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Abstract: Intrusion detection systems (IDSs) play a pivotal role in safeguarding networks and
systems against malicious activities. However, the challenge of imbalanced datasets significantly
impacts IDS research, skewing learning models towards the majority class and diminishing accuracy
for the minority class. This study introduces the Reinforcement Learning (RL) Framework with
Oversampling and Undersampling Algorithm (RLFOUA) to address imbalanced datasets. RLFOUA
combines RL with diverse resampling algorithms, creating an adaptive learning environment. It
integrates the novel True False Rate Synthetic Minority Oversampling Technique (TFRSMOTE)
algorithm, emphasizing data-level approaches. Additionally, RLFOUA employs a cost-sensitive
approach based on classification metrics. Using the CSE-CIC-IDS2018 and NSL-KDD datasets,
RLFOUA demonstrates substantial improvement over existing resampling techniques. Achieving an
accuracy of 0.9981 for NSL-KDD and 0.9846 for CSE-CIC-IDS2018, the framework’s performance is
evaluated using F1 score, accuracy, precision, recall, and a proposed Index Metric (IM). RLFOUA
presents a significant advancement in addressing class imbalance challenges in IDS. It shows an
average accuracy improvement of 21.5% compared to the recent resampling technique AESMOTE on
the NSL-KDD dataset.

Keywords: imbalance; intrusion detection system; machine learning; reinforcement learning;
resampling algorithms

1. Introduction

Cyber-attacks are on the rise due to a combination of evolving tactics by malicious
actors and an expanding digital landscape [1]. With the proliferation of connected devices
and the increasing dependence on online platforms, there are more opportunities for
cybercriminals to exploit vulnerabilities. Additionally, the sophistication of attacks has
grown, making them harder to detect and defend against. To defend against these threats,
intrusion detection systems (IDSs) must continuously improve their ability to detect new
types of attacks [2]. However, a major challenge for machine-learning-based IDSs is
that the data used for training and testing are often imbalanced. This means there are
usually more normal activities than intrusion instances, making the learning models lean
towards recognizing regular behaviors. This can result in cyber-attacks going unnoticed or
being misclassified.

Dealing with imbalanced datasets has been a significant focus for researchers, espe-
cially in security applications where attack data are limited [2]. This challenge becomes
even more apparent when trying to classify different types of attacks, as some categories
may have very few examples or even just one. To tackle this challenge, our research
introduces an innovative algorithm to improve training with imbalanced datasets. Our
approach includes three main novel parts: The Reinforcement Learning (RL) Framework
with Oversampling and Undersampling Algorithms (RLFOUA), the True False Rate Syn-
thetic Minority Oversampling Technique (TFRSMOTE) resampling algorithm, and a new
evaluation metric called the Index Metric (IM).
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In the context of intrusion detection systems (IDSs), a system’s response to a detected
potential intrusion can be categorized as either passive or active. A passive response
involves the IDS solely in the process of detecting and notifying about suspicious activities
without taking direct action against them. In this study, our focus is on the development
and evaluation of resampling techniques using RL algorithms to enhance the performance
of IDS in detecting attacks. Our approach solely focuses on detection, without any influence
on the response, whether passive or active, when a potential intrusion is detected by an
IDS. The aim is to improve the learning process and model performance in distinguishing
between normal and malicious activities, ultimately enhancing the accuracy of intrusion
detection. Therefore, our approach is centered around refining the data preprocessing step
to provide more effective training data for the machine learning algorithms used in the
detection process. Our work does not affect whether or not the IDS takes active response,
such as blocking or mitigating detected intrusions. Our primary objective lies in improving
the detection accuracy. RL offers a promising approach for intrusion detection due to its
ability to adapt and learn from dynamic environments. Traditional rule-based systems
or static models may struggle to keep pace with the evolving tactics of cyber-attackers.
RL, on the other hand, enables the IDS to continuously refine its strategies based on feed-
back from its environment. This adaptability is crucial in the ever-changing landscape of
cyber threats.

In this paper, we introduce the RLFOUA framework, which is designed to balance
datasets and train machine learning models for better performance. RLFOUA uses a special
learning environment guided by RL principles, which learns from feedback provided
by our new evaluation metric. An important component of RLFOUA is the TFRSMOTE
resampling algorithm, which systematically generates synthetic data. To measure the
effectiveness of our results, we use various metrics like F1 score, accuracy, recall, and
precision. We rigorously test the RLFOUA algorithm using two well-known datasets:
CSE-CIC-IDS2018 and NSL-KDD. The former focuses on distinguishing between normal
and infiltration samples, while the latter classifies 23 different types of attacks.

In summary, this paper makes significant contributions in the following ways:

• Implementing the novel RLFOUA framework, an innovative automatic learning envi-
ronment that pioneers the use of RL techniques in dataset resampling. This approach
dynamically determines the next state based on the current state and past rewards,
setting it apart from traditional resampling methods.

• Proposing the innovative TFRSMOTE resampling algorithm, a pioneering solution for
handling imbalanced datasets in a dynamic environment. This algorithm generates
synthetic data from the minority class for oversampling and strategically reduces the
majority class for effective undersampling, marking a departure from conventional
resampling techniques.

• Presenting the new IM as an original contribution to the field. This novel metric offers
a comprehensive evaluation of algorithm performance, considering a range of critical
factors not addressed by existing metrics.

