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Abstract: Providing interpretable explanations can notably enhance users’ confidence and satisfaction
with regard to recommender systems. Counterfactual explanations demonstrate remarkable perfor-
mance in the realm of explainable sequential recommendation. However, current counterfactual
explanation models designed for sequential recommendation overlook the temporal dependencies in
a user’s past behavior sequence. Furthermore, counterfactual histories should be as similar to the real
history as possible to avoid conflicting with the user’s genuine behavioral preferences. This paper
presents counterfactual explanations by Considering temporal dependencies (CETD), a counterfac-
tual explanation model that utilizes a variational autoencoder (VAE) for sequential recommendation
and takes into account temporal dependencies. To improve explainability, CETD employs a recurrent
neural network (RNN) when generating counterfactual histories, thereby capturing both the user’s
long-term preferences and short-term behavior in their real behavioral history. Meanwhile, CETD fits
the distribution of reconstructed data (i.e., the counterfactual sequences generated by VAE perturba-
tion) in a latent space, and leverages learned variance to decrease the proximity of counterfactual
histories by minimizing the distance between the counterfactual sequences and the original sequence.
Thorough experiments conducted on two real-world datasets demonstrate that the proposed CETD
consistently surpasses current state-of-the-art methods.

Keywords: recommender systems; sequential recommendation; counterfactual explanation

1. Introduction

Sequential recommendation focuses on predicting users’ preferences by leveraging
their historical behaviors [1–4]. In recent years, sequential recommendations that specifi-
cally model sequential behavior have achieved encouraging performance on various online
platforms. High-quality explanations for sequential recommendation play a pivotal role in
helping users comprehend the reasoning behind item recommendations, consequently en-
hancing their satisfaction. Therefore, explainable sequential recommendation has recently
attracted the attention of researchers.

Some previous works have greatly contributed to explainable sequential recommen-
dation. Existing methods can be broadly categorized into two groups: deep learning
approaches and knowledge graph-based methods. Deep learning methods use a wide
range of deep learning techniques to generate explanations [5,6]. Knowledge graph meth-
ods encompass abundant information about users and items, enabling the generation of
more intuitive and personalized explanations for the recommended items [7,8]. However,
these methods still have limits because an explanation is built with correlation. Extracting
correlations from the observed user behavior data without the support of causal inference
may lead to incorrect explanations. Furthermore, we contend that a genuine explanation of
a recommendation model should possess the capability to address queries such as “Would
the system alter its decision if the user purchased a different set of items”? In essence, the
explanation should be cognizant of the counterfactual world, encompassing unobserved
user histories and their corresponding recommendations.
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As an initial attempt at applying causal inference to explainable sequential recom-
mendation [9,10], a perturbation model was utilized to generate counterfactual histories as
input sequences and extract causal explanations through a causal rule mining model. How-
ever, this method cannot effectively address the two following challenges when generating
counterfactual histories: (i) The historical records of a user consist of a sequence arranged in
chronological order—for this reason, it is important that a model is capable of considering
the temporal dependencies of user–item interactions when generating counterfactual histo-
ries; (ii) Proximity requires the magnitude of the perturbation for each historical sequence
to be as small as possible. Indeed, counterfactual histories that closely resemble the original
input records can be the most valuable and informative for a user [11].

Considering the aforementioned challenges in explainable sequential recommendation,
in this paper, we propose a counterfactual explanation model CETD. When generating
counterfactual histories, CETD is integrated with gated recurrent units (GRUs). Rather
than passing a subset of the entire history into a latent space regardless of temporal
dependencies, it passes a historical sequence subset through a GRU. This can capture
temporal dependencies among the user behavior sequence for enhancing interpretability.
Meanwhile, CETD fits the distribution of reconstructed data, which are sequences of
item embeddings generated by VAE given latent variational information, and generates
counterfactual sequences using learned latent variance, which will reduce the proximity of
counterfactual histories. Through our formulated counterfactual explanation model, CETD
aims to generate high-quality explanations for sequential recommendation to ensure that it
can be used in a real-life setting. Figure 1 illustrates an example counterfactual explanation
output by our model for the recommended item suit.

