

patterns. The limitation of this framework is that it addresses the interaction of an appli-

cation with the user only. Moreover, common and desired practices for games are differ-

ent from other applications, thus making these patterns either unsuitable or insufficient

for most games.

Narsoo and Mohamudally [40] introduced the notion of a one-function design pat-

tern for mobile services that use J2ME (now Java ME). They took two different applica-

tions as test cases; Phone Book and Reminder. These two applications perform similar

functions on different types of data. They present a similar interface while their internal

workings in private methods and classes are hidden from the user. For example, both can

add, delete, edit, and search their respective data, which would be the contact names and

numbers for the phone book, and reminder time and message for a reminder. Thus, they

have the same pattern concerning their interfaces. Authors call this an integrated behavior

structure because this structure suggests integrating all tasks into one pattern. Applica-

tions using the integrated framework may customize different arguments.

The other option that authors suggested is a one-function structure in which a pattern

performs a single task. For example, now there will be four patterns, Add, Erase, Edit, and

Search, for each of the Phone Book and Reminder applications. Moreover, Add and Edit

are similar; thus, a single pattern with an additional parameter would be better. There

may be several other functions that can be used by applications like Chat, SMS, and Calls

Management. The integrated behavior structure for a phone book looks like the class

shown in Figure 1.

Figure 1. Integrated behavior structure for Phone Book ([40]).

For the “Reminder” application, everything is the same except the class name, and

the constructor will be “Reminder”. As mentioned in [40,47], larger classes were undesir-

able for mobile applications as they consume more memory, consequently an expensive

item for small devices. Figure 2 shows the main class representing the Edit design pattern.

Figure 2. One-function structure for Edit [40].

The Edit pattern can be used in any application where the edit function is required.

For example, it can be used to modify existing entries from the Phone Book as well as set

time and date of an entry from Reminder. Its implementation in mobiles is a form with a

retrieved item displayed in a text field that allows the user to enter new entries and save

Figure 1. Integrated behavior structure for Phone Book [40].

For the “Reminder” application, everything is the same except the class name, and the
constructor will be “Reminder”. As mentioned in [40,47], larger classes were undesirable
for mobile applications as they consume more memory, consequently an expensive item
for small devices. Figure 2 shows the main class representing the Edit design pattern.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 40

to save memory) is that the slides are made from a single displayable (i.e., Game Canvas,

a subclass of Canvas) using paint(), repaint(), and/or update() methods.

Several games may use the patterns outlined by [39] or customized versions of those

patterns. The limitation of this framework is that it addresses the interaction of an appli-

cation with the user only. Moreover, common and desired practices for games are differ-

ent from other applications, thus making these patterns either unsuitable or insufficient

for most games.

Narsoo and Mohamudally [40] introduced the notion of a one-function design pat-

tern for mobile services that use J2ME (now Java ME). They took two different applica-

tions as test cases; Phone Book and Reminder. These two applications perform similar

functions on different types of data. They present a similar interface while their internal

workings in private methods and classes are hidden from the user. For example, both can

add, delete, edit, and search their respective data, which would be the contact names and

numbers for the phone book, and reminder time and message for a reminder. Thus, they

have the same pattern concerning their interfaces. Authors call this an integrated behavior

structure because this structure suggests integrating all tasks into one pattern. Applica-

tions using the integrated framework may customize different arguments.

The other option that authors suggested is a one-function structure in which a pattern

performs a single task. For example, now there will be four patterns, Add, Erase, Edit, and

Search, for each of the Phone Book and Reminder applications. Moreover, Add and Edit

are similar; thus, a single pattern with an additional parameter would be better. There

may be several other functions that can be used by applications like Chat, SMS, and Calls

Management. The integrated behavior structure for a phone book looks like the class

shown in Figure 1.

Figure 1. Integrated behavior structure for Phone Book ([40]).

For the “Reminder” application, everything is the same except the class name, and

the constructor will be “Reminder”. As mentioned in [40,47], larger classes were undesir-

able for mobile applications as they consume more memory, consequently an expensive

item for small devices. Figure 2 shows the main class representing the Edit design pattern.

Figure 2. One-function structure for Edit [40].

The Edit pattern can be used in any application where the edit function is required.

For example, it can be used to modify existing entries from the Phone Book as well as set

time and date of an entry from Reminder. Its implementation in mobiles is a form with a

retrieved item displayed in a text field that allows the user to enter new entries and save

Figure 2. One-function structure for Edit [40].

The Edit pattern can be used in any application where the edit function is required.
For example, it can be used to modify existing entries from the Phone Book as well as set
time and date of an entry from Reminder. Its implementation in mobiles is a form with a
retrieved item displayed in a text field that allows the user to enter new entries and save
them. This pattern applies to any J2ME application with or without customizing to accept
specific parameters.

Though the authors identified only a few design patterns, there may be tens of them.
However, the authors have given us another starting point for further research. Following
their work, we can think of such patterns for mobile games. For example, we can think of
a “Move Avatar” pattern, which could be used to move a game avatar using arrow keys.
That pattern could be used in any game where the avatar has to be moved using arrow
keys. There can be numerous such patterns.

Appl. Sci. 2023, 13, 1198 6 of 36

In this paper, the objective is to develop similar programming patterns at the generic
level without going into detail. For example, all those games in which some levels are
different only in the number of enemies will have the same structural design pattern.
(However, the demo games developed along with this paper also consider some detail-level
patterns. Thus, demo games can be used as templates to develop similar games.)

Narso et al. [41] demonstrated the use of design patterns for mobile games using
J2ME. Initially, they used design patterns for single-player Sudoku game. Then, they
demonstrated that the same design patterns could be used for other board games with
little modification in interfaces. At the top, they have used Model-View-Controller (MVC)
architecture. Then, the patterns such as Change Screen, Singleton, Game State Observer,
and Game Memento have been used preferring interfaces rather than concrete classes
wherever possible. The use of interfaces assures that the same set of patterns may be used
for other board games. Figure 3 shows a top-view diagram of this structure.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 40

them. This pattern applies to any J2ME application with or without customizing to accept

specific parameters.

Though the authors identified only a few design patterns, there may be tens of them.

However, the authors have given us another starting point for further research. Following

their work, we can think of such patterns for mobile games. For example, we can think of

a “Move Avatar” pattern, which could be used to move a game avatar using arrow keys.

That pattern could be used in any game where the avatar has to be moved using arrow

keys. There can be numerous such patterns.

In this paper, the objective is to develop similar programming patterns at the generic

level without going into detail. For example, all those games in which some levels are

different only in the number of enemies will have the same structural design pattern.

(However, the demo games developed along with this paper also consider some detail-

level patterns. Thus, demo games can be used as templates to develop similar games.)

Narso et al. [41] demonstrated the use of design patterns for mobile games using

J2ME. Initially, they used design patterns for single-player Sudoku game. Then, they

demonstrated that the same design patterns could be used for other board games with

little modification in interfaces. At the top, they have used Model-View-Controller (MVC)

architecture. Then, the patterns such as Change Screen, Singleton, Game State Observer,

and Game Memento have been used preferring interfaces rather than concrete classes

wherever possible. The use of interfaces assures that the same set of patterns may be used

for other board games. Figure 3 shows a top-view diagram of this structure.

Figure 3. MVC architecture for Sudoku [41].

The model part has been implemented as an interface GameModel, leaving imple-

mentation for concrete classes of games. SudokuGameModel is a concrete implementation

of this interface. It has interactions with Storage-related classes. The view part has been

implemented by GameView, BoardView, and CellView classes. Moreover, its draw()

method is open for extensions, thus enabling safe modifications for other games. The Ga-

meMidlet class (entry point into any java MIDlet) and GameController interface constitute

Controller part. Again, GameController is an interface to achieve loose-coupling and high-

cohesion in modules. The concrete implementation in the Sudoku game is SudokuGame-

Controller.

Patterns used in this sample game that may also be used for other games are Change

Screen, Game Memento, Game Controller Choice, Game State Observer, Drawing Tem-

plate, and Singleton. All of these patterns are self-explanatory.

The pattern suggested by [47] separates displayable objects for a menu. This style

supports the system’s standard menu interface, but another practice is to implement a

graphical menu (including images), which is one of the playability heuristics as men-

tioned by [47]. The MVC-based architecture can be reused with little modifications for

other board games. The authors have outlined three example cases: GameCanvas.

(1) Same Game with Different Settings: Standard Sudoku has 9 × 9 cells, while the au-

thors have implemented an option of Junior Sudoku, which has 4 × 4 cells. The

changes required to implement this option are to make the game model independent

Figure 3. MVC architecture for Sudoku [41].

The model part has been implemented as an interface GameModel, leaving implemen-
tation for concrete classes of games. SudokuGameModel is a concrete implementation of
this interface. It has interactions with Storage-related classes. The view part has been im-
plemented by GameView, BoardView, and CellView classes. Moreover, its draw() method
is open for extensions, thus enabling safe modifications for other games. The GameMidlet
class (entry point into any java MIDlet) and GameController interface constitute Controller
part. Again, GameController is an interface to achieve loose-coupling and high-cohesion in
modules. The concrete implementation in the Sudoku game is SudokuGameController.

Patterns used in this sample game that may also be used for other games are Change
Screen, Game Memento, Game Controller Choice, Game State Observer, Drawing Template,
and Singleton. All of these patterns are self-explanatory.

The pattern suggested by [47] separates displayable objects for a menu. This style
supports the system’s standard menu interface, but another practice is to implement a
graphical menu (including images), which is one of the playability heuristics as mentioned
by [47]. The MVC-based architecture can be reused with little modifications for other board
games. The authors have outlined three example cases: GameCanvas.

(1) Same Game with Different Settings: Standard Sudoku has 9 × 9 cells, while the
authors have implemented an option of Junior Sudoku, which has 4 × 4 cells. The
changes required to implement this option are to make the game model independent
of puzzle size (using Strategy pattern) and that the game store class has to implement
an interface in which both puzzles should be implemented in concrete classes.

(2) Number Game Puzzle: Almost the whole structure along with its internal relations
are preserved except changing the text menu and other classes to reflect this game.
Additionally, the main model class SudokuGameModel has to be replaced with new
a class (which should also implement GameModel interface) containing mechanics
related to the new game.

Appl. Sci. 2023, 13, 1198 7 of 36

(3) Two Player Based Game: The controller interface will be changed accordingly. Addi-
tionally, a new model has to be used, or the model interface could be adjusted for a
two-player game.

Similar to [40], this work is another motivation for working on mobile applications
especially games. Their work is concrete evidence of the advantage of using design
patterns for games for small devices. The advantage is in the form of reusability and ease
of modifications and extensions. However, unlike our objective of the paper, the discussed
architecture and patterns consider details of board games only. Thus, they may not be
generic enough to apply to other types of games. The authors focused only on J2ME.

Ilja [42] showed that design patterns could be effective solutions to problems arising
during mobile game development. Moreover, he asserted that traditional design patterns
such as Model-View-Controller and Observer are still lively and can be used for the
development of modern games. To validate his argument, he developed a small game.
He claimed that he was new to game programming, as the problems that arise during the
development, the appropriate and useful design patterns, were selected naturally, examined
and used. As a result, the code was well structured, organized, and maintainable. The four
patterns used were Model-View-Controller, Observer, State Machine, and Singleton. The
paper also includes a discussion of two mobile game development frameworks: Cocos2d
and Unity3D. The author used them as third-party game-engines for the case-study. The
author discussed these patterns elegantly mentioning advantages, disadvantages, and
alternative solutions. Additionally, the work shows that said middleware game-engines
implement those patterns either directly or indirectly. These frameworks support C++ and
Objective C languages. Thus, the author also discusses if these languages have a built-in
capability to support these patterns. The paper concludes that design patterns are still
useful in mobile games development, but the essential thing is to examine and decide if the
use of a certain pattern will be useful in a particular situation.

This work proves only the validity of patterns in modern game programming as was
its objective, but the author did not identify any new pattern.

Nystrom [43], a professional game developer, presented an online book on games
programming patterns. His experience in game programming and dealing with good
code practices for years resulted in a treasure for game developers especially ones who are
new to this field. He asserts that twenty years old GoF patterns [12] are suitable for other
disciplines of software, but they have to be revised to adapt them for games because games
constitute a different discipline. Nystrom admits the validity of twenty years old GoF
design patterns and regards his book as a continuation of their work, but for the context of
games. He included GoF patterns (Command, Flyweight, Observer, Prototype, Singleton,
and State) in his book and explained how they are applicable for games. A substantial part
of his book discusses new programming patterns that he identified in codebases of games.
These are 13 patterns divided into four categories; Sequencing, Behavioral, Decoupling, and
Optimization. It seems unnecessary to summarize each pattern here, but it is reasonable to
discuss each group in brief along with one or two patterns from the group as an example.

Sequencing patterns act as tools to implement sequences in games in such a way that
everything in the game world is just correct according to the game’s clock and whatever is
rendered in the screen is right. Double Buffer, Game Loop and Update Method patterns
belong to this group. All these patterns are of critical importance for any game. Double
Buffer allows a graphics’ individual pixels to be modified as desired but will be rendered
on the screen atomically (as a whole). For this purpose, two separate buffers are maintained
for modification and rendering. When the modification process completes, the buffers are
swapped. Fortunately, unlike many other languages (e.g., C++) Java ME’s Canvas class has
built-in support for double buffering. Game Loop suggests a loop continuously running
during gameplay. In each iteration, user input has to be entertained, the state of the game
has to be updated, and the game has to be rendered. Usually, this pattern is accompanied
by the Update Method pattern. This pattern is used to simulate each object to update its
state processing a single frame of behavior at a time. This is done by calling an update

Appl. Sci. 2023, 13, 1198 8 of 36

method on each object in collection continuously in the game loop. These three patterns
are used in every mobile game knowingly or unknowingly. (Our demo games also use all
of these patterns.)

Behavioral patterns consist of patterns that are used to define and refine the creation
of game entities and screenplays, which tell the entities what to do. Subclass Sandbox, Type
Object, and Bytecode patterns belong to this category. Subclass Sandbox suggests “defining
behavior in subclasses using a set of operations provided in parent class”.