2. Related Works

The problem of imbalanced datasets has long been recognized as a challenging re-
search issue, particularly in the field of security [1]. Numerous studies and surveys have
explored the use of machine learning models for IDS dataset classification, with several
attempts made to address the imbalanced nature of the datasets through undersampling,
oversampling, and combination techniques [2]. Oversampling techniques aim to increase
the representation of minority classes, while undersampling techniques aim to reduce the
size of the majority class. More recently, RL has been investigated in combination with
other sampling models for handling imbalanced datasets [3]. In this section, we will review
the contemporary advances in resampling algorithms and RL concerning their application
to imbalanced datasets.
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2.1. Resampling Algorithms

Phetlasy et al. [4] presented a novel approach to improving the performance of IDSs by
combining SMOTE with a sequential classifier method. SMOTE, a prevalent oversampling
technique used to address imbalanced datasets, alleviates the scarcity of samples in minority
classes by generating synthetic instances [5]. This method identifies neighboring examples
in the feature space, establishes connections between them, and subsequently introduces
new samples along this line. It is crucial to underscore that this process does not involve a
literal increase in cyber-attacks; instead, it strategically enriches the dataset with synthetic
instances that represent minority class patterns. Through this strategic synthesis of data
points within the feature space, SMOTE plays a pivotal role in redressing class imbalances,
ultimately enabling the creation of robust machine learning models for attack detection.
Phetlasy et al. proposed a methodology that utilizes SMOTE to address class imbalance in
the IDS dataset and enhance the accuracy of intrusion detection. By integrating SMOTE
with sequential classifiers on the NSL-KDD dataset of Network IDS (NIDS), the study
demonstrated improved sensitivity (0.95) and accuracy (0.93) in detecting intrusions.

Qazi et al. [6] conducted a study to examine the impact of feature selection, SMOTE,
and undersampling methods on class imbalance classification. The authors explored
various techniques to address imbalanced datasets in classification tasks, evaluating their
performance on the KDD CUP 99 IDS dataset using metrics such as true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). The study provided insights into
the effectiveness of feature selection and sampling techniques in enhancing classification
accuracy and handling class imbalance across different domains. The incorporation of
SMOTE into specific machine learning algorithms resulted in noteworthy enhancements,
exemplified by the random forest (RF) exhibiting a true positive rate of 1.0 for normal
activities, 0.998 for DOS, 0.937 for probe, 0.975 for R2L, and 0.673 for U2R attacks. However,
it is important to note that direct comparisons with our method are not feasible due to
the dissimilarities in datasets and the absence of comprehensive classification metrics in
their evaluation.

Tesfahun et al. [7] applied feature selection and RF with SMOTE on the NSL-KDD
dataset for intrusion detection. Random forest is a machine learning algorithm that com-
bines multiple decision trees to make predictions. In their method, Tesfahun et al. utilized
feature reduction techniques to select the most relevant features from the dataset. SMOTE
was employed as an oversampling technique to address the class imbalance in the dataset
by generating synthetic samples from the minority class. The implementation was con-
ducted on a 2.4 GHz Intel Core i5-2430M processor with 4 GB RAM, utilizing the WEKA
machine learning tool version 3.6.9. The programming language used in the study are
not mentioned in the information provided. To evaluate the performance of their ap-
proach, Tesfahun et al. used recall, false positive rate (FPR), and precision metrics on the
NSL-KDD IDS dataset. They partitioned the 22 attacks in the NSL-KDD dataset into five
classes (Normal, DoS attack, Probing attack, R2L attack, and U2R attack) and evaluated
the performance metrics for each group rather than individual attacks. Recall measures
the ability of the model to identify true positive instances, FPR measures the rate of falsely
classified negative instances as positive, and precision quantifies the proportion of correctly
classified positive instances. The authors reported achieving a precision of 0.99 and an FPR
of 0, indicating a high level of accuracy in identifying positive instances and a low rate of
false positives.

Lopez-Martin et al. [8] introduced the variational generative model (VGM) for intru-
sion detection, utilizing a variational autoencoder, a neural network capable of generating
new data samples. To handle class imbalance in the NSL-KDD dataset, the authors in-
corporated seven variants of SMOTE and ADASYN (adaptive synthetic sampling). They
evaluated the performance of the VGM using accuracy and F1 score as metrics. The
VGM achieved an average accuracy of 0.7685, indicating a relatively high level of correct
predictions, while the average F1 score was reported as 0.7410, demonstrating a good bal-
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ance between precision and recall in the model’s performance. The specific programming
language used in their study was not specified.

Sun and Liu [9] proposed SMOTE_NCL, an innovative approach that combines
SMOTE with neighborhood cleaning rule (NCL) for resampling the KDD CUP 99 IDS
dataset. SMOTE_NCL aims to address class imbalance by generating synthetic samples
using SMOTE and then applying NCL to remove noisy and boundary data points. The NCL
employs the KNN algorithm to identify and remove noisy samples and borderline instances
from a dataset. Although Sun and Liu demonstrated improved area under the curve (AUC)
(0.8060%) on the KDD CUP 99 IDS dataset with their algorithm, they acknowledged its
limitations in terms of robustness and effectiveness. The evaluation of the algorithm’s
performance was based on the AUC parameter, which provides an overall assessment of
the classifier’s ability to discriminate between positive and negative instances.

Karatas, Demir, and Sahingoz [10] aimed to enhance the performance of machine-
learning-based IDS by utilizing an imbalanced and up-to-date dataset. They employed
various techniques, including SMOTE, Tomek links (it provides a way to identify and
address overlapping instances in a dataset, aiding in the improvement of classification per-
formance and the handling of class imbalance), and RF classifier to address class imbalance
and improve the classification accuracy. The programming language used in their study is
not specified. They evaluated the performance using several metrics, including accuracy,
precision, recall, and F1 score, on the imbalanced dataset. Karatas et al. reported significant
improvements in the performance of the IDS, achieving an accuracy of 98.44%, precision of
98.42%, recall of 97.23%, and F1 score of 97.82%.