Figure 1. An example of counterfactual explanation. In S1 and S3, we use the counterfactual
replacement items T-shirt and guitar to replace watch and basketball in the Real History S, respectively,
and the recommended item is still a suit. However, in S2, after replacing tie in S with iPad, the
recommendation result changes to mouse. Therefore, tie could indeed be the genuine reason why the
recommender systems recommend the originally recommended suit.

The key contributions of this paper are summarized as follows:

• We proposed a counterfactual explanation model based on a VAE for sequential
recommendation that considers temporal dependencies. This aids in capturing both
long-term preferences and short-term behavior for enhancing explainability.

• By fitting the distribution of the reconstructed data in the latent space and utilizing the
learned latent variance, CETD can generate counterfactual sequences that are closer to
the original sequence. This in turn reduces the proximity of the counterfactual history.

• We conducted extensive experiments to evaluate the effectiveness of our model on
two real-world datasets. Results show that our model significantly outperforms
state-of-the-art models.
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2. Related Work
2.1. Sequential Recommendation

Studies pertaining to sequential recommendation aim to extract information regarding
the transitions between items in a user’s sequence of interactions. Markov chains have
been commonly employed in prior research to model the patterns of transition between
items [1,12]. The advent of neural networks has prompted a shift in research on sequen-
tial recommendation towards the utilization of such networks, such as RNNs [13–16],
convolutional neural networks [4,17], transformers [2,18,19], and graph neural networks
(GNNs) [3,20,21]. To effectively model high-order sequential dependencies concealed
within historical user–item interactions, e.g., RNNs in GRU4Rec [13] and convolutional
operations in Caser [4]. Inspired by the advantages of transformers, SASRec [2] and
BERT4Rec [18] were built upon the self-attention mechanism for item–item relation mod-
eling. GNN-based models [3,21] have been introduced to capture patterns that are more
intricate than mere sequential patterns. While these models have demonstrated impressive
performance, their utilization of complex neural network architectures can make it challenging to
understand their decision-making processes, thereby motivating the need for explanation generation.

2.2. Explainable Recommendation

There is a significant body of research that attests to the crucial role of explanations
in enabling users to evaluate the outcomes produced by a recommender system [22,23].
The employment of a knowledge graph is a widely adopted approach for generating
explanations within the domain of recommendation systems [24–27]. For example, the
PLM-Rec [25] model is designed to generate explainable recommendations by leveraging
knowledge graphs and path language modeling to capture both user behavior and item-
side knowledge. There are also works that leverage sentiments and opinions to facilitate
explainable recommendation. Wang et al. [28] proposed a multitask learning solution
for explainable recommendation that optimizes user preference for recommendation and
generates opinionated content for explanation in a joint manner. Additionally, research
endeavors have explored attribute-aware, explainable recommendation techniques [29,30].
Hou et al. [29] extracted visual attributes from product images to generate interpretable
recommendations. Although these existing approaches generate explanations for recom-
mendation from different perspectives, they are built with correlation, which may not
reflect the true causes of interaction. And, these approaches often necessitate redesigning
the original recommendation model, which may lead to a compromise in model accuracy to
attain satisfactory explanations. In this paper, we consider explainable recommendations from the
causal perspective by utilizing counterfactual reasoning. In addition, our model is a model agnostic
interpretable recommendation method, which considers the underlying recommendation model as a
black box and does not affect the accuracy of the recommendation model.

2.3. Counterfactual Explanations

Within the domain of recommender systems, several studies have been conducted
with the objective of furnishing counterfactual explanations to explicate recommendations.
These approaches may involve the utilization of methods such as heterogeneous informa-
tion networks [31–34], perturbation models [9], or influence functions [35]. PRINCE [31] is
a recommendation model that leverages a polynomial-time optimal algorithm to identify
a minimal set of user actions from a search space that is exponential in size, achieved
through the use of random walks over dynamic graphs. Tran et al. [35] proposed ACCENT
which extends the influence function [36] to generate counterfactual explanations for neural
recommender systems. CountER [37] is an explanation generation model that produces ex-
planations by simulating counterfactual changes to item attributes. CCR [38] integrates the
power of logical reasoning and counterfactual reasoning and generates explicit counterfac-
tual data to enhance the performance of recommendation models. In contrast to obtaining
counterfactual explanations by objectives, the generation of counterfactual explanations
was addressed by Xu et al. [9] through the use of a perturbation model and a causal rule
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mining model. In contrast to the aforementioned works, our model considers temporal dependencies
when generating counterfactual histories and reduces the proximity of counterfactual histories.