Decoupling patterns are used to decouple unrelated parts of a game. The Component
pattern is used to allow a single entity to span in multiple domains, keeping them isolated by
placing the code for each in its component class and reducing the entity to a simple container
class, which contains those components. The other two patterns in this category are Event
Queue and Service Locator. The Service Locator pattern is used to give a global access
point for services without coupling users to concrete classes of those service interfaces.

Optimization patterns are used to optimize the code to enhance the performance
of the game. This category includes Data Locality, Dirty Flag, Object Pool, and Spatial
Partition. Out of these, first and last are very uncommon and may be very difficult to
implement for mobile games developed using Java ME. The Dirty Flag pattern is used to
avoid unnecessary work postponing until it is required. This is done by the use of flags
(usually Boolean).

The author has collected all these patterns to achieve mainly one thing: decoupling,
which results in easily maintainable and modifiable code. He also emphasized performance,
but not at the cost of unorganized code. Therefore, he proposed to use Singleton only where
any other method is too much costly. This is what one of the original authors of 23 design
patterns also suggested in an interview [48]. The author has considered the gameplay and
fun part of games only, leaving their overall structures.

2.3. Summary

The literature review discussed above has different scopes, and due to this, a concrete
comparison is not possible. A common vocabulary is emphasized in [1,2] for games,
but with different concepts. Church [1] coined the term “Formal Abstract Design Tools”
to propose his framework, but Costikyan [2] opted to differentiate games from other
disciplines using game-specific terms—Intent, Goal, Struggle, Structure, and Endogenous
Meaning. Björk et al. [3] also emphasized a common vocabulary, but in terms of design
patterns, which define games’ design space and game mechanics. Davidsson et al. [17]
continued the work of Bjork et al. [3] for only mobile games. Narsoo et al. [40] identified
four basic interactive design patterns for services in mobile applications, which may be
used for mobile games as well. Nystrom [43] collected important patterns related to game
programming. These patterns are equally applicable to mobile games with or without a
little customization. Hui [39] presented design patterns to develop interactive content on
mobile devices. The author targeted mobile applications developed in J2ME. Both directly
or indirectly talked about user interfaces, but the work in [39] is more specific to them. The
authors of [41,42] practically used design patterns for the development of mobile games.
Narsoo et al. [41] used MVC at the top level and some new patterns in the implementation.
He also validated them by using those patterns in similar games. Ilja [42] did not identify
any new pattern; instead, he tried to prove patterns as solutions to problems that occur
during the development of mobile games. The author in [42] explained the motivation of
the concept using popular GoF design patterns as examples.

3. Taxonomy Based on Structural Similarity

Taxonomies play a significant role in recognizing the relationships among different
objects. The researchers in the literature rely on different parameters for the classification
of games that include GUI, source, and platform of games. The taxonomies proposed in
the literature are not generic. Examples of taxonomies include [49–54]. These taxonomies

Appl. Sci. 2023, 13, 1198 9 of 36

do not take into consideration the overall structure of the game and structural similarities
among different parts of a game. As a result, they are not beneficial for game developers.

The design patterns proposed in this paper are based on a new taxonomy. The
proposed taxonomy is based on the structural similarity of games. Here, we summarize
the concepts and the categories of mobile games that we used in this paper. A game can
be comprised of levels (or stages) and parts. If a game has levels, it means that they have
some order, and a player has to play a game in that particular order. The levels vary with
respect to difficulty, and all of them are parts of the main gameplay. On the other hand, if a
game has different parts, they may not have an order, and not all of them are part of the
main gameplay.

3.1. First Category—Unrelated Levels

In the first category, a game has levels with significant difference among them and
all of the levels are “unrelated”, having different game logic making them dissimilar. For
example, in one level, navigation (i.e., arrow) keys may be used to set a target, while in
another level they may be used to have the avatar avoid enemies. Taking another example,
in one level, firing an enemy gives a bonus, while in another level catching a diamond does
this. If S is the set of all levels in a game and Fi is the set of all functionalities of an arbitrary
level i, the following implication must be true.

∀m∈S, ∀n∈S ((m 6= n)→ (Fm 6= Fn))

Figure 4 illustrates a game where FX denotes a set of functionalities of an arbitrary
level X. The demo game “ShootDown” belongs to this category. Figure 5 shows the
distinguishing properties of all three levels of this game.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 40

that occur during the development of mobile games. The author in [42] explained the mo-

tivation of the concept using popular GoF design patterns as examples.

3. Taxonomy Based on Structural Similarity

Taxonomies play a significant role in recognizing the relationships among different

objects. The researchers in the literature rely on different parameters for the classification

of games that include GUI, source, and platform of games. The taxonomies proposed in

the literature are not generic. Examples of taxonomies include [49–54]. These taxonomies

do not take into consideration the overall structure of the game and structural similarities

among different parts of a game. As a result, they are not beneficial for game developers.

The design patterns proposed in this paper are based on a new taxonomy. The pro-

posed taxonomy is based on the structural similarity of games. Here, we summarize the

concepts and the categories of mobile games that we used in this paper. A game can be

comprised of levels (or stages) and parts. If a game has levels, it means that they have

some order, and a player has to play a game in that particular order. The levels vary with

respect to difficulty, and all of them are parts of the main gameplay. On the other hand, if

a game has different parts, they may not have an order, and not all of them are part of the

main gameplay.

3.1. First Category—Unrelated Levels

In the first category, a game has levels with significant difference among them and

all of the levels are “unrelated”, having different game logic making them dissimilar. For

example, in one level, navigation (i.e., arrow) keys may be used to set a target, while in

another level they may be used to have the avatar avoid enemies. Taking another example,

in one level, firing an enemy gives a bonus, while in another level catching a diamond

does this. If S is the set of all levels in a game and Fi is the set of all functionalities of an

arbitrary level i, the following implication must be true.

mS, nS ((m ≠ n)  (Fm ≠ Fn))

Figure 4 illustrates a game where FX denotes a set of functionalities of an arbitrary

level X. The demo game “ShootDown” belongs to this category. Figure 5 shows the dis-

tinguishing properties of all three levels of this game.

Figure 4. Sample level-based game.

Figure 5. Properties of all three levels of the “ShootDown” demo game.

3.2. Second Category—Related Levels

In the second type of games, subsequent levels have similarities in contrast to the first

category above. In this “related levels” category, the games have differences in levels, but

the levels are related. For example, the third level in a game is similar to the second level

except that it adds some other functionality. As shown in Figure 4, a game belongs to this

category if any of these two cases are true:

Figure 4. Sample level-based game.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 40

that occur during the development of mobile games. The author in [42] explained the mo-

tivation of the concept using popular GoF design patterns as examples.

3. Taxonomy Based on Structural Similarity

Taxonomies play a significant role in recognizing the relationships among different

objects. The researchers in the literature rely on different parameters for the classification

of games that include GUI, source, and platform of games. The taxonomies proposed in

the literature are not generic. Examples of taxonomies include [49–54]. These taxonomies

do not take into consideration the overall structure of the game and structural similarities

among different parts of a game. As a result, they are not beneficial for game developers.

The design patterns proposed in this paper are based on a new taxonomy. The pro-

posed taxonomy is based on the structural similarity of games. Here, we summarize the

concepts and the categories of mobile games that we used in this paper. A game can be

comprised of levels (or stages) and parts. If a game has levels, it means that they have

some order, and a player has to play a game in that particular order. The levels vary with

respect to difficulty, and all of them are parts of the main gameplay. On the other hand, if

a game has different parts, they may not have an order, and not all of them are part of the

main gameplay.

3.1. First Category—Unrelated Levels

In the first category, a game has levels with significant difference among them and

all of the levels are “unrelated”, having different game logic making them dissimilar. For

example, in one level, navigation (i.e., arrow) keys may be used to set a target, while in

another level they may be used to have the avatar avoid enemies. Taking another example,

in one level, firing an enemy gives a bonus, while in another level catching a diamond

does this. If S is the set of all levels in a game and Fi is the set of all functionalities of an

arbitrary level i, the following implication must be true.

mS, nS ((m ≠ n)  (Fm ≠ Fn))

Figure 4 illustrates a game where FX denotes a set of functionalities of an arbitrary

level X. The demo game “ShootDown” belongs to this category. Figure 5 shows the dis-

tinguishing properties of all three levels of this game.

Figure 4. Sample level-based game.

Figure 5. Properties of all three levels of the “ShootDown” demo game.

3.2. Second Category—Related Levels

In the second type of games, subsequent levels have similarities in contrast to the first

category above. In this “related levels” category, the games have differences in levels, but

the levels are related. For example, the third level in a game is similar to the second level

except that it adds some other functionality. As shown in Figure 4, a game belongs to this

category if any of these two cases are true:

Figure 5. Properties of all three levels of the “ShootDown” demo game.

3.2. Second Category—Related Levels

In the second type of games, subsequent levels have similarities in contrast to the first
category above. In this “related levels” category, the games have differences in levels, but
the levels are related. For example, the third level in a game is similar to the second level
except that it adds some other functionality. As shown in Figure 4, a game belongs to this
category if any of these two cases are true:

• At least two levels are similar, but there is another level which is not Similar to either
of two levels, such as if X, Y, and Z are any three levels of a game:

(X ~ Y) ∧ (Z ~ X) ∧ (Z ~ Y)

• At least two levels are Related, i.e., there should be some levels X and Y having FX
and FY sets of functionalities, respectively, such that the following condition is met:

(FX ⊂ FY) ∨ (FY ⊂ FX)

Appl. Sci. 2023, 13, 1198 10 of 36

The majority of mobile and desktop games fall into this category. Examples include
the Block Breaker mobile game by GameLoft and DX Ball by Michael P. Welch, Explode
by Amidos, SnowBowl on FlashFang.com, Blue Box by MyPlayYard Games, and Sliding
Cubes by MyPlayYard Games.

In Block Breaker and DX Ball, a ball is bounced off the pad to hit and break blocks
placed in the space in various arrangements. The games have levels. In subsequent levels,
a new obstacle and new types of blocks are introduced. As long as a new feature is not
introduced in a level, the only difference is in the arrangement of blocks. Hence, a level may
be related to another based on obstacles and types of blocks (e.g., some blocks break with a
single hit and some blocks require two or more hits while others may not be breakable).
Figure 6 shows the snapshots of different levels of Block Breaker Unlimited 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 40

 At least two levels are similar, but there is another level which is not Similar to either

of two levels, such as if X, Y, and Z are any three levels of a game:

(X ~ Y)  (Z ~ X)  (Z ~ Y)

 At least two levels are Related, i.e., there should be some levels X and Y having FX

and FY sets of functionalities, respectively, such that the following condition is met:

(FX  FY)  (FY  FX)

The majority of mobile and desktop games fall into this category. Examples include

the Block Breaker mobile game by GameLoft and DX Ball by Michael P. Welch, Explode

by Amidos, SnowBowl on FlashFang.com, Blue Box by MyPlayYard Games, and Sliding

Cubes by MyPlayYard Games.

In Block Breaker and DX Ball, a ball is bounced off the pad to hit and break blocks

placed in the space in various arrangements. The games have levels. In subsequent levels,

a new obstacle and new types of blocks are introduced. As long as a new feature is not

introduced in a level, the only difference is in the arrangement of blocks. Hence, a level

may be related to another based on obstacles and types of blocks (e.g., some blocks break

with a single hit and some blocks require two or more hits while others may not be break-

able). Figure 6 shows the snapshots of different levels of Block Breaker Unlimited 3.

Figure 6. Related levels of Block Breaker Unlimited (from GameLoft).

3.3. Third Category—Similar Levels

In the third category, games have multiple levels, and there are minor differences

among them. Thus, they are Similar, and no new functionality is added in the subsequent

levels. They differ only in parameter values. Considering Figure 6, the game will be of a

Similar Level type if,

F1 = F2 = F3 = … = FN

The above equation shows that features at different levels are similar. We explain this

with an example. In most versions of the “Color Bridge” game, boxes of different colors

are scattered over a grid of rows and columns. The goal is to join the matching colors by

bridges in such a way that they do not intersect with each other. There is not any new

obstacle or feature introduced in subsequent levels; hence, all the levels seem to be in-

stances of a single class. Thus, this game falls in the Similar Levels category. Figure 7

shows snapshots of two levels.

Figure 6. Related levels of Block Breaker Unlimited (from GameLoft).

3.3. Third Category—Similar Levels

In the third category, games have multiple levels, and there are minor differences
among them. Thus, they are Similar, and no new functionality is added in the subsequent
levels. They differ only in parameter values. Considering Figure 6, the game will be of a
Similar Level type if,

F1 = F2 = F3 = . . . = FN

The above equation shows that features at different levels are similar. We explain
this with an example. In most versions of the “Color Bridge” game, boxes of different
colors are scattered over a grid of rows and columns. The goal is to join the matching
colors by bridges in such a way that they do not intersect with each other. There is not any
new obstacle or feature introduced in subsequent levels; hence, all the levels seem to be
instances of a single class. Thus, this game falls in the Similar Levels category. Figure 7
shows snapshots of two levels.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 40

Figure 7. Similar levels of the Color Bridge game.

3.4. Fourth Category—Different Parts

In the fourth category, games do not have levels; instead, they have different parts.

This category can be further divided into two types:

(1) Different Parts with Different Purposes: In the first type of games, different parts

serve different purposes. All parts have a significant difference among themselves.

Usually, one part presents the main game, while others play a supportive role. Parts

can be switched either by clicking on specified buttons or only when some specific

location or time is reached.

(2) Different Parts with Similar Purposes: Games of this category have different parts for

a similar purpose, i.e., in most parts, a player has to achieve a similar goal. Thus,

certain parts may not have significant differences. Only adjacent parts can be

switched. “Seedling” is an example of this type of game.

A popular game, Haste-Makes-Waste falls in the first type of games in this category.

It has an Introductory part, a Main Game part (where the turtle is projected), and a Shop

Part where certain powers can be bought. Figure 8 illustrates the flow of the game.

Figure 8. Switching among different parts.

The “Pinata Hunter” is another example of a game that falls into the first type. It is

an interesting game consisting of two essential parts. In the main part, a hanging pinata

has to be hit with a stick and candies coming out of the piñata are collected to earn money.