Yan and Han [11] introduced a local adaptive composite minority sampling algorithm
(LA-SMOTE) based on the deep learning gated recurrent unit (GRU) neural network. Their
approach aims to address class imbalance by utilizing KNN to select low-frequency samples.
Subsequently, high-frequency samples are chosen from the selected KNN and assigned
to different regions of the sample space. The GRU neural network is then employed for
training the classification model. The paper focused on building a combined intrusion
detection model using imbalanced learning techniques and GRU. They evaluated the
performance of LA-SMOTE on the NSL-KDD dataset and considered metrics such as FPR,
false alarm rate (FAR), and accuracy to assess the effectiveness of their approach. The
authors reported an average detection rate of 98.904, accuracy of 99.04, and FAR of 0.134,
indicating the high performance of their model in accurately detecting intrusions. However,
the programming language used for implementation is not specified in the paper.

Abdallah et al. [12] applied SMOTE in conjunction with various machine learning
models to develop an IDS for vehicular ad hoc networks (VANETs) based on the ToN-IoT
dataset. The aim of their study was to evaluate the performance of different machine
learning algorithms and determine the most effective one. They implemented their method
using Python version 3.8 programming language. The authors evaluated the performance
of the IDS using metrics such as accuracy, precision, recall, F1 score, and FPR. The ToN-IoT
dataset was derived from a large-scale, heterogeneous IoT network specifically designed
for VANETs. Abdallah et al. reported an accuracy of 0.979, recall of 0.979, precision
of 0.979, and F1 score of 0.979 for their IDS model, indicating its high performance in
detecting intrusions.

While SMOTE has been widely used and enhanced with different algorithms for
addressing class imbalance in IDSs, these approaches often encounter challenges related
to overlapping and noisy data [13]. Additionally, the discussed papers were primarily
evaluated on individual IDS datasets, raising concerns about the generalizability of their
methods to other datasets.

In this paper, our goal is to validate and test our proposed algorithm and framework
on both the CICIDS2018 and NSL-KDD datasets, two widely recognized benchmarks in the
field of IDSs, to demonstrate the generalizability and effectiveness of our novel approach.
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2.2. RL

RL is a form of machine learning that comprises four key components: the agent,
the action, the environment, and the reward state. In RL, the agent determines an action
based on the reward obtained from the environment. This approach employs rewards
and punishments as feedback to encourage desired behavior and discourage undesired
behavior, respectively [14]. The model learns from these rewards and punishments through
dynamic interactions with the environment.

Arturo Servin and Daniel Kudenko [15] utilized RL to detect flooding-based dis-
tributed denial of service (DDoS) attacks. They devised a simulated network environment,
integrating a Q-learning algorithm to manage the injection of anomalies and establish
rewards for successful anomaly detection. Nevertheless, a limitation of this research lies
in the absence of guaranteed convergence to the optimal solution. The model achieved
impressive performance metrics, including an accuracy of 99%, precision of 83%, recall of
100%, and specificity of 100%.

Huang et al. [16] proposed a time series anomaly detector using deep reinforcement
learning (DRL) that focuses on anomaly-based detection rather than signature-based de-
tection. Their approach aimed to detect anomalies without assuming any underlying
mechanism for anomaly patterns, making it adaptable to dynamic environments. The
method utilized a logical classifier, which eliminated the need for threshold tuning and
simplified the implementation of the RL algorithm. The authors evaluated their approach
using accuracy (100%) and recall (100%) metrics on the Yahoo benchmark datasets [17],
which served as general time series datasets and were not specifically designed for IDS
datasets. The Yahoo benchmark dataset is a generic and scalable anomaly detection frame-
work called EGADS, implemented at Yahoo, which automatically monitors and alerts on
large-scale time series data for various use cases. By using these datasets, Huang et al.
demonstrated the effectiveness of their DRL-based anomaly detection method in a broader
context. Unfortunately, the programming language used for the implementation was not
explicitly mentioned in the paper.

Caminero et al. [18] proposed a framework called Adversarial Environment Reinforce-
ment Learning (AE-RL) for implementing a classifier based on RL theory IDS datasets. The
AE-RL framework consists of two agents: the classifier agent and the environment agent.
RL is utilized to generate new samples from the environment agent. The main objective
of AE-RL is to create an adversarial environment that actively challenges the predictions
made by the classifier.

In this approach, an intelligent environment is simulated as a second agent, which
generates random samples (states) from the training data and assigns rewards based on
the classifier’s performance with an adversarial objective. The AE-RL framework aimed
to improve the classifier’s ability to detect and classify anomalies in the IDS datasets.
Caminero et al. implemented their method using the NSL-KDD IDS dataset and evaluated
the performance using various metrics, including time, accuracy, recall, precision, and
F1 score. The implementation was conducted in Python version 3.6 on a Windows 10
Pro 64-bit operating system. The authors utilized TensorFlow version 1.15.2 and Keras
version 2.2.4 as the main deep learning frameworks for the implementation. It is important
to note that the AE-RL framework had a limitation in that it required intelligent sample
selection rather than random selection, which could potentially affect its applicability in
certain scenarios.

In comparison to previous methods, the paper by Caminero et al. demonstrated
superior performance with an F1 score of 0.78, accuracy of 0.7744, precision of 0.7616, and
recall of 0.7744. The results demonstrated the effectiveness of the AE-RL framework in
improving the detection performance of IDS systems.