3. Propose Model
3.1. Notations

In the present study, the set of users is denoted as U = {u1, u2, . . . , u|U |}, while the
set of items is denoted as V = {v1, v2, . . . , v|V|}. Every user u is linked to a set of purchase
history represented by a series of items Hu. In this paper, calligraphic H represents a user
history and straight H represents an item in the user’s history H. The function F : H → V
represents a black-box sequential recommendation model that takes an input sequence of
items and produces recommended items as its output.

3.2. Problem Formulation

Prior research on explainable sequential recommendation has predominantly focused
on correlation-based approaches, with a dearth of studies investigating the potential of
causal inference. Our research aims to address this gap by developing an item-level post hoc
model that captures the causal relationships between historical items and recommended
items for each user. Specifically, our proposed model takes into account temporal de-
pendencies when generating counterfactual histories, thereby ensuring that the resulting
sequences remain close to the real historical interactions.

3.3. The CETD Model
3.3.1. Perturbation Model

Our approach involves a perturbation-based method to generate counterfactual histories
by substituting items in the original user historyHu. The two mainstream generative models
VAE and generative adversarial network (GAN) have their own strengths and weaknesses,
with VAE relying on hypothetical conditions and GAN being less interpretable. Given that
the user’s histories exhibit a non-random pattern, we posit the existence of a ground truth
user history distribution and utilize VAE to acquire knowledge of this distribution.

Given the chronological order of a user’s historical records, the perturbation model’s
ability to consider temporal and sequential user–item interactions is critical in generating
meaningful counterfactual histories. Within the specified timestamp, we posit that the
selection of a particular item is influenced by an underlying latent factor that captures user
trends and preferences. Indeed, the latent factor is subject to influence from the user history
and can be modeled to encompass both long-term preferences and short-term behavior.
The basic framework VAE can be utilized to effectively model time-aware user preferences.
In this scenario, we presume the presence of timing information denoted by T ∈ R+ and
incorporate a temporal mark in the elements of Hu. The term Hu

(t) ∈ V (with 1 ≤ t ≤ T)
corresponds to the item inHu at the t-th position, whereas Hu

(1:t) represents the sequence
Hu
(1), . . . , Hu

(t). Ideally, latent variable modeling when used to generate counterfactual
histories must be able to express temporal dynamics. In a probabilistic framework, we
incorporate temporal dependencies by conditioning each event on the preceding events.
Hu
(1:T) can be formulated as:

P(Hu
(1:T)) =

T−1

∏
t=0

P(Hu
(t+1)|H

u
(1:t)). (1)

Note that Hu
(1:0) is an initialization when Hu is the first item in Hu as Hu

(1). This
specification highlights two essential aspects: (i) The existence of a recurrent relationship
between Hu

(t+1) and Hu
(1:t), designed by P(Hu

(t+1)|H
u
(1:t)), which allows for advantageous

modeling; and (ii) the capability to treat each time-step independently, specifically by
employing a conditional VAE for modeling. The proposed distribution incorporates a
dependency on the latent variable through a recurrent layer, enabling the retrieval of
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information from the previous history. The GRU model represents an advancement over
the Long short-term memory (LSTM) model, as it includes storage units to retain long-term
historical data. In the context of time series prediction, GRU exhibits a prediction accuracy
that is at least comparable to that of the LSTM model while offering a higher computational
efficiency. In this paper, we used GRU to learn the recurrent relationship between Hu