The candies have different values. In the other part, the earned amount is spent on buying

powers such as a better stick, a wider bag to collect more candies, and gloves to save hands

from spam. Other than these parts, there is a Trophy Room part. There is a simple intro-

ductory part as well. As we can see, each part has a different structure and logic.

“Seeding” is an example of the second type of games in this category. It has different

locations. The avatar can only enter the adjacent locations. All the locations have game-

related tasks. Thus, each of the locations can be viewed as a separate part.

Figure 7. Similar levels of the Color Bridge game.

Appl. Sci. 2023, 13, 1198 11 of 36

3.4. Fourth Category—Different Parts

In the fourth category, games do not have levels; instead, they have different parts.
This category can be further divided into two types:

(1) Different Parts with Different Purposes: In the first type of games, different parts
serve different purposes. All parts have a significant difference among themselves.
Usually, one part presents the main game, while others play a supportive role. Parts
can be switched either by clicking on specified buttons or only when some specific
location or time is reached.

(2) Different Parts with Similar Purposes: Games of this category have different parts
for a similar purpose, i.e., in most parts, a player has to achieve a similar goal. Thus,
certain parts may not have significant differences. Only adjacent parts can be switched.
“Seedling” is an example of this type of game.

A popular game, Haste-Makes-Waste falls in the first type of games in this category. It
has an Introductory part, a Main Game part (where the turtle is projected), and a Shop Part
where certain powers can be bought. Figure 8 illustrates the flow of the game.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 40

Figure 7. Similar levels of the Color Bridge game.

3.4. Fourth Category—Different Parts

In the fourth category, games do not have levels; instead, they have different parts.

This category can be further divided into two types:

(1) Different Parts with Different Purposes: In the first type of games, different parts

serve different purposes. All parts have a significant difference among themselves.

Usually, one part presents the main game, while others play a supportive role. Parts

can be switched either by clicking on specified buttons or only when some specific

location or time is reached.

(2) Different Parts with Similar Purposes: Games of this category have different parts for

a similar purpose, i.e., in most parts, a player has to achieve a similar goal. Thus,

certain parts may not have significant differences. Only adjacent parts can be

switched. “Seedling” is an example of this type of game.

A popular game, Haste-Makes-Waste falls in the first type of games in this category.

It has an Introductory part, a Main Game part (where the turtle is projected), and a Shop

Part where certain powers can be bought. Figure 8 illustrates the flow of the game.

Figure 8. Switching among different parts.

The “Pinata Hunter” is another example of a game that falls into the first type. It is

an interesting game consisting of two essential parts. In the main part, a hanging pinata

has to be hit with a stick and candies coming out of the piñata are collected to earn money.

The candies have different values. In the other part, the earned amount is spent on buying

powers such as a better stick, a wider bag to collect more candies, and gloves to save hands

from spam. Other than these parts, there is a Trophy Room part. There is a simple intro-

ductory part as well. As we can see, each part has a different structure and logic.

“Seeding” is an example of the second type of games in this category. It has different

locations. The avatar can only enter the adjacent locations. All the locations have game-

related tasks. Thus, each of the locations can be viewed as a separate part.

Figure 8. Switching among different parts.

The “Pinata Hunter” is another example of a game that falls into the first type. It is
an interesting game consisting of two essential parts. In the main part, a hanging pinata
has to be hit with a stick and candies coming out of the piñata are collected to earn money.
The candies have different values. In the other part, the earned amount is spent on buying
powers such as a better stick, a wider bag to collect more candies, and gloves to save
hands from spam. Other than these parts, there is a Trophy Room part. There is a simple
introductory part as well. As we can see, each part has a different structure and logic.

“Seeding” is an example of the second type of games in this category. It has different
locations. The avatar can only enter the adjacent locations. All the locations have game-
related tasks. Thus, each of the locations can be viewed as a separate part.

3.5. Fifth Category—Single Platform

In the fifth category, a game has no levels and no parts; the whole game runs on a
single platform. The difficulty level varies depending on the state of the game.

Most board games or puzzles such as Sudoku, Draughts (also called Checkers), and
Chess fall into this category. The Sudoku game is played throughout on a single screen
consisting of grids of cells. The player selects a cell and writes a number (single digit) in
each move. However, it is important to note that a single platform never means simplicity.
The implementation of game logic can be complicated. This is true for other board games
such as Chess.

The race games such as the Beach Rally mobile game fall into this category. Beach
Rally is a 3D game. The track is surrounded by fields and trees. In fact, no new trees are
passed by during the race. Instead, the same pattern of trees is continuously repeated.
Thus, the whole game is played in a single game space or platform. The structure of a game
highlights similarities and differences among different parts of a game. Existing taxonomies
do not consider structure at all. For example, all Skill and Action games do not have a
similar structure. We present a comprehensive structure of our taxonomy in Figure 9.

Appl. Sci. 2023, 13, 1198 12 of 36

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 40

3.5. Fifth Category—Single Platform

In the fifth category, a game has no levels and no parts; the whole game runs on a

single platform. The difficulty level varies depending on the state of the game.

Most board games or puzzles such as Sudoku, Draughts (also called Checkers), and

Chess fall into this category. The Sudoku game is played throughout on a single screen

consisting of grids of cells. The player selects a cell and writes a number (single digit) in

each move. However, it is important to note that a single platform never means simplicity.

The implementation of game logic can be complicated. This is true for other board games

such as Chess.

The race games such as the Beach Rally mobile game fall into this category. Beach

Rally is a 3D game. The track is surrounded by fields and trees. In fact, no new trees are

passed by during the race. Instead, the same pattern of trees is continuously repeated.

Thus, the whole game is played in a single game space or platform. The structure of a

game highlights similarities and differences among different parts of a game. Existing tax-

onomies do not consider structure at all. For example, all Skill and Action games do not

have a similar structure. We present a comprehensive structure of our taxonomy in Figure

9.

Figure 9. Structure of proposed taxonomy. Figure 9. Structure of proposed taxonomy.

4. Design Patterns Based on Structural Similarity

Here, we present design patterns for each of the categories discussed in the previous
section. A variant of GoF format is opted for the description and presentation of design
patterns. We keep the category and name of a design pattern the same. The applicability
of a design pattern is described in a few sentences just after the title. Intent explains the
rationale of the pattern. Motivation describes a typical scenario, in which a pattern may
be used. As the participants, we present a list of classes and interfaces with their short
descriptions. A generic diagram of the pattern outlines the structure of the pattern showing
classes with key attributes and methods. A sample code in Java ME is also given. Most of
the code snippets have been taken from demo games. To save space, we include interface
(and public) methods only, which may be used as a template to start developing a game
(with a high-level of abstraction). After discussing each pattern, we present the top-level
design pattern, which includes other elements of a game, such as menus, menu options,
and other characters.

4.1. Common Patterns

All design patterns that we present here have some common roles (classes, interfaces).
Therefore, all these patterns may be thought of as implementation variants of common

Appl. Sci. 2023, 13, 1198 13 of 36

design patterns. Instead of talking about those common participants over and again, we
prefer to present that common design pattern first.

(1) Participants: Updateable is the interface that should be implemented by all classes,
which needs to be updated continuously. These classes include levels, menus, and
menu options. The updateable interface is central to all design patterns presented in
this paper.

- AbstractUpdateable implements Updateable. It is the abstract superclass of all
Updateable classes. It provides frequently used properties of TheCanvas and
utility methods such as wrapping text and cropping images. This class can serve
another purpose; including the default implementation of all Updateable meth-
ods. It may also serve as an adapter for subclasses that require only Updateable
methods.

- UpdateableManager creates and manages Updateable including paused Updateable.
- TheCanvas class represents the canvas of the game and is responsible for running

the game thread and calling update() method on the current Updateable object.
In update() method, calculations and drawings are performed using the Graphics
object of TheCanvas. This class receives key events and passes them to the current
Updateable for appropriate actions. In Java ME, this class extends GameCanvas.

(2) Diagram: Figure 10 shows the class diagram of the common pattern.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 40

Figure 10. Common classes for all patterns.

(3) Sample Code: Important methods, properties, and other tokens are shown in bold in

the sample code in the Appendix A. Actually, only update() and at least one of key

event methods (i.e., keyPressed(), keyReleased(), and keyRepeated()) are essential

while others may be added if necessary. init() is intended to initialize the updateable

before starting for the first time. destroy() may be used to release all resources

claimed by the Updateable when it is stopped or, in case memory is too scarce, when

it is paused.

The AbstractUpdateable class provides attributes of TheCanvas class invoking static

getters on the instance of TheCanvas. These attributes include canvasWidth, can-

vasHeight, and the most important Graphics object. It seems unsuitable to provide static

access to them instead of just including a reference to TheCanvas object that could be used

to access those members. The reason is that they are frequently used by all the levels and

parts (subclasses of AbstractUpdateable).

TheCanvas class shows a splash screen for a specified duration. After that, the thread

continuously calls the update() method on the current Updateable.

The update() method draws the appropriate drawings using the static Graphics ob-

ject declared in AbstractUpdateable class. Note that GameCanvas.getGraphics() returns a

Graphics object associated with the canvas but with protected access. Therefore, to give

default access, TheCanvas class provides a static method getGraphicsObj().

4.2. Unrelated Levels

This design pattern may be used for level-based mobile games in which all the levels

are different from each other and/or few factors may be common.

(1) Intent: Separate classes with different functionalities for each level and let the super

class have common functionality and control.

(2) Motivation: Most mobile games have levels. When a user completes a level, the more

challenging level starts next. This process continues until the last level is completed

or the player fails sometime during the play session. The levels in some games are

not similar and differences outnumber similarities. These differences may be in the

game logic, game characters such as an avatar, non-playing characters, opponents,

and rules for scoring.

(3) Implementation: In this situation, it is appropriate to implement each level in a dif-

ferent class. If, somehow, there is some similarity or common functionality in all the

levels that may be implemented in the superclass of all game levels—GameLevel.

Figure 10. Common classes for all patterns.

(3) Sample Code: Important methods, properties, and other tokens are shown in bold in
the sample code in the Appendix A. Actually, only update() and at least one of key
event methods (i.e., keyPressed(), keyReleased(), and keyRepeated()) are essential while
others may be added if necessary. init() is intended to initialize the updateable before
starting for the first time. destroy() may be used to release all resources claimed by the
Updateable when it is stopped or, in case memory is too scarce, when it is paused.

The AbstractUpdateable class provides attributes of TheCanvas class invoking static
getters on the instance of TheCanvas. These attributes include canvasWidth, canvasHeight,
and the most important Graphics object. It seems unsuitable to provide static access to
them instead of just including a reference to TheCanvas object that could be used to access
those members. The reason is that they are frequently used by all the levels and parts
(subclasses of AbstractUpdateable).

Appl. Sci. 2023, 13, 1198 14 of 36

TheCanvas class shows a splash screen for a specified duration. After that, the thread
continuously calls the update() method on the current Updateable.

The update() method draws the appropriate drawings using the static Graphics object
declared in AbstractUpdateable class. Note that GameCanvas.getGraphics() returns a
Graphics object associated with the canvas but with protected access. Therefore, to give
default access, TheCanvas class provides a static method getGraphicsObj().

4.2. Unrelated Levels

This design pattern may be used for level-based mobile games in which all the levels
are different from each other and/or few factors may be common.

(1) Intent: Separate classes with different functionalities for each level and let the super
class have common functionality and control.

(2) Motivation: Most mobile games have levels. When a user completes a level, the more
challenging level starts next. This process continues until the last level is completed
or the player fails sometime during the play session. The levels in some games are
not similar and differences outnumber similarities. These differences may be in the
game logic, game characters such as an avatar, non-playing characters, opponents,
and rules for scoring.

(3) Implementation: In this situation, it is appropriate to implement each level in a
different class. If, somehow, there is some similarity or common functionality in all
the levels that may be implemented in the superclass of all game levels—GameLevel.

(4) Diagram: The diagram in Figure 11 shows the complete Unrelated Levels pattern. As
it is obvious, only a few classes, GameLevel, Level1, Level2, . . . , LevelN, have to be
added to Common Pattern. Ellipsis (. . .) between Level2 and LevelN shows that
there can be any number of levels, all extending GameLevel directly (Use of ellipsis
in this way is not standard in UML, but here we want to clarify our point. We will
refrain from this in later diagrams, though).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 40

(4) Diagram: The diagram in Figure 11 shows the complete Unrelated Levels pattern. As

it is obvious, only a few classes, GameLevel, Level1, Level2, …, LevelN, have to be

added to Common Pattern. Ellipsis (…) between Level2 and LevelN shows that there

can be any number of levels, all extending GameLevel directly (Use of ellipsis in this

way is not standard in UML, but here we want to clarify our point. We will refrain

from this in later diagrams, though).

Figure 11. Unrelated Level pattern.

(5) Participants:

- Updateable, AbstractUpdateable, UpdateableManager, TheCanvas: These par-

ticipants have already been explained under the Common Pattern category.

- GameLevel is the abstract superclass with subclasses at individual levels. It

should be a subclass of AbstractUpdateable. It contains common properties and

methods with general implementations such as pause() and resume() methods.

- Level1, Level2, ..., LevelN are subclasses of GameLevel. The respective level’s

specific functionalities are implemented in these classes. The Updatea-

bleManager class instantiates these levels based on the level’s handler.

(6) Sample Code: The Appendix A shows sample code for the GameLevel class. Though

not necessary, the GameLevel class may implement all methods of Updateable inter-

face with common to all functionalities. The levels’ classes may call these methods

from the same overridden method. For example, update() of GameLevel may be

called from update() of Level2 using super.update(). Most of the members in Game-

Level are likely to have protected access.

As we can see, the update() method has been defined in GameLevel, and an individ-

ual level class may not define it by itself. However, in most cases, each level should update

its calculations and graphics itself.

We want to clarify that both keyPressed() and listenKeys() methods are intended to

take action when keys are pressed. keyPressed() is Updateable’s proxy method for The-

Canvas.keyPressed(). It is intended for single key presses, e.g., selecting an option, paus-

ing and resuming the game, and enabling power during gameplay. On the other hand,

where keys’ state (comprising of all keys collectively) is required, listenKeys() serves the

purpose; it captures the state and takes action accordingly. For example, when the avatar

Figure 11. Unrelated Level pattern.