Xiangyn et al. [3] proposed an adversarial RL framework with SMOTE (AESMOTE)
for anomaly detection. The AESMOTE framework combined RL with class-imbalance
techniques to enhance the behavior of the environment agent and achieve improved
performance in anomaly detection. AESMOTE introduced a dynamic environment for
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detecting anomalies in the NSL-KDD dataset by employing various oversampling and
undersampling methods. In the AESMOTE framework, the environment agent can self-
learn without requiring supervision. The primary objective of AESMOTE was to provide a
more effective sampling algorithm for the training dataset, aiming to achieve a balanced
distribution for the classifier agent. The classifier agent learns the prediction performance
and selects the most challenging samples for training, thus ensuring a balanced dataset.

To evaluate the performance of AESMOTE, Xiangyn et al. conducted experiments on
the NSL-KDD IDS dataset and employed metrics such as accuracy, recall, precision, F1 score,
and time. Unfortunately, the authors did not explicitly mention the programming language
used for implementation. Comparing AESMOTE with the AE-RL framework, Xiangyn et al.
demonstrated superior performance, achieving an F1 score of 0.8243, accuracy of 0.8209,
precision of 0.8411, and recall of 0.8209. These results highlighted the effectiveness of
AESMOTE in enhancing the detection performance for anomaly detection in IDS datasets.
In Section 5, AESMOTE is further compared with RLFOUA, which is regarded as the most
recent and best-performing method for detecting attacks in IDS datasets.

3. Methodology

This section comprehensively presents the proposed RLFOUA framework and its com-
ponents, along with detailed insights into the employed datasets, the novel TFRSMOTE
algorithm, and the testing methodology applied to the independent sets of both CSE-
CIC-IDS2018 and NSL-KDD datasets. The dialogue initiates by delving into the datasets
employed in the research, elucidating their distinct attributes, followed by a comprehen-
sive exposition that encompasses the delineation of the proposed RLFOUA framework,
encompassing its constituent elements such as preprocessing, the RL algorithm and its
functioning agents, the introduced TFRSMOTE algorithm, and the proposed IM. Finally, an
overview of the employed testing methodology is presented.

3.1. Datasets

To evaluate the RLFOUA framework, we utilize two widely recognized datasets
commonly employed in IDS research: NSL-KDD and CICIDS2018 [19]. We provide a brief
overview of both datasets in this section.

3.1.1. CSE-CIC-IDS2018

The Canadian Institute for Cybersecurity Intrusion Detection System (CSE-CIC-ID2018)
dataset consists of approximately 2,830,540 samples [20] of traffic that was simulated during
the period between February and March 2018. Each file is approximately 200 KB [21] and
contains 79 features. The data are binary-classified, with each sample labeled as either
“Benign” or “Infiltration”. The 28 February 2018 file, for instance, includes 540,568 samples
of the Benign class and 68,462 samples of the Infiltration class (after removing outliers).
The dataset encompasses various attack types, such as brute-force, Heartbleed, botnet, DoS,
DDoS, web attacks, and network infiltration [21]. Several research papers have utilized this
dataset to evaluate machine learning algorithms [22]. Given the large size of this dataset,
training the RLFOUA framework would be time-consuming. Thus, we performed a pre-
liminary test by selecting a random subset consisting of 250 infiltration and 7500 benign
activities from the 28 February 2018 file for training and validating the RLFOUA framework
within a reasonable timeframe to identify machine learning algorithms that exhibit superior
performance when combined with RLFOUA. Finally, for main testing purposes, the entire
dataset was used to train, validate, and test the RLFOUA framework. Consequently, all files
for each reported month from the CSE-CIC-ID2018 dataset, totaling 6,493,978 samples, were
divided into training, validation, and testing sets. The RLFOUA framework underwent
training, validation, and testing on high-performance computing systems to generate a
new model. Subsequently, its performance was assessed using an independent dataset
that had been previously set aside for the purpose of evaluating the effectiveness of the
RLFOUA framework.
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3.1.2. NSL-KDD Dataset

The NSL-KDD dataset is a refined version of KDD-99, which was developed as part
of the International Knowledge Discovery and Data Mining Tools Competition. NSL-
KDD consists of 125,973 instances and includes the raw data from KDD Cup 1999, with
some redundant data removed [23]. This dataset was constructed in 1999 for a compe-
tition aimed at building a predictive model capable of distinguishing between “good”
and “bad” network connections. It comprises 41 features, including 38 continuous and
3 categorical variables. The dataset consists of one normal label and approximately
22 different types of attacks, including neptune, satan, ipsweep, portsweep, smurf, nmap,
back, teardrop, warezclient, pod, guess_passwd, buffer_overflow, warezmaster, land, imap,
rootkit, loadmodule, ftp_write, multihop, phf, perl, and spy. The normal activity class has
the highest frequency with 67,343 samples, while “neptune” is the most frequent attack
with 41,214 samples, and “spy” represents the least frequent attack with only two instances.