(t+1)
and Hu

(1:t).
As shown in Figure 2, in detail, we pass the users’ real historyHu into the embedding

layer to obtain the corresponding embedding Eu. Then, we pass Eu through a GRU
layer, which can learn the temporal dependencies of the previous history and thus further
obtain the output of enhanced long-term preference memory G. Counterfactual history
H̃u can be precisely derived for any real history Hu using the VAE, which consists of an
encoder (µ, σ) = Encoder(·) and a decoder Ẽ = Decoder(·). Furthermore, the VAE extracts
the encoded item sequences’ mean and variance from the latent space first, and then
samples the latent embedding Z based on the above variational information. The obtained
embedding is then passed to the decoder, which generates the perturbed sequence Ẽu. The
items embedded in Ẽu are currently sampled vectors from the latent space and may not
correspond to actual items. To address this, we employ dot product similarity to determine
its closest neighbor in the item set V \Hu, which serves as the actual item representation.
By employing the aforementioned approach, Ẽu undergoes a transformation to the final
counterfactual history H̃u. In order to generate w distinct counterfactual histories for each
user, the perturbation process will be repeated w times. Ultimately, the original Hu will
be used as inputs to the black-box recommendation model F along with the generated
counterfactual data H̃u, resulting in the recommendation outcomes Bu and B̃u, respectively.
Upon completing this process, we will obtain w distinct counterfactual input–output pairs
{(H̃u

i , B̃u
i )}w

i=1 for each user u. In this context, w is manually set, but it should not exceed
the total number of feasible item combinations.

Proximityu = mean
(

∑
B̃u

i 6=Bu

dist(H̃u
i ,Hu)

)
. (2)

Figure 2. Overall architecture of our proposed model CETD. Eu represents the concatenation of item
embeddings derived from the user history, while Ẽu denotes the perturbed embedding.

Intuitively, a counterfactual history formed after the perturbation is as relevant as
possible to the user’s interest. For a user, the proximity can be quantified as Equation (2).
The distance in this case is specified in the latent space. Any historical sequence may be
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represented by concatenating the latent representations of all the items in the series. Any
distance between two sequences is calculated based on the Euclidean distance, and the
proximity value is computed by averaging across all users.

The iterative optimization objectives in our model training process include two terms:
The first term will fit the mean and variance distributions of the variables in the potential
space, whereas the second term can be interpreted as a (negative) reconstruction error.
To ensure similarity between the generated sequences and the original sequence, it is
imperative to maintain a small variance during the sampling process. We train the model
using the following loss function:

Loss =
1
|U |

|U |

∑
u=1

(
− KL

(
q(Z|Gu)||p(Z)

)
+ αEq(Z|Gu)

[
log(p(Gu|Z))

])
. (3)

The first term represents the Kullback–Leibler (KL) divergence of the approximate
p(Z) from the true posterior q(Z|Gu). We default p(Z) ∼ N(0, 1), q(Z|Gu) ∼ N(µ, σ2). Z
is the potential variance information. Gu is the input to the encoder. p(Gu|Z) is output of
the decoder. And, α is a weight parameter.

3.3.2. Causal Rule Learning Model

For a user u, we define Cu as the composite dataset that comprises the original
pair (Hu, Bu) and the counterfactual input–output pairs {(H̃u

i , B̃u
i )}w

i=1. We can define
Ĥu

i = [Ĥu
i(1), Ĥu

i(2),. . . , Ĥu
i(T)] as the input sequence of the i-th record in Cu, where Ĥu

i(t) is

the t-th item in Ĥu
i . Let B̂u

i denote the corresponding output for this input sequence. Our
goal is to construct a causal model that initially identifies causal relationships between
input and output items that are present in the Cu, and subsequently selects the causal
rule by analyzing the inferred causal dependencies. Our contention is that a single output
event can be represented by a logistic regression model that takes into account the causal
dependencies of all input items in the sequence. It is necessary for the model to be able
to suppose the causal dependency θĤu

i(t),B̂
u
i

that exists between the input item Ĥu
i(t) and the

output item B̂u
i .