(5) Participants:

- Updateable, AbstractUpdateable, UpdateableManager, TheCanvas: These partici-
pants have already been explained under the Common Pattern category.

Appl. Sci. 2023, 13, 1198 15 of 36

- GameLevel is the abstract superclass with subclasses at individual levels. It
should be a subclass of AbstractUpdateable. It contains common properties and
methods with general implementations such as pause() and resume() methods.

- Level1, Level2, . . . , LevelN are subclasses of GameLevel. The respective level’s
specific functionalities are implemented in these classes. The UpdateableManager
class instantiates these levels based on the level’s handler.

(6) Sample Code: The Appendix A shows sample code for the GameLevel class. Though
not necessary, the GameLevel class may implement all methods of Updateable inter-
face with common to all functionalities. The levels’ classes may call these methods
from the same overridden method. For example, update() of GameLevel may be called
from update() of Level2 using super.update(). Most of the members in GameLevel are
likely to have protected access.

As we can see, the update() method has been defined in GameLevel, and an individual
level class may not define it by itself. However, in most cases, each level should update its
calculations and graphics itself.

We want to clarify that both keyPressed() and listenKeys() methods are intended
to take action when keys are pressed. keyPressed() is Updateable’s proxy method for
TheCanvas.keyPressed(). It is intended for single key presses, e.g., selecting an option,
pausing and resuming the game, and enabling power during gameplay. On the other hand,
where keys’ state (comprising of all keys collectively) is required, listenKeys() serves the
purpose; it captures the state and takes action accordingly. For example, when the avatar
has to move up, the “Up” key has to be pressed, when it has to move right, the “Right” key
has to be pressed, and when it has to move diagonally towards the top-right, both the “Up”
and “Right” keys have to be pressed simultaneously.

(7) Consequences: There can be overlapping similarities among different levels. For
example, in a game, a “firing” action can be required in the second and third levels
only and “fighting” in the third and fourth level only. In this situation, one can argue
that the game cannot have an Unrelated Levels pattern because of those similarities.
If similarities are minimal as compared to differences, we may still apply this pattern.
The reason is that keeping it in the second category to use the Related Levels pattern
requires multiple inheritance. Java (and other modern languages) does not support
multiple inheritance (though possible through interfaces, but without code reusability,
and many other restrictions).

(8) Relationships: One way to address overlapping similarities is to implement each such
similarity in a separate class and instantiate it in the appropriate level class. For the
above example, firing and fighting features would be implemented in separate classes
and instantiate them in only those level classes which use them. This way, we would
prefer composition over inheritance. By separating the commonalities among levels
from the intrinsic behaviors of levels, we tend to use the Strategy pattern [55] with the
Unrelated Levels pattern. If, somehow, a level has to be added that is mostly similar
to an existing level; there will not be any justification to not use the Related Levels
pattern (in its original form), even though, because of the majority of dissimilar levels,
the Unrelated Levels pattern may be preferred.

4.3. Related Levels

This design pattern may be used for games having related but not identical or similar levels.

(1) Intent: This pattern lets classes with different features extend their functionality from
Super Class and lets classes with minor differences extend level classes.

(2) Motivation: In some games, the levels are just slight variants of preceding levels. They
usually add very little or no new functionality and vary only in the values of some
parameters. In most cases, the levels can be classified based on similarities in levels.

(3) Implementation: Classes for differing levels will extend GameLevel, but classes for
slightly differing levels will extend an appropriate similar level rather than extending

Appl. Sci. 2023, 13, 1198 16 of 36

GameLevel directly. For example, a game has three different levels “Level One”,
“Level Two”, and “Level Three”. Another level, “Level Four”, is similar to “Level
Three”, except that it is more difficult because of the increased number of obstacles
(or includes another type of obstacle). In this case, classes for Levels 1–3 will be
implemented in respective classes directly extending GameLevel, but classes for Level
4 will extend the Level 3 class. A level can be extended by some other levels. Most
of the class members will have protected access modifiers to ensure that subclasses
can access them. There can be any number of level classes at any level of inheritance
(from GameLevel).

AbstractUpdateable has already been described under Common pattern. Any indi-
vidual design pattern has to be substituted to a Common (top level) pattern through this
interface to build a complete pattern.

(4) Diagram: Figures 12–14 present class-diagrams of different variants of this design pattern.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 40

Figure 12. Related Levels pattern with default approach.

Figure 13. First alternative approach for implementing Related Levels pattern.

Figure 14. Second alternative approach for implementing Related Levels pattern.

(5) Participants:

- GameLevel is the abstract superclass of all the level classes. This is similar to the

one discussed under Unrelated Levels pattern.

Figure 12. Related Levels pattern with default approach.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 40

Figure 12. Related Levels pattern with default approach.

Figure 13. First alternative approach for implementing Related Levels pattern.

Figure 14. Second alternative approach for implementing Related Levels pattern.

(5) Participants:

- GameLevel is the abstract superclass of all the level classes. This is similar to the

one discussed under Unrelated Levels pattern.

Figure 13. First alternative approach for implementing Related Levels pattern.

Appl. Sci. 2023, 13, 1198 17 of 36

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 40

Figure 12. Related Levels pattern with default approach.

Figure 13. First alternative approach for implementing Related Levels pattern.

Figure 14. Second alternative approach for implementing Related Levels pattern.

(5) Participants:

- GameLevel is the abstract superclass of all the level classes. This is similar to the

one discussed under Unrelated Levels pattern.

Figure 14. Second alternative approach for implementing Related Levels pattern.

(5) Participants:

- GameLevel is the abstract superclass of all the level classes. This is similar to the
one discussed under Unrelated Levels pattern.

- Level_i, Level_j, Level_k, Level_x, Level_y, Level_z are classes for arbitrary levels.

(6) Sample Code: The Appendix A shows the default approach of Related Levels pattern
that is a trade-off between two alternative approaches just discussed above. The
GameLevel class may not be much different from the one mentioned in the last
design pattern. For this reason, we skip this class. The sample code is for individual-
level classes.

It is clear from the sample code that no variables are declared to store enemy-related
properties in LevelOne. Level three introduces enemies; therefore, LevelThree class declares
variables to store enemy related information. Suppose, LevelFour does not introduce any
new features, but includes all those that are present in LevelThree. For example, it just
increases the number of stars and the number of enemies. LevelFour extends LevelThree in
this case. Even LevelFour can add its functionality as the design does not restrict it from
doing that.

(7) Consequences: We can use any one of two approaches to refine the design. In both
approaches, similar or related levels are categorized into groups.

• In the first approach, a separate concrete class can be used for each group instead
of using separate classes for individual levels. A level will be nothing more than
an instance of the class for the respective group. The customization of levels will
be done by parameters to a constructor and/or through setters. This refinement
is shown in Figure 13.

• In the second approach, a separate abstract class can be used for each group.
Then, each level class belonging to the group will extend that abstract class. Not
to mention, each group’s abstract class will extend GameLevel. This approach
will make each level more independent—a plus point, but this will increase the
number of classes. Figure 14 shows this approach.

As we mentioned under “Second Category—Related Levels” in the previous section,
there are two cases which can place a game in this group. Referring to those cases, if all the
levels of a group are similar, the first alternative approach will be suitable; otherwise, the
second approach is preferable.

The first alternative approach makes each level more independent and is better to
organize levels, but it results in a large number of classes even if the levels do not have

Appl. Sci. 2023, 13, 1198 18 of 36

critical differences. Suppose we have to add a new level which does not fit in any group, a
new group has to be created first (i.e., a new group class will have to be created extending
GameLevel), then a concrete class representing the new level will have to be created.
Another point (either positive or negative) is that all level classes lie on the same level
of inheritance.

In the second approach, making levels as objects instead of classes, we limit them to
functionalities defined in the respective class representing the group. Thus, to add new
functionality in a level, a separate group class has to be created. This is in contrast to the
original and first design alternative in which we implement the new functionality in an
already existing class for the level. For this reason, this alternative may not be preferable in
most cases.

The design pattern in its original form (i.e., not refined) is a tradeoff between the bulk
of classes at a single level of inheritance of first design alternative and the too-compact
design with closed openness of the second alternative. This form is a bunch of inheritance
relationships; GameLevel is at the top, and it is extended by classes of levels that add new
functionalities. These functionalities should be, however, different from those implemented
by classes of the same level of inheritance. For example, if LevelX and LevelY are direct
children of some common parent, it should mean that both of these classes implement new
functionalities that are different from each other.

For the addition of a new level, there are three possibilities:

• If it has functionalities other than those implemented by LevelX and LevelY, the new
class LevelZ will be a direct subclass of GameLevel.

• If it is similar to any existing level, it will extend the class of that existing level.
• If it contains all functionalities of an existing level in addition to any new ones, it will

extend that existing level.

This suggests that inheritance can go down to any level. Thus, this pattern is usually
open to adding new levels.

(8) Relationships: This pattern is an extension of Unrelated Levels. In a game having
unrelated levels, if some new level similar to a previous level has to be added, the
new level will have to extend the previous one. Thus, the game would no longer
belong to the Unrelated Levels category, instead, to the Related Levels category. The
relationship between two patterns may also be judged if the individual level in the
Unrelated Levels (see Figure 12) is compared with the group in the Related Levels’
first alternative approach (see Figure 13).

4.4. Similar Levels

This pattern may be used to develop mobile games consisting of similar levels. The
difference is only because of the different values of parameters.

(1) Intent: GameLevel class has major control and any variation may be controlled
through parameters.

(2) Motivation: Most games offer levels to the players. All levels are entirely similar
regarding graphics, game actions, key functions, and other features. The difficulty
usually increases with each next level because of more, but the same obstacles to
overcome or less time to catch a bonus. All levels seem to be instances of one screen.

(3) Implementation: This scenario suggests that only one concrete class should be there
to represent any of the game levels. This class could implement the whole game logic.
All levels are nothing more than instances of this class. Thus, this pattern does not
require the creation of a separate class for each level. The customization of levels may
be done by parameters to the constructor and/or through setter methods. Another
option to customize a level is to implement an automatic technique. For example,
the number of enemies in each next level would be increased by 20%. A variable
should be there to store the number of levels. Access to this variable can be given to

Appl. Sci. 2023, 13, 1198 19 of 36

the player through an input field in Settings to let him/her set the number of levels
himself/herself.

(4) Diagram: Figure 15 explains class diagram of the Similar Levels pattern.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 40

 If it has functionalities other than those implemented by LevelX and LevelY, the new

class LevelZ will be a direct subclass of GameLevel.

 If it is similar to any existing level, it will extend the class of that existing level.

 If it contains all functionalities of an existing level in addition to any new ones, it will

extend that existing level.

This suggests that inheritance can go down to any level. Thus, this pattern is usually

open to adding new levels.

(8) Relationships: This pattern is an extension of Unrelated Levels. In a game having un-

related levels, if some new level similar to a previous level has to be added, the new

level will have to extend the previous one. Thus, the game would no longer belong

to the Unrelated Levels category, instead, to the Related Levels category. The rela-

tionship between two patterns may also be judged if the individual level in the Un-

related Levels (see Figure 12) is compared with the group in the Related Levels’ first

alternative approach (see Figure 13).

4.4. Similar Levels:

This pattern may be used to develop mobile games consisting of similar levels. The

difference is only because of the different values of parameters.

(1) Intent: GameLevel class has major control and any variation may be controlled

through parameters.

(2) Motivation: Most games offer levels to the players. All levels are entirely similar re-

garding graphics, game actions, key functions, and other features. The difficulty usu-

ally increases with each next level because of more, but the same obstacles to over-

come or less time to catch a bonus. All levels seem to be instances of one screen.

(3) Implementation: This scenario suggests that only one concrete class should be there

to represent any of the game levels. This class could implement the whole game logic.

All levels are nothing more than instances of this class. Thus, this pattern does not

require the creation of a separate class for each level. The customization of levels may

be done by parameters to the constructor and/or through setter methods. Another

option to customize a level is to implement an automatic technique. For example, the

number of enemies in each next level would be increased by 20%. A variable should

be there to store the number of levels. Access to this variable can be given to the

player through an input field in Settings to let him/her set the number of levels him-

self/herself.

(4) Diagram: Figure 15 explains class diagram of the Similar Levels pattern.

Figure 15. Similar Levels pattern.

(5) Participants: GameLevel is the only concrete class that is used as a template to create

levels. This class extends AbstractUpdateable.

(6) Sample Code: The Appendix A presents sample code for GameLevel class. The code

in the Appendix A shows how instances of levels created by following code in the

UpdateableManager class.

(7) Consequences: This pattern is the simplest from all patterns presented above. Be-

cause of its simplicity, it does not have any design options or tradeoffs. Other than

classes and interfaces common to all patterns, the only essential class is GameLevel,

Figure 15. Similar Levels pattern.

(5) Participants: GameLevel is the only concrete class that is used as a template to create
levels. This class extends AbstractUpdateable.

(6) Sample Code: The Appendix A presents sample code for GameLevel class. The code
in the Appendix A shows how instances of levels created by following code in the
UpdateableManager class.

(7) Consequences: This pattern is the simplest from all patterns presented above. Because
of its simplicity, it does not have any design options or tradeoffs. Other than classes
and interfaces common to all patterns, the only essential class is GameLevel, which,
unlike all other patterns, is a concrete class. This does not mean that the pattern is
only for simple games. There is a potential for GoF and other patterns to take part in
the implementation of such additional complexities.

4.5. Different Parts

This pattern may be used to develop mobile games with different parts, where one
part usually implements the main game environment.

(1) Intent: This pattern suggests that game logic should be divided into different parts
and communication between parts may be through an interface.

(2) Motivation: In some games, the game logic is divided into different parts. The player
has to enter and exit these parts at certain points. These parts are different enough
to handle them differently. In the first type, one part usually represents the main
game environment where a player has to deal with enemies with the help of friends
to achieve the goal. Other parts are supporting the main gameplay in one way or the
other. In the second type, the main game environment is partitioned where each part
represents a different location or scene. Though, each part has main game-related
tasks, they are sufficiently different from others to be implemented in a separate class.
Adventure games are most likely to have this pattern.