Please note that the information provided here is a general description of the attack
types. For a more comprehensive understanding, it is recommended to refer to the specific
literature or research papers that discuss these attack types in detail [24]. “Neptune” is
a type of denial-of-service (DoS) attack aimed at overwhelming the target system with
excessive traffic to render it unresponsive. “Satan” is a probing attack where the target
system is actively scanned to identify vulnerabilities. The “ipsweep” involves scanning a
range of IP addresses to locate live hosts on a network, and “portsweep” is similar but scans
multiple machines to find vulnerable services. “Smurf” involves flooding the network with
Internet Control Message Protocol (ICMP) echo to request packets, leading to a slowdown
or denial of service, and “nmap” is a widely used network scanning tool. In the context
of the dataset, this attack refers to the use of nmap for reconnaissance purposes. “Back”
involves gaining unauthorized access to a system, typically by exploiting vulnerabilities
in the network or application. “Teardrop” exploits a vulnerability in the reassembly of
fragmented IP packets, causing the target system to crash or become unstable. “Warezclient”
is associated with clients attempting to download or share copyrighted software or data
without proper authorization. “Pod” (ping of death) attack involves sending oversized
or malformed packets to the target system, causing it to crash or become unresponsive.
“Quess_passwd” represents attempts to guess user passwords by systematically trying
different combinations until a successful login is achieved. “Buffer_overflow” exploits a
vulnerability in a program’s buffer handling, allowing an attacker to overwrite memory
and execute malicious code. “Warezmaster” is similar to warezclient, refers to the presence
of a server that hosts unauthorized or pirated software. “Land” attack involves sending a
spoofed TCP SYN packet with the source IP address and port set to the same as the target
system. This causes the system to respond to itself and potentially crash. “Imap” attack
targets the Internet Message Access Protocol (IMAP) service, which is used for retrieving
email from a remote server. “Rootkit” is a collection of tools and techniques used by an
attacker to gain unauthorized access and maintain control over a compromised system.
“Loadmodule” involves loading a malicious code module into the target system’s memory,
enabling the attacker to execute arbitrary commands. “Ftp_write” refers to unauthorized
write access to an FTP server, allowing an attacker to upload or modify files. “Multihop”
involves an attacker using multiple compromised systems to carry out an attack, making it
difficult to trace the origin. “Phf” targets the Common Gateway Interface (CGI) program
called PHF, which is used for querying remote servers. “Perl” is associated with the
execution of malicious Perl scripts on the target system. “Spy” is a spy attack represents
unauthorized monitoring or surveillance activities aimed at gathers sensitive information
from the target system.

3.2. RLFOUA Framework Description

The RLFOUA framework is introduced in this section, providing a detailed explanation
of its components and operation. A flowchart illustrating the RLFOUA framework is
presented in Figure 1. Designed as an RL environment, the RLFOUA framework involves
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the collaboration of two agents working in tandem. The first agent assumes the role of
selecting suitable classifiers and ascertaining the optimal training cessation point through
validation dataset analysis, while the second agent, the innovative TRFSMOTE algorithm,
undertakes the task of dataset resampling. The RLFOUA framework starts by subjecting the
initial dataset to preprocessing, followed by the establishment of an algorithm repository,
culminating in the utilization of the functional agents for RL. The following sections delve
into the intricacies of each facet within the RLFOUA framework, expounding on their
individual components and operation to provide an encompassing comprehension of the
method’s functioning.
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The overview of RLFOUA framework is given in Algorithm 1:

Algorithm 1: RLFOUA framework

Input: Original Dataset, A set of machine learning algorithms, oversampling algorithms, and
undersampling algorithms.

Output: A new generated model for detecting attacks in an independent set of data.
1. preprocessing phase
2. Employing Functional Agents in RL

a. Establishing the Algorithm Repository
b. Enhanced RL with Functional Agents for RLFOUA

i. Call Agent 1 and Agent 2 (TFRSMOTE)

3.2.1. Preprocessing

The RLFOUA framework begins by receiving the original dataset as input. A prepro-
cessing phase is conducted to ensure data quality and feature relevance. Initially, null data
and outliers are removed, while string data are transformed into categorical numeric values.
Subsequently, the forward selection algorithm [2] is employed to identify and eliminate
unnecessary features. The forward selection algorithm utilizes regression analysis [2] to
select the most significant features related to the label column. Variables are sequentially
added to the set based on their p-value and R2 value, retaining only those with a p-value
exceeding the chosen significance level of 0.95% [25].

3.2.2. Establishing the Algorithm Repository

Following the data preprocessing stage, the dataset is ready for evaluation within
the RLFOUA framework. This framework makes use of three distinct algorithm pools:
machine learning algorithms, oversampling algorithms, and undersampling algorithms.
The output of the algorithm will be a pipeline of a machine learning algorithm, an over-
sampling algorithm, and an undersampling algorithm. The pipeline serves the purpose
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of combining different steps that can be tested with different settings, facilitating their
sequential application to a dataset. In this context, encompassing the sequence of oversam-
pling followed by undersampling to ultimately produce a transformed dataset for machine
learning algorithms. Elaboration can be found within Algorithm 2.

Algorithm 2: Establishing the Algorithm Repository

Input: A set of machine learning algorithms, oversampling algorithms, and undersampling
algorithms.

Output: A composite pipeline consisting of a singular machine learning algorithm, an
oversampling algorithm, and an undersampling algorithm.

1. Set up machine learning algorithms with default parameters, including Decision Tree,
Logistic Regression, Linear Discriminant Analysis, Linear SVC, Bagging Classifier, Random Forest
Classifier, Extra Trees Classifier, K Neighbors Classifier, Gaussian Process Classifier, Dummy
Classifier, XGB Classifier, Easy Ensemble Classifier, and Elliptic Envelope (dimension = 12).

2. Set the oversampling algorithms to include Random Oversampling, ADASYN, and
SVMSMOTE (dimension = 3).

3. Set the undersampling algorithms to include Random Undersampling, Nearest Neighbor,
One Sided Selection, Neighborhood Cleaning Rule, and NearMiss (dimension = 5).