In recommendation tasks, the proximity of a behavior is a strong predictor of a user’s
future behaviors, while the impact of past behaviors diminishes over time. Specifically,
earlier behaviors are given less weight in the recommendation algorithm compared to more
recent behaviors. To account for the temporal effect of behaviors on the recommendation
algorithm, we introduce a weight growth parameter λ, where λ is a positive value that is
less than 1. For a given input–output pair in Cu, the probability of its occurrence can be
calculated by:

P(B̂u
i |Ĥu

i ) = σ
( T

∑
t=1

θĤu
i(t),B̂

u
i
· λT−t

)
. (4)

To scale the score to a value within the range of 0–1, we utilized the sigmoid function
σ, which is defined as σ(x) = (1 + exp(−x))−1. The input value is transformed by the
function to produce the desired output. According to Equation (4), the calculated prob-
ability should be close to 1. In order to derive the causal dependencies θ, we maximize
the probability over Cu. Once all the causal dependencies have been collected, we identify
those dependencies θĤu

i(t),B̂
u
i

whose output corresponds to the original input Bu. Then,

we construct counterfactual explanations based on the items with higher θ scores. The
counterfactual explanation that is extracted is personalized as a result of the algorithm that
is applied to Cu, which only consists of records that are centered around the user’s original
record (Hu, Bu). The complete algorithm is presented in Algorithm 1.
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Algorithm 1: Counterfactual explanations by considering temporal dependencies
Input: users U , items V , user historyHu, counterfactual number w, black-box

recommendation model F , embedding model E , GRU model G,
perturbation model P , causal rule learning modelM

Output: counterfactual explanations

1 Pass user real history into embedding model E to obtain item embedding E;
2 Use GRU model G to learn the temporal dependencies of the previous history;
3 Use G(E) and real history to train perturbation model P ;
4 for Each user u ∈ U do
5 for i from 1 to w do
6 H̃u

i ← P(Hu); B̃u
i ← F (H̃u

i );
7 end
8 Construct counterfactual input–output pairs {(H̃u

i , B̃u
i )}w

i=1;
9 {(Ĥu

i , B̂u
i )}

w+1
i=1 ← {(H̃

u
i , B̃u

i )}w
i=1 ∪ (Hu, Bu);

10 for i from 1 to (w+1) do
11 for t from 1 to T do
12 θĤu

i(t),B̂
u
i
←Mu(Ĥu

i(t), B̂u
i );

13 end
14 end
15 Rank θĤu

i(t),B
u and select top-k pairs {(Hn, Bu)}k

n=1;

16 if ∃Hmin{n} ∈ Hu then
17 Generate counterfactual explanation Hmin{n} ⇒ Bu;
18 else
19 No explanation for Bu;
20 end
21 end
22 return all counterfactual explanations

In Algorithm 1, generating counterfactual interpretations of their recommended items
for each user u can be divided into three phases: lines 5–8 are the perturbation phases,
where the perturbation model perturbs the historyHuw times to generate counterfactual
histories, passes them into the recommendation model to generate their corresponding
recommendation results, and ultimately composes w pairs of counterfactual input–input
pairs {(H̃u

i , B̃u
i )}w

i=1; lines 9–14 are the causal rule learning phase, where the causal rule
learning modelM is utilized to learn the causal dependency θĤu

i(t),B̂
u
i

between each input

term Ĥu
i(t) and the output item B̂u

i ; lines 15–20 are the generation of the interpretation phase,
where the model generates its corresponding counterfactual explanations for the item Bu

recommended to the user u.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

To assess the effectiveness of our proposed counterfactual explanation model,
we conduct evaluations on two distinct datasets. The first dataset is MovieLens100k
(https://grouplens.org/datasets/movielens/ (accessed on 30 July 2023)), while the second
dataset comprises office products from Amazon (https://nijianmo.github.io/amazon/
(accessed on 30 July 2023)). In order to enable sequential recommendation with an input
length of 5, we preprocess the original 5-core dataset by selecting only those users who have
made at least 15 purchases and those items that have received at least 10 interactions. This
filtering process enables us to generate a subset of the original dataset that is better suited
for our proposed approach. To facilitate the explanation of sequential recommendation, we

https://grouplens.org/datasets/movielens/
https://nijianmo.github.io/amazon/
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split the dataset chronologically, which ensures that the model is trained and tested on data
that are representative of the actual order in which the interactions occurred.