(3) Implementation: As each part is different from all others, a separate class would
be used for each part. All of these classes will directly extend AbstractUpdateable
because there is nothing common among the parts. It is quite possible that parts have
to communicate with each other especially while leaving one part to entering another.
Certain factors might be shared in this communication. For example, in a game, coins
may be earned in the main part of the game, which may be spent in the shop part.
Similarly, the powers or weapons bought in the shop would be used in the main game
part. To address this sharing, a class with shared features is required. An appropriate
name for this class may be GameStatus, since the status of the game is shared.

(4) Diagram: Figure 16 represents class diagram of the Similar Levels pattern.

Appl. Sci. 2023, 13, 1198 20 of 36

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 40

which, unlike all other patterns, is a concrete class. This does not mean that the pat-

tern is only for simple games. There is a potential for GoF and other patterns to take

part in the implementation of such additional complexities.

4.5. Different Parts

This pattern may be used to develop mobile games with different parts, where one

part usually implements the main game environment.

(1) Intent: This pattern suggests that game logic should be divided into different parts

and communication between parts may be through an interface.

(2) Motivation: In some games, the game logic is divided into different parts. The player

has to enter and exit these parts at certain points. These parts are different enough to

handle them differently. In the first type, one part usually represents the main game

environment where a player has to deal with enemies with the help of friends to

achieve the goal. Other parts are supporting the main gameplay in one way or the

other. In the second type, the main game environment is partitioned where each part

represents a different location or scene. Though, each part has main game-related

tasks, they are sufficiently different from others to be implemented in a separate class.

Adventure games are most likely to have this pattern.

(3) Implementation: As each part is different from all others, a separate class would be

used for each part. All of these classes will directly extend AbstractUpdateable be-

cause there is nothing common among the parts. It is quite possible that parts have

to communicate with each other especially while leaving one part to entering an-

other. Certain factors might be shared in this communication. For example, in a game,

coins may be earned in the main part of the game, which may be spent in the shop

part. Similarly, the powers or weapons bought in the shop would be used in the main

game part. To address this sharing, a class with shared features is required. An ap-

propriate name for this class may be GameStatus, since the status of the game is

shared.

(4) Diagram: Figure 16 represents class diagram of the Similar Levels pattern.

Figure 16. Class diagram of Different Parts pattern.

(5) Participants:

- MainPart class includes the implementation of the main game logic and envi-

ronment.

- SuppPart_j, SuppPart_k (an arbitrary number of parts) are classes implementing

each supporting part.

- GameStatus class stores the status of the game, which is shared by different

parts.

(6) Sample Code: The Appendix A depicts sample code for the Different Parts pattern.

(7) Consequences: Each part of a game can have entirely different logics and design. The

diagram and sample code shown here are minimal. In practice, there can be a group

Figure 16. Class diagram of Different Parts pattern.

(5) Participants:

- MainPart class includes the implementation of the main game logic and environ-
ment.

- SuppPart_j, SuppPart_k (an arbitrary number of parts) are classes implementing
each supporting part.

- GameStatus class stores the status of the game, which is shared by different parts.

(6) Sample Code: The Appendix A depicts sample code for the Different Parts pattern.
(7) Consequences: Each part of a game can have entirely different logics and design. The

diagram and sample code shown here are minimal. In practice, there can be a group
of classes for each part. This design pattern does not take details and complexities of
a part into account. The pattern does not limit the complexity of a part as long as it
can be identified as a part.

(8) Relationships: Although Different Parts pattern seems a simple variation of Unrelated
Levels, yet there is a definite difference between them. In Unrelated Levels, we talk
about levels, while in Different Parts we talk about parts.

4.6. Single Platform

This pattern may be used to develop mobile games that have a single game area or
environment/platform.

(1) Intent: This pattern suggests a single platform for the development of games.
(2) Motivation: Board games such as Checkers and Sudoku have a single environment. A

single screen (usually static) shows the board. These games may not have any levels.
The complete game from start to completion is played in one virtual place or platform.

In some other types of games, though screens representing game environment seem
dynamic, they actually have a single platform; thus, start and completion take place in that
platform. There may be levels, but the transition between them is not clear.

(3) Implementation: In both scenarios, a single class may be used to implement the
platform. If a platform is too complicated to be implemented in one class, a group
of classes may be used. For example, one class implements cells, another class
implements color patterns, and one class represents, for example, the mainboard.
Unlike other patterns discussed above, it is not important that all of these classes
should extend a common superclass.

In fact, there can be a single class serving the purpose of both GameGraphics and
GameLogic. On the other hand, there can be a number of classes to make up the game’s
graphics part and a number of classes to implement the game’s logic.

(4) Diagram: Figure 17 presents the class diagram of the Single Platform pattern.

Appl. Sci. 2023, 13, 1198 21 of 36

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 40

of classes for each part. This design pattern does not take details and complexities of

a part into account. The pattern does not limit the complexity of a part as long as it

can be identified as a part.

(8) Relationships: Although Different Parts pattern seems a simple variation of Unre-

lated Levels, yet there is a definite difference between them. In Unrelated Levels, we

talk about levels, while in Different Parts we talk about parts.

4.6. Single Platform

This pattern may be used to develop mobile games that have a single game area or

environment/platform.

(1) Intent: This pattern suggests a single platform for the development of games.

(2) Motivation: Board games such as Checkers and Sudoku have a single environment.

A single screen (usually static) shows the board. These games may not have any lev-

els. The complete game from start to completion is played in one virtual place or

platform.

In some other types of games, though screens representing game environment seem

dynamic, they actually have a single platform; thus, start and completion take place in

that platform. There may be levels, but the transition between them is not clear.

(3) Implementation: In both scenarios, a single class may be used to implement the plat-

form. If a platform is too complicated to be implemented in one class, a group of

classes may be used. For example, one class implements cells, another class imple-

ments color patterns, and one class represents, for example, the mainboard. Unlike

other patterns discussed above, it is not important that all of these classes should

extend a common superclass.

In fact, there can be a single class serving the purpose of both GameGraphics and

GameLogic. On the other hand, there can be a number of classes to make up the game’s

graphics part and a number of classes to implement the game’s logic.

(4) Diagram: Figure 17 presents the class diagram of the Single Platform pattern.

Figure 17. Single Platform pattern.

(5) Participants:

- GameGraphics class contains an implementation of view of the game. All draw-

ings may take place in this class.

- The GameLogic class contains an implementation of game logic, which includes

calculations and decisions.

Figure 17. Single Platform pattern.

(5) Participants:

- GameGraphics class contains an implementation of view of the game. All draw-
ings may take place in this class.

- The GameLogic class contains an implementation of game logic, which includes
calculations and decisions.

(6) Sample Code: The Appendix A shows sample code for this pattern. GameDesign
class will be very similar to the GameLevel class of the Similar Levels pattern, except
there will be only one instance of this class unlike a separate instance of GameLevel
for each level. GameLogic is supposed to implement game logic (similar to Model
in MVC architecture). As mentioned above, there may be more than one class for
this purpose. Additionally, it is possible that there is no separate class for game logic
at all. The GameDesign class is doing everything instead. However, this will tend
GameDesign to be a God Class, which is undesirable. Consequences: A quite simple
game consisting of a single platform may have one class implementing both graphics
and logic of the game (instead of using separate classes for both). However, this
pattern’s simplicity does not mean that all games having this pattern will be simple.
A game’s overall structure also depends on the game’s logic besides the top-level
view. For example, a puzzle may consist of a single screen, but the implementation
of the puzzle logic may require thousands of lines of code. Hence, even if there is at
least one essential class as a participant of the pattern, there may be other supporting
classes. Thus, naturally, this pattern is open to including new patterns in its structure.

(7) Relationships: This pattern can lead to MVC architecture. Indeed, it may be a MVC
pattern, if MIDlet is considered as Controller, GameLogic class as Model, and Update-
able, AbstractUpdateable, and GameDesign as classes belonging to the View part.

4.7. Top Level Pattern of a Complete Game

All the individual design patterns discussed above focus on game levels/parts or
the main game platform. They do not discuss other features such as game characters
and menus.

An object that can be drawn on canvas and is a part of a game is called an Entity. A
game can have a number of entities. Each entity is represented by an image.

Entity class encapsulates the features of an entity. Most likely, the Entity should be
a direct subclass of Sprite in Java ME. The Sprite class includes handy methods such as
collidesWith(), setLocation(), and setVisible(). All characters (e.g., Enemy, Pad, Fire, etc.)
may extend the Entity class to add their behaviors. If a character does not have its own
overridden features, it can be a direct instance of an Entity.

Although menu and menu options are not part of the gameplay and game engine,
they are still an important part of any game. Each design pattern is just a substitute for

Appl. Sci. 2023, 13, 1198 22 of 36

one main pattern. This pattern is shown in Figure 17. There may be a number of design
patterns for menus and menu options. In our case, classes for menu and all menu options
should implement the Updateable, the same interface implemented by classes of all levels
or parts in our design patterns. For convenience, they can extend the AbstractUpdateable
class instead. All menu option classes should extend the abstract class MenuOption.

The Unrelated Levels design pattern enclosed in a dashed box has been substituted
as an example. Any individual design pattern can be substituted likewise. Figure 18
represents the complete generic design pattern for mobile games. All our demo games use
this pattern. The diagram also shows how Entity classes can be substituted to an individual
pattern. Any extended or concrete level can have this relationship with Entity depending
upon requirements. Here, the GameLevel class has been included to show how the Entity
is connected to a design pattern (as GameLevel is a participant in three of our patterns).
For the Different Parts pattern, classes implementing parts, and for Single Platform pattern,
GameDesign class will be in a relationship with the Entity instead of GameLevel class.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 40

Figure 18. Integration of an individual pattern into a complete game.

As we mentioned earlier, we have developed four demo games for mobiles using the

first four categories. They are simple and in accordance with the diagrams presented in

this paper. The games are:

 ShootDown uses Unrelated Levels pattern.

 GrabStars uses Related Levels pattern.

 Avoid uses Similar Levels pattern.

OnJourney uses Different Parts pattern.

5. Case Study (Demo Games)

To validate the proposed taxonomy and design patterns, we have developed four

demo games, namely Avoid, ShootDown, GrabStar, and OnJourney, as a case study using

first four design patterns (i.e., similar levels, unrelated levels, related levels, and different

parts). The fifth pattern, “single platform”, is pretty simple having only one or two essen-

tial classes, and we did not apply that pattern in our demo games. These games are

Figure 18. Integration of an individual pattern into a complete game.

Appl. Sci. 2023, 13, 1198 23 of 36

As we mentioned earlier, we have developed four demo games for mobiles using the
first four categories. They are simple and in accordance with the diagrams presented in
this paper. The games are:

• ShootDown uses Unrelated Levels pattern.
• GrabStars uses Related Levels pattern.
• Avoid uses Similar Levels pattern.

OnJourney uses Different Parts pattern.

5. Case Study (Demo Games)

To validate the proposed taxonomy and design patterns, we have developed four
demo games, namely Avoid, ShootDown, GrabStar, and OnJourney, as a case study using
first four design patterns (i.e., similar levels, unrelated levels, related levels, and different
parts). The fifth pattern, “single platform”, is pretty simple having only one or two essential
classes, and we did not apply that pattern in our demo games. These games are evaluated by
two graduate students studying at COMSATS University Lahore Campus. In the first phase
of the case study, we investigated how already developed games can be categorized based
on our proposed taxonomy. We realized that a number of already developed games can be
placed under any one of the categories proposed by our taxonomy as shown in Table 1.

Table 1. Mapping of existing games with categories of taxonomy.

Games Category/Level

Color Bridge Similar Levels

Block Breaker, DX Ball Related Levels

Seeding by NEWGROUNDS, Haste-Makes-Waste Different parts

Sudoku, Draughts, Beach Rally Single platform

In the second phase, we present summarized information about four demo games that
we developed to realize the concept of design patterns.

5.1. Design Pattern: Similar Levels (Game: Avoid)
5.1.1. Scenario

This game consists of levels. In all levels, fireballs are continuously falling at random
places and the Avatar is a pad. The player has to move it left and right to avoid the fireballs.
To complete a level, a player has to avoid all fireballs until the level time finishes. However,
if a fireball hits the pad, one life is deducted. When all lives are deducted, the game is
over. Four-pointed stars also fall at random times. If a player obtains the star, a bonus of a
hundred points is awarded.

Figure 19 demonstrates the snapshot of a sample level of the Avoid game.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 40

evaluated by two graduate students studying at COMSATS University Lahore Campus.

In the first phase of the case study, we investigated how already developed games can be

categorized based on our proposed taxonomy. We realized that a number of already de-

veloped games can be placed under any one of the categories proposed by our taxonomy

as shown in Table 1.

Table 1. Mapping of existing games with categories of taxonomy.

Games Category/Level

Color Bridge Similar Levels

Block Breaker, DX Ball Related Levels

Seeding by NEWGROUNDS, Haste-

Makes-Waste
Different parts

Sudoku, Draughts, Beach Rally Single platform

In the second phase, we present summarized information about four demo games

that we developed to realize the concept of design patterns.

5.1. Design Pattern: Similar Levels (Game: Avoid)

5.1.1. Scenario

This game consists of levels. In all levels, fireballs are continuously falling at random

places and the Avatar is a pad. The player has to move it left and right to avoid the fire-

balls. To complete a level, a player has to avoid all fireballs until the level time finishes.

However, if a fireball hits the pad, one life is deducted. When all lives are deducted, the

game is over. Four-pointed stars also fall at random times. If a player obtains the star, a

bonus of a hundred points is awarded.

Figure 19 demonstrates the snapshot of a sample level of the Avoid game.

Figure 19. Avoid demo game.

5.1.2. Justification

As we can see, no new functionality is introduced at any level. The difficulty of each

next level increases only by adding more fireballs and varying level time. Thus, all levels

are similar, and they are just instances of one concrete class named as GameLevel. The

properties that vary level by level can be set using parameters to the constructor.

5.1.3. Consequences of Using the Design Pattern

This pattern is the simplest of all the design patterns. Due to its simplicity, it does not

have any design options or tradeoffs. Other than classes and interfaces common to all

patterns, the only essential class is GameLevel which, unlike all other patterns, is a con-

crete class. There is a potential for GoF and other patterns to take part in implementing

such additional complexities.

Figure 19. Avoid demo game.