4. set the actions to the following items: select one combination from the pipelines of
algorithms, keep the current pipelines of algorithms, remove the pipelines of algorithms, continue
the framework, stop the framework (dimension = 5).

5. Initialize Q-values for state-action pairs: Q(s, a) for all possible states (dimension = 180)
and actions (dimension = 5).

6. Return a set of pipelines of algorithms from steps 1, 2, and 3 (selecting one algorithm from
each step to generate a single pipeline).

3.2.3. Employing Functional Agents in RL

In this research, multiagent reinforcement learning (MARL) is used as it offers advan-
tages over single-agent reinforcement learning (SARL) in complex scenarios [15]. MARL
allows multiple agents to learn and make decisions concurrently, capturing nuanced inter-
actions and dependencies among agents. Therefore, in the integrated RL environment of
RLFOUA, two agents collaborate to optimize the algorithm selection and resampling pro-
cesses. The functional agents in RL start with a preprocessed dataset. Then, they integrate it
within a pipeline combining a machine learning algorithm, an oversampling method, and
an undersampling technique. The goal is to produce a model capable of detecting attacks
in a general dataset. In each iteration, the first agent chooses a pipeline generated from
Algorithm 1, trains the machine learning algorithms after resampling within the pipeline,
and calculates the reward based on the resulting performance. Concurrently, the second
agent, called TFRSMOTE (proposed resampling algorithm), performs dataset resampling.

In the RLFOUA framework, it is essential to define key components of RL to better
understand its operation within the context of our proposed method. These components
include the following:

State: In RLFOUA, the “state” represents the current status or configuration of the
learning environment, which includes the dataset and the algorithmic choices. It encap-
sulates all the information needed to make decisions regarding algorithm selection and
resampling strategies.

Action: Actions refer to the choices available to the agents in the RLFOUA framework.
Specifically, Agent 1 selects pipeline combinations, machine learning algorithms, and
resampling techniques, while Agent 2 utilizes the TFRSMOTE resampling algorithm with
varying parameters.

Reward: The “reward” in RLFOUA serves as a feedback signal that quantifies the
quality of decisions made by Agent 1. It is computed based on the performance metrics.
Rewards guide the decision-making process, enabling the selection and refinement of
algorithm combinations.
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Transition function: It is considered as the implicit process through which the pipeline
combinations evolve. The transitions involve training and evaluating different combina-
tions of machine learning algorithms and resampling techniques to arrive at
improved selections.

Understanding these RL components within RLFOUA is pivotal for comprehending
how the collaborative interaction of two agents, the Q-learning process of Agent 1, and the
TFRSMOTE algorithm of Agent 2 jointly lead to optimized algorithm selection, resampling,
and dataset balancing, ultimately enhancing intrusion detection system performance.

In the first phase, “Agent1”, each pipeline received from the pool of machine learning,
oversampling, and undersampling algorithms is trained and evaluated on the received
preprocessed dataset. Evaluation metrics are computed, and IM is calculated to determine
the model’s performance, as described in Equation (8). Employing this metric as a pivotal
guide, Agent 1 is entrusted with the pivotal task of determining whether to proceed with
the framework’s execution or halt it altogether. Furthermore, this metric empowers Agent
1 to make informed decisions regarding the adjustment of rewards, encompassing the
crucial choices of whether to augment or diminish them. IM introduces a new strategy
for comparing classification algorithms within the RLFOUA framework. The IM metric
incorporates the following parameters: TP, TN, FN, and FP [2]. TP represents cases where
the label is an attack, and it is correctly predicted as an attack. TN denotes instances where
the label is benign, and it is correctly predicted as benign. FP refers to cases where the label
is benign, but it is incorrectly predicted as an attack. FN represents situations where the
label is an attack, but it is incorrectly predicted as benign. Equations (1)–(7) describe the
other metrics used in this paper specifically for IM, including recall, precision, F1 score,
FPR, FNR, and sensitivity.

recall(sensitivity) =
TP

TP + FN
(1)

precision =
TP

TP + FP
(2)

F1 score = 2× recall× precision
recall + precision

(3)

FPR =
FP

FP + TN
(4)

FNR =
FN

TP + FN
(5)

specificity =
TP

TP + FN
(6)

accuracy =
TP + TN

TP + FN + TN + FP
(7)

IM =

√
(F1score2×accuracy2 × sensitivity2 × specificity

2
)√

FPR2 × FNR2
(8)

The theory behind this equation is based on the practical meaning of each variable.
A higher F1 score, accuracy, sensitivity, and specificity indicate better performance of the
classification algorithm. Conversely, a lower FPR and FNR indicate better performance of
the proposed algorithm. Since all these parameters are crucial in the RLFOUA framework,
we combine them into a single equation, with F1 score, accuracy, sensitivity, and specificity
in the numerator and FPR and FNR in the denominator. The IM is utilized by the first



Appl. Sci. 2023, 13, 11275 11 of 21

agent in the proposed RLFOUA algorithm to decide whether to retain or discard an
algorithm combination.