4.1.2. Sequential Recommendation Models

We employ the following methodologies to train the black-box sequential recommen-
dation models, and for each method, parameter selection is based on their corresponding
implementations in the public domain.

FPMC [12]: This approach integrates matrix factorization with the Markov chain
model to accomplish sequential recommendation.

GRU4Rec [13]: This approach utilizes GRUs to capture sequential dependencies and
generate recommendations.

NARM [39]: This approach utilizes an attention mechanism to determine the user’s
purpose based on their sequential behavior and purpose.

Caser [4]: This approach utilizes vertical and horizontal convolutions to capture
sequential behavior patterns for recommendation.

4.1.3. Baselines

Traditional association rules serve as comparative explanations. Meanwhile, our
model CETD is compared with the following state-of-the-art method that generates causal
explanations for sequential recommendation.

AR-sup [40]: This model extracts association rules from user interactions and ranks
them according to the support value in order to produce item-level explanations for
all users.

AR-conf [40]: This model extracts association rules and ranks them according to their
confidence values to obtain explanations

AR-lift [40]: This model generates explanations by ordering association rules based
on lift value.

CR-VAE [9]: The model utilizes a perturbation model to generate counterfactual
histories and extracts explanations through a causal rule mining model.

To ensure a fair comparison, the parameters of the association rule-based explanation
model are set according to the recommendations in [40]. We select the top 100 rules
as explanations based on their corresponding values. Regarding the causal rule model
CR-VAE, we adopt the parameter selection from [9], where m = 500 for both datasets.

4.1.4. Training Details

CETD consists of an embedding layer with a size of 256, a GRU-based recurrent layer
with 320 cells, two encoding layers (1024 and 512 in size), and two decoding layers (512 and
1024 in size). The number of latent factors Z for the VAE was set to 16. The optimization of
the loss function was performed using Adam with a weight decay of 0.01. The number of
counterfactual histories m defaults to 500. The default weight parameter α is set to 0.003,
and the default time growth factor is λ = 0.7.

4.1.5. Evaluation Metrics

Specifically, our model’s evaluation is conducted from three perspectives. Firstly, the
model is required to provide explanations for a significant portion of recommendations
(see fidelity in the subsequent section), indicating the percentage of recommended items
that the model can explain. Secondly, we will validate the significance of our counterfactual
explanations as an integral component in recommending the original item. One of the
commonly used methods is through the assessment of the causal impact of the model’s
recommendation results [9].

ACE(a, b) = A[b|do(a = 1)]−A[b|do(a = 0)], (5)
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A[b|do(a = 1)] = P
(

b = 1|do(a = 1)
)
=

Pairs
(
(H ∈ H̃u) ∧ (B̃u = Bu)

)
Pairs(H ∈ H̃u)

A[b|do(a = 0)] = P
(

b = 1|do(a = 0)
)
=

Pairs
(
(H /∈ H̃u) ∧ (B̃u = Bu)

)
Pairs(H /∈ H̃u)

.

(6)

Two binary random variables a and b, where the average causal effect (ACE) of a on b
is defined as follows: A[b|do(a = 1)]−A[b|do(a = 0)]. In this context, the notation do()
denotes an external intervention that exerts a compulsion on a variable to adopt a specific
value. Given an extracted counterfactual explanation H ⇒ Bu, we define the variable a = 1
if H ∈ H̃u

i occurs or 0 otherwise. We define b as a binary random variable, where b = 1 if
B̃u

i = Bu occurs and 0 otherwise. We then estimate the ACE as the Equations (5) and (6) are
based on w counterfactual pairs.

Finally, our model must be able to generate counterfactual histories that are closer
to the real history (proximity). CETD is a model-agnostic interpretable recommendation
approach that considers the underlying recommendation model as a black-box. CETD
delivers explanations after making the recommendation decision without compromising
the model’s recommendation performance. As a result, we solely report the evaluation
metrics for the explanation results.