Appl. Sci. 2023, 13, 1198 24 of 36

5.1.2. Justification

As we can see, no new functionality is introduced at any level. The difficulty of each
next level increases only by adding more fireballs and varying level time. Thus, all levels
are similar, and they are just instances of one concrete class named as GameLevel. The
properties that vary level by level can be set using parameters to the constructor.

5.1.3. Consequences of Using the Design Pattern

This pattern is the simplest of all the design patterns. Due to its simplicity, it does
not have any design options or tradeoffs. Other than classes and interfaces common to all
patterns, the only essential class is GameLevel which, unlike all other patterns, is a concrete
class. There is a potential for GoF and other patterns to take part in implementing such
additional complexities.

5.2. Design Pattern: Unrelated Levels (Game: ShootDown)
5.2.1. Scenario

This game consists of unrelated levels. In the first level, planes are flying down. The
player has to target and fire them within a given time limit. A player can move the target
in any direction. When a plane comes into the target, it can immediately be fired. In the
second level, enemy helicopters have to be targeted and fired from a fixed anti-aircraft gun
(a.k.a., cannon in the game). In the third level, an anti-aircraft tank (a.k.a., tank in the game)
can fire only vertically. Thus, to shoot down the smart helicopters that can drop bombs,
the tank has to be adjusted by moving it. When either level time finishes before hitting
all enemies in a level or the tank comes under bombs twice, the game is over. Figure 20
presents snapshots of different levels.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 25 of 40

5.2. Design Pattern: Unrelated Levels (Game: ShootDown)

5.2.1. Scenario

This game consists of unrelated levels. In the first level, planes are flying down. The

player has to target and fire them within a given time limit. A player can move the target

in any direction. When a plane comes into the target, it can immediately be fired. In the

second level, enemy helicopters have to be targeted and fired from a fixed anti-aircraft

gun (a.k.a., cannon in the game). In the third level, an anti-aircraft tank (a.k.a., tank in the

game) can fire only vertically. Thus, to shoot down the smart helicopters that can drop

bombs, the tank has to be adjusted by moving it. When either level time finishes before

hitting all enemies in a level or the tank comes under bombs twice, the game is over. Fig-

ure 20 presents snapshots of different levels.

Figure 20. Different levels of the ShootDown demo game.

5.2.2. Justification

We can see from the snapshots of Figure 20 that all three levels are different from

each other. The common factor in all of them is that there are enemies that have to be

targeted and fired. The type of enemy, how to target it, and how it is hit when the player

presses the fire button is different; hence the implementation of each level is different from

others. In first and second levels, the target is the avatar. A player can control it using

arrow keys. In the third level, the avatar is the tank. A player can move it horizontally

using left and right keys. In the first level, when a player presses fire, the plane under

target is immediately hit. In the second level, fire moves from the cannon towards the

target. While in the third level, fire moves vertically upward from the tank. In the third

level, unlike other levels, helicopters can drop bombs, which have to be avoided by mov-

ing tank away from them. It is important to mention that images for each level are also

different. With these differences among different levels, we can justify saying that this

game has an Unrelated Levels pattern. There are common factors for all the levels. These

include Level Complete, Level Failed, Pause, and Calculate Score. All these levels would

be implemented in GameLevel, which is the abstract superclass of all levels.

5.2.3. Consequences of Using the Design Pattern

One can argue that first and second levels have similarities such as target. Thus, why

should they not share a common superclass that implements the “target” feature? (i.e.,

does it not have a Related Levels pattern instead?) First, the similarities are minimal as

compared to the differences. As this is a demo game, we have tried to make things simple.

There is a possibility in a full-scale game that levels bear negligible similarities while hav-

ing essential differences. Second, whereas the “target” feature is common in the first and

second levels, the “fire” feature is common in the second and third level. The question

arises of how to address this overlapping of similarities in a language like Java, where

multiple inheritance is not possible (though possible through interfaces, but without code

reuse, and many other restrictions)? Hence, we cannot put this game and all such games

(having too much overlapping of similarities among levels) under the Related Levels cat-

egory. One way to address these types of similarities or commonalities is to implement

each such similarity in a separate class and instantiate it in the appropriate level class.

Through this way, we may prefer composition over inheritance. By separating

Figure 20. Different levels of the ShootDown demo game.

5.2.2. Justification

We can see from the snapshots of Figure 20 that all three levels are different from each
other. The common factor in all of them is that there are enemies that have to be targeted
and fired. The type of enemy, how to target it, and how it is hit when the player presses the
fire button is different; hence the implementation of each level is different from others. In
first and second levels, the target is the avatar. A player can control it using arrow keys. In
the third level, the avatar is the tank. A player can move it horizontally using left and right
keys. In the first level, when a player presses fire, the plane under target is immediately
hit. In the second level, fire moves from the cannon towards the target. While in the third
level, fire moves vertically upward from the tank. In the third level, unlike other levels,
helicopters can drop bombs, which have to be avoided by moving tank away from them. It
is important to mention that images for each level are also different. With these differences
among different levels, we can justify saying that this game has an Unrelated Levels pattern.
There are common factors for all the levels. These include Level Complete, Level Failed,
Pause, and Calculate Score. All these levels would be implemented in GameLevel, which is
the abstract superclass of all levels.

5.2.3. Consequences of Using the Design Pattern

One can argue that first and second levels have similarities such as target. Thus, why
should they not share a common superclass that implements the “target” feature? (i.e., does
it not have a Related Levels pattern instead?) First, the similarities are minimal as compared

Appl. Sci. 2023, 13, 1198 25 of 36

to the differences. As this is a demo game, we have tried to make things simple. There is a
possibility in a full-scale game that levels bear negligible similarities while having essential
differences. Second, whereas the “target” feature is common in the first and second levels,
the “fire” feature is common in the second and third level. The question arises of how to
address this overlapping of similarities in a language like Java, where multiple inheritance
is not possible (though possible through interfaces, but without code reuse, and many
other restrictions)? Hence, we cannot put this game and all such games (having too much
overlapping of similarities among levels) under the Related Levels category. One way to
address these types of similarities or commonalities is to implement each such similarity
in a separate class and instantiate it in the appropriate level class. Through this way,
we may prefer composition over inheritance. By separating commonalities among levels
from intrinsic behaviors of levels, we tend to use the Strategy pattern [55] along with the
Unrelated Levels pattern. Figure 21 shows this pattern with a sort of Strategy pattern used.

19

3) Consequences of using the design pattern
One can argue that first and second levels have similarities such as target. Thus, why should they do not share a common
superclass that implements the “target” feature? (i.e., does it not have a Related Levels pattern instead?) First, similarities are
minimal as compared to differences. As this is a demo game, we have tried to make things simple. There is a possibility in a
full-scale game that levels bear negligible similarities while having essential differences. Second, whereas the “target” feature is
common in first and second levels, the “fire” feature is common in the second and third level. The question arises that how to
address this overlapping of similarities in a language like Java, where multiple inheritance is not possible (though possible
through interfaces, but without code reuse, and many other restrictions)? Hence, we cannot put this game and all such games
(having too much overlapping of similarities among levels) under Related Levels category. One way to address these types of
similarities or commonalities is to implement each such similarity in a separate class and instantiate it in the appropriate level
class. Through this way, we may prefer Composition over Inheritance. By separating commonalities among levels from intrinsic
behaviors of levels we tend to use Strategy pattern [22] along with Unrelated Levels pattern. Fig 21 shows this pattern with a
sort of Strategy pattern used.

Figure 20: Different Levels of ShootDown Demo Game.

Figure 21: Unrelated Levels Pattern with Strategy Pattern.

Level 1
Avatar: Target
Fire shoots immediately
Enemy: Plane
Keys: Left, Right, Up,
 Down, Fire

Level 2
Avatar: Target
Fire moves from Cannon
Enemy: Helicopter
Keys: Left, Right, Up,
 Down, Fire

Level 3
Avatar: Tank
Fire Moves from Tank
Enemy: Smart Helicopter that
can drop bombs
Keys: Left, Right, Fire

GameLevel

pause()
resume()

Level1

Level1Related()

Level2

Level2Related()

<<interface>>
Updateable

+update()
+keyPressed(keyCode: int)

AbstractUpdateable

+customize()
+utilityMethod()

Commonality1

Commonality2

Figure 21. Unrelated Levels pattern with Strategy pattern.

5.3. Design Pattern: Related Levels (Game: GrabStar)
5.3.1. Scenario

This game is developed based on the concept of related levels. The player has to collect
all stars, which are continuously moving on the screen. To collect stars, an arrow has to
be moved and collide with them. All the stars have to be collected within a specified time;
otherwise, the game will be over. In the third level, in addition to collecting stars, the player
has to avoid cross-shaped enemies. Colliding with an enemy will decrease one life, and
when two lives are lost, the game is over. The fourth level is similar to level three. Figure 22
shows the snapshots of different levels.

5.3.2. Justification

The default and common functionality in all levels is to collect stars by moving
the arrow towards them and colliding with them. This functionality is implemented
in the abstract superclass GameLevel. The first and second levels do not add any new
functionality; thus, their respective classes are subclasses of GameLevel in its simplest
forms. They customize attributes such as “level time” and “number of stars”. The third
level introduces enemies, which should be avoided. Thus, the Level 3 class overrides the
paint() method to add this new functionality, but it also calls super.paint() to include the
default functionality. Besides, new data members (such as noOfEnemies) are added with
protected access (i.e., subclasses may access them). The fourth level is the same as the third

Appl. Sci. 2023, 13, 1198 26 of 36

level except the number of enemies is increased, and some other properties are changed.
Hence, this game correctly has a Related Levels pattern.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 40

commonalities among levels from intrinsic behaviors of levels, we tend to use the Strategy

pattern [55] along with the Unrelated Levels pattern. Figure 21 shows this pattern with a

sort of Strategy pattern used.

Figure 21. Unrelated Levels pattern with Strategy pattern.

5.3. Design Pattern: Related Levels (Game: GrabStar)

5.3.1. Scenario

This game is developed based on the concept of related levels. The player has to col-

lect all stars, which are continuously moving on the screen. To collect stars, an arrow has

to be moved and collide with them. All the stars have to be collected within a specified

time; otherwise, the game will be over. In the third level, in addition to collecting stars,

the player has to avoid cross-shaped enemies. Colliding with an enemy will decrease one

life, and when two lives are lost, the game is over. The fourth level is similar to level three.

Figure 22 shows the snapshots of different levels.

Figure 22. Related levels of GrabStar demo game.

5.3.2. Justification

The default and common functionality in all levels is to collect stars by moving the

arrow towards them and colliding with them. This functionality is implemented in the

abstract superclass GameLevel. The first and second levels do not add any new function-

ality; thus, their respective classes are subclasses of GameLevel in its simplest forms. They

Figure 22. Related levels of GrabStar demo game.

5.3.3. Consequences of Using the Design Pattern

The consequence of using this design pattern are discussed in Section 4 (C Related Levels).
We can infer from discussion that the inheritance can go down to any level. Thus, this

pattern is usually open for adding new levels. In one option, all classes of related or similar
levels are direct subclasses of one common abstract class, which we call “group class”. This
group class is, in turn, a direct subclass of GameLevel. This alternative makes each level
more independent and is better to organize levels, but it results in a large number of classes
even if levels do not have critical differences. For example, if we want to add a new level
which does not fit in any group, a new group has to be created first (i.e., a new group class
will have to be created extending GameLevel), then a concrete class representing the new
level needs to be created. Another point (either positive or negative) is that all level classes
lie on the same level of inheritance.

The second alternative is that all similar levels are just instances of one concrete group
class. Making levels objects instead of classes, we limit them to functionalities defined in
the respective class representing the group. Thus, to add a new functionality in a level, a
separate group class has to be created. This is in contrast to the original and first design
alternative in which we implement the new functionality in an already existing class for
the level. For this reason, this alternative is not preferred. In one sense, this alternative
is an enhanced version of Unrelated Levels; if we want to add a new level similar to an
existing one in Unrelated Levels, would not it be better to create just a new instance of the
existing level class? However, to do this, the existing level class should have some interface
to customize its attributes (e.g., level time and level bonus)

The original design option of this pattern is a trade-off between the bulk of classes at
the single level of inheritance of first design alternative and overly compact design with
close openness of the second alternative.

5.4. Design Pattern: Different Parts (Game: OnJourney)
5.4.1. Scenario

This is an adventure game developed on the concept of different parts. The hero
named Bidiro has to set out on a journey. Before the player starts playing, guidelines for
the journey are given. Bidiro is the avatar in the main game part. Once the game starts,
Bidiro starts walking towards his destination. While walking, he can get coins by jumping
at specific locations. Walking decreases health. There are shops beside the road at certain
destinations. Bidiro can enter in a shop to buy food from earned coins to regain health. He

Appl. Sci. 2023, 13, 1198 27 of 36

can also hire a taxi or a bicycle if he can afford them. Minimum hiring will take him up to
the next shop. By riding a bicycle, he can go faster with less decrement in health. Similarly,
using a taxi can let him travel even faster with a minimal decrement in health. However,
Bidiro can earn coins only when he is walking. The goal is to reach the destination as early
as possible. Figure 23 presents the snapshots from different parts of the demo game.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 28 of 40

Figure 23. Different parts of OnJourney demo game.

5.4.2. Justification

OnJourney is a perfect example of the Different Parts pattern. All parts have nothing

in common except some images used as icons. The Introductory part is about an overview

of the game and guidelines for the players. This part has nothing to do with gameplay

since it does not take any input about the upcoming Main part from the player. The Main

part is where the player can earn money, utilize health and any resources he/she bought

from that money to reach the destination at earliest. At specific points, he/she can enter

the shop, where the Shop part begins. Exiting the Shop part leaves the player back in the

Main part. When he/she reaches the destination, the End part begins. Each part has been

implemented in a separate class. The Shop and Main parts share things; coins earned in

Main are spent in Shop, and food bought in Shop (and eaten) increases the health, which

will help him travel further in Main, and taxi and bicycle hired in Shop can be used to go

faster in Main. As suggested by the design pattern, the shared things are addressed using

the Status class. An instance of this class is created in the MainPart class, and a reference

to it is made available in the ShopPart class. The Status class contains variables for storing

coins, health status, and the number of taxi and bicycle hires and methods to use these

resources.