Following the computation of the IM by Agent 1, a comparison is made between the
IM obtained from the current pipeline and the best IM derived from any of the previous
iterations. In the event that enhancements are observed in the IM stemming from the current
pipeline compared to the highest IM achieved in prior iterations, the model, algorithm
details, metrics, and classification report are preserved. Additionally, if the IM value for
the present pipeline registers an increase in comparison to the same pipeline’s IM value
from the previous iteration, corresponding rewards are escalated. Conversely, in cases
where the IM value fails to exhibit an increase, rewards are diminished. Following this
reward adjustment step, algorithm combinations possessing a reward falling below the
predefined threshold (defaulted to zero in this algorithm) are excluded from the pool of
algorithms available for further processing by Agent 1. This orchestrated sequence ensures
the continuous refinement of the algorithm pool and model selection, based on the observed
improvements in IM and rewards, in order to achieve heightened algorithmic efficacy. If
we take out an algorithm combination from the pool, we keep track of its performance
measures, like IM, along with its model. We perform this so we can compare it with the next
combinations of algorithms. If the removed combination performs better, it is considered
the top choice, and its model is saved. After running RLFOUA, we choose the model that
performed the best between all iterations for testing.

In the RLFOUA framework, Agent 1 and Agent 2 employ Q-learning, a value-based
reinforcement learning algorithm, to guide its decision-making process. Q-learning involves
learning a value function (Q-function) that calculates the return for each state–action pair
in Equation (9). At each time step, Agent 1 updates its Q-values from Equation (10) based
on the immediate rewards obtained which will be used for Agent 2 as well for resampling.
In these equations, the variable Vs represents the expected cumulative reward at state s, Rs
represents the immediate reward (IM metric in Equation (8)) upon transitioning to state
s, P(s′ |s,a) is the probability of transitioning to state s’ from state s when taking action a,
γ denotes the discount factor, which falls within the range of [0, 1], Q(s,a) represents the
estimated value (Q-value) of taking action a in state s, and s’ is the next state. In the Bellman
equation [18], when γ = 0, the reward only considers immediate outcomes Rs without
accounting for future rewards. Conversely, when γ = 1, all future rewards are considered.
In the RLFOUA framework, we set γ = 0 to prioritize immediate rewards of Rs, as we do
not have the means to calculate future rewards.

Vs = Rs + γ×
n

∑
s′

P(s′ |s,a) ×Vs′ (9)

Q(s,a) = Q(s,a) +
[

Rs + γ×max Q(s′ ,a) −Q(s,a)

]
(10)

The second phase, “Agent2”, involves the TFRSMOTE algorithm. It resamples datasets
through K-nearest neighbors (KNN) selection and manipulation, aiming to refine the data
for improved learning. Following the prediction of the validation data by the gener-
ated model, three distinct datasets are produced: False Negative Positive Rate (FNPR),
True Positive Rate (TPR), and True Negative Rate (TNR). FNPR is a combination of FPR
and FNR, containing inaccurately classified data. TPR comprises correctly classified be-
nign data, while the remaining data fall under TNR, encompassing accurately classified
infiltration data.

To apply the KNN algorithm, the value of k is set between 20 and 2000. It is dynam-
ically reduced if the size of the selected data is less than or equal to twice k to ensure at
least two random data points are selected for resampling. In the realm of oversampling
undertaken by TFRSMOTE, the FNPR dataset undergoes the KNN algorithm to become
clustered. The average of two samples within each group is calculated, producing new
samples that are added to the FNPR dataset. The undersampling process in TFRSMOTE
begins by applying the KNN algorithm to the TPR dataset, selecting k groups of samples,
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and removing them. The resulting new dataset is then combined with the FNPR and TNR
datasets and used for the subsequent execution of the algorithm combination training
by Agent 1 in RLFOUA. This step effectively removes unimportant nonattack data rows
that were correctly identified and oversamples important data that were falsely detected,
resulting in a balanced dataset. The TFRSMOTE process is completed at this stage, but it is
repeated for each step within an iteration of the RLFOUA framework.

In summary, the RL algorithm in RLFOUA framework, in conjunction with the
TFRSMOTE algorithm and IM, facilitates the collaborative interaction between two agents.
This interaction leads to the selection of optimal machine learning and resampling algo-
rithms for dataset training, while simultaneously ensuring effective oversampling and
undersampling to enhance performance. The process of TFRSMOTE is repeated for each
step in an iteration of the RLFOUA framework, thereby removing unimportant nonattack
data rows while oversampling relevant falsely detected data to achieve dataset balance.

The enhanced RL with functional agents for RLFOUA algorithm is illustrated in
Algorithm 3, offering a comprehensive and detailed overview of its procedural steps.

Algorithm 3: Enhanced RL with functional agents for RLFOUA

Input: A preprocessed dataset with a composite pipeline consisting of a singular machine learning algorithm, an
oversampling algorithm, and an undersampling algorithm.

Output: A new generated model for detecting attacks in an independent set of data
Initialize Q-table with zeros.
Set reward discount factor (γ) to 0 for Bellman Equation (prioritizing immediate rewards).
State: Composite pipeline (ML algorithm, oversampling, undersampling)
Action: Selecting an algorithm combination
Reward: IM metric, based on F1 score, accuracy, FPR, FNR, specificity, sensitivity

Transition: Updating Q-values do
1. For each pipeline received from Algorithm 2 (Agent1):

1.1. Utilize the given pipeline to train on the training dataset and subsequently
make predictions on the validation dataset.
1.2. Calculate evaluation metrics such as F1 score, accuracy, FPR, FNR, specificity,
sensitivity, and time.

1.3. Calculate IM =

√
(F1score2×accuracy2×sensitivity2×specificity2

)√
FPR2×FNR2

.

1.4. If the IM is better than the best IM from any of the previous iterations:
1.4.1. Save the model, algorithm details, metrics, and classification report.