4.2. Results
4.2.1. Fidelity

Table 1 presents a comprehensive summary of the best results obtained by all models
on the two datasets. The information contained in Table 1 allows for several observations.

Table 1. Results of model fidelity. CR-VAE and our model CETD are tested under k = 1 (the number
of candidate counterfactual explanations). The bold scores in each column represent the best results,
while the underlined scores indicate the best results of the baseline.

Datasets MovieLens100k Amazon

Models FPMC GRU4Rec NARM Caser FPMC GRU4Rec NARM Caser

AR-conf [40] 0.3160 0.1453 0.4581 0.1569 0.2932 0.1449 0.4066 0.2024
AR-sup [40] 0.2959 0.1410 0.4305 0.1569 0.2949 0.1449 0.4031 0.1885
AR-lift [40] 0.2959 0.1410 0.4305 0.1569 0.2949 0.1449 0.4031 0.1885

CR-VAE [9] 0.9650 0.9852 0.9714 0.9703 0.9511 0.9721 0.9791 0.9599
CETD 0.9873 0.9968 0.9947 0.9915 0.9762 0.9906 0.9918 0.9831

On both datasets, our counterfactual explanation model CETD generates explanations
for most of the recommended items, whereas the association explanation approach can
only offer explanations for a considerably smaller number of recommendations. This is
due to the number of input–output pairs being too small to match the global rules with
individual interactions and recommendations, thus greatly constraining the flexibility of the
association rule model. In contrast, CETD has the capability of generating numerous coun-
terfactual histories, enabling effective causal rule learning, and allowing the extraction of
counterfactual explanations beyond the constraints of the original limited data. Meanwhile,
our model CETD outperforms the baseline CR-VAE; CETD can capture both long-term
preferences and short-term behavior for a user’s real history when creating counterfactual
histories, which can generate more counterfactual sequences with temporal dynamics.
Furthermore, these counterfactual histories can better help the causal rule learning model
learn causal dependencies. Although the improvement in our model CETD over CR-VAE
is not remarkable, CETD will still boost the fidelity of the explanations due to the huge
number of items and users in the real world.
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4.2.2. Average Causal Effect

The ACE values of CETD and CR-VAE are shown in Figure 3, which verify that our
counterfactual explanations are an important component for recommending the original
item. As the ACE value is exclusively applicable to related causal models, it cannot be
reported for the association rule baselines.

Figure 3. Average causal effect results. CR-VAE and our model CETD are tested under k = 1 (the
number of candidate counterfactual explanations).

CETD achieves higher ACE values than CR-VAE for most sequential recommendation
models on both datasets, which verify that the counterfactual explanations generated by
CETD are a crucial component of the recommendation. This is because our perturbation
model is able to capture the temporal dependencies of users’ real historical sequences
during the training process, so that when using latent variable modeling to generate coun-
terfactual histories, temporal dynamics can be expressed, which can extract the causality
and dependency between users’ historical preferences more accurately and finally provide
higher-quality counterfactual explanations.

Additionally, FPMC relies on the Markov chain, which solely considers the last be-
havior. Consequently, when altering a few input items, the FPMC model only generates a
limited number of counterfactual histories that deviate from the true historical recommen-
dation items, leading to a lower ACE value.

4.2.3. Proximity

As shown in Figure 4, the reported proximity value represents the average value across
all users. However, since the association rule model does not incorporate counterfactual
histories, this study only reports this indicator for CETD and CR-VAE.

Figure 4. Proximity results. The proximity value is calculated by Equation (2).

CETD can achieve lower proximity compared with the baseline CR-VAE. Thus, by
fitting the distribution of reconstructed data to converge to a normal distribution and then
using the latent variance obtained from learning to generate counterfactual sequences, the
counterfactual histories can be made more similar to the real history. More specifically, we
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use the cross-entropy loss function to calculate the reconstruction loss during the iterative
training process. And, we fit the mean and variance distributions of the variables in the
potential space. CETD is able to accommodate the similarity in the Euclidean distance.
Therefore, lower proximity means that the counterfactual histories generated by CETD
have higher quality and are more useful for later causal learning.