5.4.3. Consequences of Using the Design Pattern

Each part of the game can have entirely different logic and design. The diagram and

sample code shown here are minimal. In practice, there can be a group of classes for each

part. This design pattern does not take details and complexities of a part into account. The

pattern does not limit the complexity of a part as long as it can be identified as a part.

Although the Different Parts pattern seems a simple variation of Unrelated Levels, there

is a definite difference between them. In Unrelated Levels, we talk about levels, while in

Different Parts we talk about parts. In a play session, one has to play a game level by level,

where each next level is either more challenging or lengthier, while the game parts repre-

sent different locations or scenes of the game environment. In level-based games, one may

not enter into any level in a single play session; he can enter only the next level. On the

other hand, when a game has different parts, there may be two possibilities: either the

player can enter any adjacent part or can enter only a specific part through some command

or any other way.

6. Conclusions and Future Work

Software design patterns are used to develop quality applications. Consequently,

their application for the development of mobile games is very beneficial to attain the ben-

efits of easy evolution and reusability. Besides, design patterns improve the development

Figure 23. Different parts of OnJourney demo game.

5.4.2. Justification

OnJourney is a perfect example of the Different Parts pattern. All parts have nothing
in common except some images used as icons. The Introductory part is about an overview
of the game and guidelines for the players. This part has nothing to do with gameplay since
it does not take any input about the upcoming Main part from the player. The Main part is
where the player can earn money, utilize health and any resources he/she bought from that
money to reach the destination at earliest. At specific points, he/she can enter the shop,
where the Shop part begins. Exiting the Shop part leaves the player back in the Main part.
When he/she reaches the destination, the End part begins. Each part has been implemented
in a separate class. The Shop and Main parts share things; coins earned in Main are spent in
Shop, and food bought in Shop (and eaten) increases the health, which will help him travel
further in Main, and taxi and bicycle hired in Shop can be used to go faster in Main. As
suggested by the design pattern, the shared things are addressed using the Status class. An
instance of this class is created in the MainPart class, and a reference to it is made available
in the ShopPart class. The Status class contains variables for storing coins, health status,
and the number of taxi and bicycle hires and methods to use these resources.

5.4.3. Consequences of Using the Design Pattern

Each part of the game can have entirely different logic and design. The diagram and
sample code shown here are minimal. In practice, there can be a group of classes for each
part. This design pattern does not take details and complexities of a part into account.
The pattern does not limit the complexity of a part as long as it can be identified as a part.
Although the Different Parts pattern seems a simple variation of Unrelated Levels, there
is a definite difference between them. In Unrelated Levels, we talk about levels, while
in Different Parts we talk about parts. In a play session, one has to play a game level by
level, where each next level is either more challenging or lengthier, while the game parts
represent different locations or scenes of the game environment. In level-based games, one
may not enter into any level in a single play session; he can enter only the next level. On
the other hand, when a game has different parts, there may be two possibilities: either the
player can enter any adjacent part or can enter only a specific part through some command
or any other way.

Appl. Sci. 2023, 13, 1198 28 of 36

6. Conclusions and Future Work

Software design patterns are used to develop quality applications. Consequently, their
application for the development of mobile games is very beneficial to attain the benefits of
easy evolution and reusability. Besides, design patterns improve the development process by
providing already tested and proven solutions to frequently occurring game design problems.
Design patterns can be identified and reused in various parts of mobile games such as menus,
placements of non-player-characters, scoring, and other entities. Genres of mobile games also
have an impact on the design patterns used in them. Thus, all games belonging to a specific
genre would have some commonality in design patterns occurring in them.

In this paper, mobile games have been categorized based on a new taxonomy that
considers top-level structural similarity without considering the details of the games. By
structure, we mean how different parts of a game are related to each other and how they
are placed together to form a whole game. Each pattern is a part of one design pattern that
includes other game entities, menus, and menu options as well.

Based on taxonomy, we introduce five novel design patterns dedicated to mobile
games: Unrelated Levels, Related Levels, Similar Levels, Different Parts, and Single Plat-
form design patterns. We performed a pragmatic validation of the proposed design patterns
and demonstrated their applicability through the implementation. To validate the proposed
design patterns, we developed four demo games, namely Avoid, ShootDown, GrabStar,
and OnJourney. The source code of these games can be used as templates to develop
new games. Together with the base taxonomy, design patterns are programming patterns
outlining core classes and interfaces of games’ top-level structure. Hence, game designers
and developers may use these patterns for the development of games.

The proposed taxonomy can be enhanced by including new factors in the future.
Currently, the proposed design patterns and developed games are evaluated by two
graduate students. There may be threats to external validity of our proposed design
patterns and their applications for all type of mobile games. In order to mitigate this threat
in the future, we plan to evaluate proposed design patterns and developed games from
academia and the software industry on a large scale. Based on the feedback from academia
and industry, the existing design patterns may be modified to reflect any enhancement in the
classification and taxanomy. More categories may be added to encompass a large number of
existing games. We also plan to empirically study the benefits of applying design patterns
in mobile games development. This can be done through a direct comparison for the games
that follow or do not follow design patterns during development of mobile games.

Author Contributions: Conceptualization, G.R., Y.H., T.U. and J.R.; methodology, G.R., Y.H., T.U.
and J.R.; software, G.R., Y.H., T.U. and J.R.; validation, G.R., Y.H., J.R., S.F.Y. and F.S.; formal analysis,
G.R., Y.H., T.U. and J.R.; investigation, G.R., Y.H., T.U. and J.R.; resources, G.R., S.F.Y. and F.S.; data
curation, G.R., Y.H., J.R., S.F.Y. and F.S.; writing—original draft preparation, G.R., Y.H. and J.R.;
writing—review and editing, G.R. and J.R.; visualization, G.R., Y.H., J.R., S.F.Y. and F.S.; supervision,
G.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Sample Code of Common Pattern

public interface Updateable
{
void init();

Appl. Sci. 2023, 13, 1198 29 of 36

void update();
void keyPressed(int keyCode);
void keyReleaed(int keyCode);
void keyRepeated(int keyCode);
void destroy();
}
public abstract class AbstractUpdateable implements Updateable, GameConstants
{
protected static canvasWidth = TheCanvas.getInstance().getWidth();
protected static canvasHeight = TheCanvas.getInstance().getHeight();
protected static Graphics g = TheCanvas.getInstance().getGraphicsObj;
. . .

//protected methods such as setDelay() etc.
//Utility methods such as cropImage() etc.
}
public class TheCanvas extends GameCanvas implements Runnable, GameConstants
{
. . .

private Updateable currentUpdateable;
private Thread runner;
private final Graphics g = getGraphics();
. . .

public void start()
{
//show splash screen...
runner.start();
}
public void run()
{
while(go) {
if(splashCtr < SPLASH_DELAY) {
//show splash screen
}
else {
currentUpdateable.update();
flushGraphics();
}
Thread.sleep(currentDelay);
}
}
public void keyPressed(int key)
{
currentUpdateable.keyPressed(key);
}
Graphics getGraphicsObj()
{
return g;
}
. . .

}
public class UpdateableManager implements GameConstants
{
private Updateable currentUpdateable;
private Updateable pausedUpdateable;

Appl. Sci. 2023, 13, 1198 30 of 36

. . .
public Updateable createUpdateable(int handler)
{
. . .

switch(handler) {
case MENU_SCR:
currentUpdateable = new Menu();
break;
. . .

case LEVEL_ONE:
currentUpdateable = new LevelOne();
break;
case LEVEL_TWO:
currentUpdateable = new LevelTwo();
break;
. . .

}
return currentUpdateable;
}
public Updateable createUpdateable(int handler, boolean pause)
{
if(pause) {
pausedCtrl = control;
pausedUpdateable = currentUpdateable;
}
return createUpdateable(handler);
}
public Updateable resumeUpdateable()
{
control = pausedCtrl;
currentUpdateable = pausedUpdateable;
return currentUpdateable;
}
. . .

}

Appendix A.2. Sample Code of Unrelated Levels Pattern

public abstract class GameLevel extends AbstractUpdateable
{
//protected data members...
. . .

public void update()
{
if(!paused) {
paint();
if(!levelCompleted && listenKeys) {
listenKeys();
}
}
}
protected void paint()
{
if(!levelCompleted && !failed)
{

Appl. Sci. 2023, 13, 1198 31 of 36

createScoreboard();
if(timeElapsed > timeToFinish) {
failed = true;
}
. . .

}
else if(levelCompleted) {
levelCompleteScreen();
}
. . .

}
public void keyPressed(int keyCode)
{
//actions to key-events which are common to all levels...
}
protected void listenKeys()
{
//Actions based on key states, common to all levels
}
//protected methods such as pause() and resume()...
//other game specific methods...
}
public class Level1 extends GameLevel
{
private Image targetImg;
private Image jetImg;
//Other level-specific attributes
...
protected void customize()
{
setDelay(gameDelay);
timeToFinish = 400;
...
}
public void init()
{
//initialize variables...
}
protected void paint()
{
super.paint();
//level-specific drawings...
}
protected void listenKeys()
{
//level-specific actions against key-states...
}
//Other methods...
}

Appendix A.3. Sample Code of Levels of Related Levels Pattern

public class LevelOne extends GameLevel
{
//protected variables...

Appl. Sci. 2023, 13, 1198 32 of 36

. . .
protected void customize()
{
noOfStars = 3;
timeToFinish = 600;
. . .

}
//other protected methods which could be overridden be some extending
// class...
}
public class LevelThree extends GameLevel
{
protected int noOfEnemies; //new introduced variable
//other protected variables...
. . .

protected void customize()
{
noOfEnemies = 4;
//other customizations...
. . .

}
public void update()
{
super.update();
//new introduced feature related code...
. . .

}
//other protected methods...
}
public class LevelFour extends LevelThree
{
. . .

protected void customize()
{
noOfEnemies = 6;
. . .

}
//Other protected methods...
}

Appendix A.4. GameLevel Class of Similar Levels Pattern

public class GameLevel extends AbstractUpdateable
{
public static int levelNo;
//Other variables...
public GameLevel(int timeToFinish, int noOfEnemies, int noOfStars, boolean first)
{
this.timeToFinish = timeToFinish;
this.noOfEnemies = noOfEnemies;
this.noOfStars = noOfStars;
. . .

}
public void update()
{

Appl. Sci. 2023, 13, 1198 33 of 36

if(!paused) {
paint();
if(!levelCompleted && listenKeys) {
listenKeys();
}
}}
private void paint()
{
//platform and other characters drawing...
. . .

}
public void keyPressed(int keyCode)
{
. . .

}
//Other private methods...
}

Appendix A.5. Sample Code Creating Instances of GameLevel in Similar Levels Pattern

Updateable createGameLevel(int timeToFinish, int noOfEnemies, int noOfStars)
{
currentUpdateable = new GameLevel(timeToFinish, noOfEnemies, noOfStars, false);
return currentUpdateable;
}

Appendix A.6. Sample Implementation of Different Parts of Different Parts Pattern

public class IntroPart extends AbstractUpdateable
{
private int pages = 2;
private int page = 1;
private String story;
//Other private variables . . .
public void init()
{
story = “Bidiro has set on journey. At begining...”;
}
public void update()
{
if(page == 1) {
. . .

}
}
public void keyPressed(int keyCode)
{
}
//Other private methods...
}
public class MainPart extends AbstractUpdateable
{
//private variables specific to this Main Part...
. . .

public void init()
{
//Initializations...

Appl. Sci. 2023, 13, 1198 34 of 36

}
public void update()
{
//update appropriate values of variables after calculations...
paint();
}
private void paint()
{
//draw graphics
}
public void keyPressed(int keyCode)
{
//Actions against key-events...
}
//Other private methods...
}

Appendix A.7. Sample Code Implementing Single Platform Pattern

public class GameDesign extends AbstractUpdateable
{
//Game Design related variables...
private GameLogic game;
. . .

public GameDesign(MIDlet midlet)
{
. . .

}
public void update()
{
//update appropriate values of variables related to drawings...
paint();
}
private void paint()
{
//Drawings...
}
public void keyPressed(int keyCode)
{
//Actions against key-events...
}
}
public class GameLogic
{
//Game-logic related variables
. . .

public void updateState(int row, int col)
{
//Update values based on moves and calculations...
}
//Game-logic private methods...
}

Appl. Sci. 2023, 13, 1198 35 of 36

References
1. Church, D. Formal Abstract Design Tools. Gamasutra Game Developer Magazine. 1991. Available online: http://www.gamasutra.

com/view/feature/131764/formal_abstract_design_tools (accessed on 10 December 2013).
2. Costikyan, G. I have No Words & I must Design: Toward a Critical Vocabulary for Games. In Proceedings of the computer games

and digital cultures conference, Tampere, Finland, 6–8 June 2002; pp. 9–33.
3. Björk, S.; Lundgren, S.; Holopainen, J. Game Design Patterns. In Proceedings of the Digital Games Research Conference, Utrecht,

The Netherlands, 4–6 November 2003; pp. 180–193.
4. Clearwater, D. What defines video game genre? thinking about genre study after the great divide. J. Can. Game Stud. Assoc. 2011,

5, 29–49.
5. Juul, J. First Use of “Ludology”: 1951. The Ludologist Online Magazine. Available online: http://www.jesperjuul.net/ludologist/

first-use-of-ludology-1951 (accessed on 3 November 2014).
6. Frasca, G. Ludology Meets Narratology: Similitudes and Differences Between (video) Games and Narrative. Originally published

in Finnish as Ludologia Kohtaa Narratologian in Parnasso, 3, 1999. English Version. 1999. Available online: http://www.
ludology.org (accessed on 5 December 2022).

7. Fabricatore, C. Gameplay and Game Mechanics Design: A Key to Quality in Videogames. In Proceedings of the OECD-CERI
Expert Meeting on Videogames and Education, Santiago, Chile, 17–18 October 2007.

8. Takahashi, D. Funware’s Threat to the Traditional Video Game Industry. Venturebeat. 2008. Available online: http://venturebeat.
com/2008/05/09/funwares-threat-to-the-traditional-video-game-industry (accessed on 3 November 2014).

9. Ampatzoglou, A.; Frantzeskou, G.; Stamelos, I. A methodology to assess the impact of design patterns on software quality. Inf.
Softw. Technol. 2012, 54, 331–346. [CrossRef]

10. Nuruzzaman, M.; Hussain, A.; Tahir, H.M. Towards Increasing Web Application Development Productivity through Object-
Oriented Framework. Int. J. Future Comput. Commun. 2013, 2, 220. [CrossRef]

11. Alghamdi, F.M.; Qureshi, M.R.J. Impact of Design Patterns on Software Maintainability. Int. J. Intell. Syst. Appl. 2014, 6, 41.
[CrossRef]

12. Gamma, E.; Helm, R.; Johnson, R.; Vlissedes, J. Design Patterns Elements of Reusable Object-Oriented Software, 1st ed.; AddisonWesley
Professional: Indianapolis, IN, USA, 1994; ISBN 0201633612.

13. Nucleus: Nucleus Research Report: Microsoft Patterns and Practices. August 2009. Available online: http://msdn.microsoft.
com/en-us/practices/ee406167.aspx (accessed on 5 December 2022).

14. Doran, J.P.; Casanova, M. Game Development Patterns and Best Practices; Packt Publishing: Birmingham, UK, 2017.
15. Mitchell, A.; Savill-Smith, C. The Use of Computer and Video Games for Learning. A Review of the Literature. Available online:

http://www.mlearning.org/docs/The%20use%20of%20computer%20and%20video%20games%20for%20learning.pdf (accessed
on 5 December 2022).

16. Connolly, T.M.; Boyle, E.A.; MacArthur, E.; Hainey, T.; Boyle, J.M. A systematic literature review of empirical evidence on
computer games and serious games. Comput. Educ. 2012, 59, 661–686. [CrossRef]

17. Davidsson, O.; Peitz, J.; Bjork, S. Game Design Patterns for Mobile Games. Proj. Rep. Nokia Res. Cent. Finl. 2006. Available online:
https://www.scribd.com (accessed on 7 January 2023).

18. Ampatzoglou, A.; Chatzigeorgiou, A. Evaluation of object-oriented design patterns in game development. Inf. Softw. Technol.
2007, 49, 445–454. [CrossRef]

19. Dondlinger, M.J. Educational video game design: A review of the literature. J. Appl. Educ. Technol. 2007, 4, 21–31.
20. Dickey, M.D. Game design and learning: A conjectural analysis of how massively multiple online role-playing games (MMORPGs)

foster intrinsic motivation. Educ. Technol. Res. Dev. 2007, 55, 253–273. [CrossRef]
21. Kelle, S.; Klemke, R.; Specht, M. Effects of game design patterns on basic life support training content. J. Educ. Technol. Soc. 2013,

16, 275–285.
22. Gestwicki, P.V. Computer games as motivation for design patterns. ACM SIGCSE Bull. 2007, 39, 233–237. [CrossRef]
23. Schmitz, B.; Klemke, R.; Specht, M. Mobile gaming patterns and their impact on learning outcomes: A literature review. In

Proceedings of the 21st Century Learning for 21st Century Skills, Saarbrücken, Germany, 18–21 September 2012; pp. 419–424.
24. Hahbudin, F.E.; Chua, F.F. Design patterns for developing high efficiency mobile application. J. Inf. Technol. Softw. Eng. 2013, 3,

1–9.
25. Kelle, S.; Klemke, R.; Specht, M. Design patterns for learning games. Int. J. Technol. Enhanc. Learn. 2011, 3, 555–569. [CrossRef]
26. Lameras, P.; Arnab, S.; Dunwell, I.; Stewart, C.; Clarke, S.; Petridis, P. Essential features of serious games design in higher

education: Linking learning attributes to game mechanics. Br. J. Educ. Technol. 2017, 48, 972–994. [CrossRef]
27. Ni, Q.; Yu, Y. Research on Educational Mobile Games and the effect it has on the Cognitive Development of Preschool Children. In

Proceedings of the Third International Conference on Digital Information, Networking, and Wireless Communications, (DINWC)
2015, Moscow, Russia, 3–5 February 2015; pp. 165–169.

28. Pombo, L.; Marques, M.M.; Carlos, V.; Guerra, C.; Lucas, M.; Loureiro, M.J. Augmented Reality and Mobile Learning in a Smart
Urban Park: Pupils’ Perceptions of the EduPARK Game. In Proceedings of the International Conference on Smart Learning
Ecosystems and Regional Development, Aveiro, Portugal, 22–23 June 2017; pp. 90–100.

29. Laine, T.H. Mobile Educational Augmented Reality Games: A Systematic Literature Review and Two Case Studies. Computers
2018, 7, 19. [CrossRef]

http://www.gamasutra.com/view/feature/131764/formal_abstract_design_tools
http://www.gamasutra.com/view/feature/131764/formal_abstract_design_tools
http://www.jesperjuul.net/ludologist/first-use-of-ludology-1951
http://www.jesperjuul.net/ludologist/first-use-of-ludology-1951
http://www.ludology.org
http://www.ludology.org
http://venturebeat.com/2008/05/09/funwares-threat-to-the-traditional-video-game-industry
http://venturebeat.com/2008/05/09/funwares-threat-to-the-traditional-video-game-industry
http://doi.org/10.1016/j.infsof.2011.10.006
http://doi.org/10.7763/IJFCC.2013.V2.156
http://doi.org/10.5815/ijisa.2014.10.06
http://msdn.microsoft.com/en-us/practices/ee406167.aspx
http://msdn.microsoft.com/en-us/practices/ee406167.aspx
http://www.mlearning.org/docs/The%20use%20of%20computer%20and%20video%20games%20for%20learning.pdf
http://doi.org/10.1016/j.compedu.2012.03.004
https://www.scribd.com
http://doi.org/10.1016/j.infsof.2006.07.003
http://doi.org/10.1007/s11423-006-9004-7
http://doi.org/10.1145/1227504.1227391
http://doi.org/10.1504/IJTEL.2011.045452
http://doi.org/10.1111/bjet.12467
http://doi.org/10.3390/computers7010019

Appl. Sci. 2023, 13, 1198 36 of 36

30. Zsila, Á.; Orosz, G.; Bőthe, B.; Tóth-Király, I.; Király, O.; Griffiths, M.; Demetrovics, Z. An empirical study on the motivations
underlying augmented reality games: The case of Pokémon Go during and after Pokémon fever. Personal. Individ. Differ. 2018,
133, 56–66. [CrossRef]

31. Papadakis, S. The use of computer games in classroom environment. Int. J. Teach. Case Stud. 2018, 9, 1–25. [CrossRef]
32. Keogh, B.; Richardson, I. Waiting to play: The labour of background games. Eur. J. Cult. Stud. 2018, 21, 13–25. [CrossRef]
33. Braham, A.; Buendía, F.; Khemaja, M.; Gargouri, F. User interface design patterns and ontology models for adaptive mobile

applications. Pers. Ubiquitous Comput. 2022, 26, 1395–1411. [CrossRef]
34. Takoordyal, K. Beginning Unity Android Game Development; Apress: New York, NY, USA, 2020.
35. Khan, M.; Rasool, G. Recovery of Mobile Game Design Patterns. In Proceedings of the 2020 21st International Arab Conference

on Information Technology (ACIT), Giza, Egypt, 28–30 November 2020; pp. 1–7.
36. Flores, N.; Paiva, A.C.; Cruz, N. Teaching Software Engineering Topics Through Pedagogical Game Design Patterns: An Empirical

Study. Information 2020, 11, 153. [CrossRef]
37. Ganesh, A.; Ndulue, C.; Orji, R. The design and development of mobile game to promote secure smartphone behaviour. In

Proceedings of the CEUR Workshop Proceedings, College Station, TX, USA, 19–20 August 2021; pp. 73–87.
38. Glaser, N.; Schmidt, M. Systematic literature review of virtual reality intervention design patterns for individuals with autism

spectrum disorders. Int. J. Hum.–Comput. Interact. 2022, 38, 753–788. [CrossRef]
39. Hui, B. Big Designs for Small Devices. JavaWorld.com. 2002. Available online: http://www.javaworld.com/javaworld/jw-12-2

002/jw-1213-j2medesign.html (accessed on 17 December 2013).
40. Narsoo, J.; Mohamudally, N. Identification of Design Patterns for Mobile Services with J2ME (Santa Rosa, USA). Issues Inf. Sci. Inf.

Technol. 2008, 5, 623–643.
41. Narsoo, J.; Sunhaloo, M.S.; Thomas, R. The Application of Design Patterns to Develop Games for Mobile Devices Using Java 2

Micro Edition (Zurich, Switzerland). J. Object Technol. 2009, 8, 153–175. [CrossRef]
42. Ilja, A. Use of Design Patterns for Mobile Game Development. Bachelor’s Thesis, Department of Computing Science, Umea

Universitet, Umea, Sweden, 2012.
43. Nystrom, R. Game Programming Patterns, 1st ed.; Genever Benning: Seattle, WA, USA, 2014; ISBN 978-0990582908. Available

online: http://gameprogrammingpatterns.com (accessed on 14 November 2014).
44. Hunicke, R.; LeBlanc, M.; Zubek, R. MDA: A Formal Approach to Game Design and Game Research. In Proceedings of the

Challenges in Games AI Workshop, 19th National Conference of Artificial Intelligence, San Jose, CA, USA, 25–29 July 2004; pp. 1–5.
45. Kreimeier, B. The Case For Game Design Patterns. Gamasutra Game Developer Magazine. 2002. Available online: http:

//www.gamasutra.com/view/feature/132649/the_case_for_game_design_patterns.php (accessed on 17 November 2014).
46. Björk, S.; Holopainen, J. Describing Games: An Interaction-Centric Structural Framework. In Proceedings of the Level Up-1st

International Digital Games Research Conference, Utrecht, The Netherlands, 4–6 November 2003; pp. 4–6.
47. Korhonen, H.; Koivisto, E.M.I. Playability Heuristics for Mobile Games. In Proceedings of the 8th International Conference on

Human-Computer Interaction with Mobile Devices and Services, MobileHCI’06, Espoo, Finland, 12–15 September 2006; pp. 9–16.
48. O’Brien, L. Design Patterns 15 Years Later: An Interview with Erich Gamma, Richard Helm, and Ralph Johnson. 2009. Available

online: http://www.informit.com/articles/article.aspx?p=1404056 (accessed on 19 November 2014).
49. Lindley, C.A. Game Taxonomies: A High-Level Framework for Game Analysis and Design. Gamasutra Game Developer Maga-

zine. October 2003. Available online: http://www.gamasutra.com/view/feature/2796/game_taxonomies_a_high_level_.php
(accessed on 10 May 2015).

50. Crawford, C. The Art of Computer Game Design; Osborne/McGraw-Hill: Berkeley, CA, USA, 1984.
51. Elverdam, C.; Aarseth, E. Game Classification and Game Design: Construction through Critical Analysis. Games Cult. 2007,

2, 3–22. [CrossRef]
52. Kickmeier-Rust, M.D. Talking Digital Educational Games. In Proceedings of the 1st Int. Open Workshop on Intelligent

Personalization and Adaptation in Digital Educational Games, Graz, Austria, 14 October 2009; pp. 55–66.
53. Dahlskog, S.; Kamstrup, A.; Espen, A. Mapping the game landscape: Locating genres using functional classification. In

Proceedings of the 4th Digital Games Research Conference, Graz, Austria, 2–4 December 2009.
54. Klabbers, J.H.G. The Gaming Landscape: A Taxonomy for Classifying Games and Simulations. In Proceedings of the 1st Digital

Games Research Conference, Utrecht, The Netherlands, 4–6 November 2003; pp. 54–68.
55. Freeman, E.; Robson, E.; Bates, B.; Sierra, K. Head First Design Patterns; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2004.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.paid.2017.06.024
http://doi.org/10.1504/IJTCS.2018.090191
http://doi.org/10.1177/1367549417705603
http://doi.org/10.1007/s00779-020-01481-5
http://doi.org/10.3390/info11030153
http://doi.org/10.1080/10447318.2021.1970433
http://www.javaworld.com/javaworld/jw-12-2002/jw-1213-j2medesign.html
http://www.javaworld.com/javaworld/jw-12-2002/jw-1213-j2medesign.html
http://doi.org/10.5381/jot.2009.8.5.a4
http://gameprogrammingpatterns.com
http://www.gamasutra.com/view/feature/132649/the_case_for_game_design_patterns.php
http://www.gamasutra.com/view/feature/132649/the_case_for_game_design_patterns.php
http://www.informit.com/articles/article.aspx?p=1404056
http://www.gamasutra.com/view/feature/2796/game_taxonomies_a_high_level_.php
http://doi.org/10.1177/1555412006286892

	Introduction
	Literature Review
	Research for Common Vocabulary of the Games
	Research on Design Patterns Related to Computer and Mobile Games
	Summary

	Taxonomy Based on Structural Similarity
	First Category—Unrelated Levels
	Second Category—Related Levels
	Third Category—Similar Levels
	Fourth Category—Different Parts
	Fifth Category—Single Platform

	Design Patterns Based on Structural Similarity
	Common Patterns
	Unrelated Levels
	Related Levels
	Similar Levels
	Different Parts
	Single Platform
	Top Level Pattern of a Complete Game

	Case Study (Demo Games)
	Design Pattern: Similar Levels (Game: Avoid)
	Scenario
	Justification
	Consequences of Using the Design Pattern

	Design Pattern: Unrelated Levels (Game: ShootDown)
	Scenario
	Justification
	Consequences of Using the Design Pattern

	Design Pattern: Related Levels (Game: GrabStar)
	Scenario
	Justification
	Consequences of Using the Design Pattern

	Design Pattern: Different Parts (Game: OnJourney)
	Scenario
	Justification
	Consequences of Using the Design Pattern

	Conclusions and Future Work
	Appendix A
	Sample Code of Common Pattern
	Sample Code of Unrelated Levels Pattern
	Sample Code of Levels of Related Levels Pattern
	GameLevel Class of Similar Levels Pattern
	Sample Code Creating Instances of GameLevel in Similar Levels Pattern
	Sample Implementation of Different Parts of Different Parts Pattern
	Sample Code Implementing Single Platform Pattern

	References