4.3. Case Study

We offer a straightforward case study to compare our model of CETD with the tradi-
tional association explanation model. Specifically, we demonstrate an example involving
the sequential recommendation model GRU4Rec [13] on the MovieLens100k dataset, as
depicted in Figure 5. Even if the recommendation system recommends the same movie
(movie Pulp Fiction) to two different users, and the two users have an overlapping viewing
record (commonly watched movie The Sound of Music), CETD still has the capability to
generate personalized explanations for different users. Nevertheless, due to the extraction
of association rules based on global records, the association model will offer the same
interpretation for all users, lacking personalization.

Figure 5. A case study on MovieLens100k by the GRU4Rec model.

4.4. Ablation Study

Here, we thoroughly demonstrate the capability of CETD to enhance the interpretabil-
ity of sequential recommendations. Specifically, we discuss the capability of CETD through
ablation experiments in the two following tasks.

(i) Does CETD provide high-quality explanations for most of the recommendations
on different sequential recommendation models?

As shown in Figure 6a,b, we remove the module capturing temporal dependencies
from CETD (denoted by “CETD(w/o A)”) to see how its performance changes on different
sequential recommendation models. Generating counterfactual sequences by capturing
the temporal dependencies of users’ real historical sequences can provide higher-quality
counterfactual explanations for most sequential recommendation models.

(ii) Can CETD generate counterfactual histories that are closer to the real history and
further reduce the proximity?

We remove the module fitting reconstructed data from CETD (denoted by “CETD(w/o
B)”) to observe how its performance changes on different sequential recommendation
models. In Figure 6c, when CETD fits the distribution of reconstruction data to con-
verge to a normal distribution in a latent space and generates counterfactual sequences
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using the learned latent variance, the proximity of the counterfactual histories can be
effectively reduced.

(a)

(b)

(c)

Figure 6. Results of CETD in the ablation tests for different sequential recommendation models on
the MovieLens100k and Amazon datasets, respectively. (a) Comparison between CETD and CETD
(w/o A) for fidelity; (b) Comparison between CETD and CETD (w/o A) for average causal effect;
and (c) Comparison between CETD and CETD (w/o B) for proximity.

4.5. Influence of Parameters

In this section, we will explore the impact of a crucial parameter: the time decay
parameter is denoted by λ. In our framework, while elucidating the sequential recom-
mendation models, it is essential to note that earlier interactions within the sequence are
subject to diminishing effects on the recommended item. An appropriately tuned time
decay parameter plays a pivotal role in enhancing the framework’s ability to mitigate noise
signals during the process of pattern learning from the sequence.

Figure 7 illustrates the impact of parameter λ on various sequential recommendation
models and datasets. The results reveal that the time decay factor, denoted as λ, signifi-
cantly influences the model performance concerning fidelity. Notably, for smaller values of
λ, earlier interactions within a sequence tend to be disregarded, resulting in a decrease in
model fidelity. Conversely, for larger values of λ, such as λ = 1, older interactions hold
equal importance alongside the most recent ones, which also leads to a reduction in perfor-
mance. Our findings indicate that the optimal performance is attained at approximately
λ = 0.7 for both datasets.
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Figure 7. CETD fidelity on the different time decay parameters λ. x axis is the time decay parameter
λ ∈ {0.1, 0.3, 0.5, 0.7, 1} and y axis is the model fidelity.

5. Conclusions

In this paper, we propose CETD, a counterfactual explanation model based on a VAE
for sequential recommendation that handles temporal dependencies. Meanwhile, CETD
fits the distribution of reconstructed data in a latent space and uses the learned latent
variance, which can generate closer counterfactual sequences to the original sequence.
Extensive experiments on two real-world datasets demonstrated that CETD is not only able
to generate high-quality explanations for most sequential recommendation models, but also
effectively reduce the proximity of counterfactual histories. However, the data gathered
from user history interactions are observational rather than experimental, which may result
in various biases within the dataset. For our future work, we will explore counterfactual
reasoning for raw data debiasing and advance the research on counterfactual explanation.
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