1.5. If the IM for this pipeline is improved compared with the same pipeline in
previous iteration:

1.5.1. Increase the reward for this pipeline.
1.6. Else:

1.6.1. Decrease the reward for this pipeline.
1.7. Update the Q-values in reward table using the Bellman equation.
1.8. TFRSMOTE algorithm (Agent2): Set the value of k for KNN between 20 and
2000. It is dynamically reduced if the size of the selected data is less than or equal
to twice k to ensure at least two random data points are selected for step 1.9.5.
1.9. For value of k:

1.9.1. Predict the validation data from the generated model from step 1.4.1
1.9.2. Calculate the FPR, FNR, and TPR data from predicting the generated
model from RLFOUA on the validation set.
1.9.3. Create three datasets: FNPR, which merges FPR and FNR, containing
falsely classified data, TPR, containing correctly classified benign data, and
remaining data.
1.9.4. Apply the KNN algorithm to select k groups of samples from the FNPR
dataset obtained in step 1.9.3.
1.9.5. Calculate the average of two randomly selected samples from each
group of the KNN results and add them to the FNPR dataset as new samples.
1.9.6. Apply KNN to select k groups of samples from the TPR dataset
obtained in step 1.9.3.
1.9.7. Select one element randomly from each group.
1.9.8. Remove the elements selected in step 1.9.7 from the TPR dataset.
1.9.9. Generate a new dataset by combining the new TPR, new FNPR, and the
remaining data from the original dataset obtained in step 1.9.3

1.10. replace the dataset with the new resampled dataset from the TFRSMOTE
algorithm for the next iteration.

2. Exclude the algorithm combinations with rewards lower than the threshold from
further processing. By default, this threshold is set to zero in this algorithm. However,
retain its model and performance measures for later comparison with other algorithm
combinations (Agent1).

While IM shows improvement in at least one of the algorithm combinations, compared to
previous loop iteration.
Return the new balanced dataset and the generated model.
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3.2.4. Testing Method

To establish the efficacy and generalizability of the proposed algorithm, comprehensive
tests are conducted using two distinct types of IDS datasets: CSE-CIC-ID2018 (binary-
class) and NSL-KDD (multiclass). These datasets are representative of different scenarios,
ensuring that the algorithm’s performance extends beyond specific dataset characteristics.
The evaluation results differ between the two datasets due to their distinct characteristics.

The testing process follows a systematic procedure, outlined as follows:

1. Preliminary application of RLFOUA framework on CSE-CIC-IDS2018 dataset: The
smaller section of the dataset, as discussed in Section 3.1.1, undergoes division into
training and validation subsets. Within the RLFOUA framework, machine learning
algorithms are trained using the training set, while the validation dataset is utilized to
compute classification metrics. This framework’s impact is assessed by comparing
pre- and post-application metrics, encompassing F1 score, accuracy, recall, and preci-
sion. The four most proficient algorithm combinations are ranked independently for
each dataset, effectively highlighting the RLFOUA framework’s capacity to enhance
classification performance.

2. Preliminary application of RLFOUA framework on NSL-KDD dataset: Similar analy-
ses are conducted on the entire NSL-KDD datasets, following the same partitioning
approach and evaluating performance based on distinct training and validation sets.
Subsequent ranking of the top four algorithm combinations underscores the consistent
advancement in classification performance through the RLFOUA framework.

3. Primary testing on independent set of CSE-CIC-IDS2018 dataset: In order to corrobo-
rate the generalizability of the RLFOUA framework, independent datasets sourced
from the CSE-CIC-ID2018 dataset are engaged. The entire dataset undergoes tripartite
division into training, validation, and independent testing subsets. The framework
is trained and validated on these data subsets, yielding a new model for subsequent
testing. This newly formed model is then evaluated on independent testing sets using
the RLFOUA framework, affirming the framework’s reliability and ability to maintain
consistent performance beyond training and validation phases.

4. Primary testing on independent set of NSL-KDD dataset: To extend the applicability
of the method, the approach employed in test 3 is replicated on the NSL-KDD datasets.
Employing a tripartite division, the datasets are split into training, validation, and
independent testing subsets, with the framework trained and validated accordingly.
The resultant model is then subjected to evaluation on separate testing sets, reinforcing
the method’s generalizability and its capacity to ensure stable performance beyond
training and validation stages.

Through this comprehensive testing process, the effectiveness and robustness of the
RLFOUA framework, along with the TFRSMOTE resampling algorithm, will be determined.
In addition, their superiority over other existing methods will be ascertained. Enhanced
performance will be evident in the form of higher F1 scores, accuracy, recall, and precision,
establishing the algorithm’s efficacy for real-world IDS applications.

4. Results

In this section, we evaluate the performance of the framework using two distinct
datasets, namely, CSE-CIC-IDS2018 and NSL-KDD, and demonstrate the improvements
achieved in terms of classification metrics. Furthermore, we test the RLFOUA framework
on an independent dataset to assess its generalizability. The application of the RLFOUA
framework with TFRSMOTE algorithm on the CSE-CIC-IDS2018 and NSL-KDD datasets
reveals notable enhancements in the classification metrics. The evaluation results differ
between the two datasets due to their distinct characteristics.

4.1. Preliminary Application of RLFOUA Framework on CSE-CIC-IDS2018 Dataset

The RLFOUA framework, which compares different sequences and combinations of
machine learning algorithms and resampling algorithms, identified the top-performing
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algorithm combinations, listed in Table 1 in descending order. The results shown in
this table highlight the precision, recall, and F1 score for each algorithm combination,
categorized by the data sample classification (benign and infiltration). The RLFOUA
framework determines that the algorithm combination of Balanced Bagging Classifier,
Random Oversampling, Random Undersampling, and TFRSMOTE achieves the highest
performance with an F1 score of 0.9998 for the “benign” class and 0.9784 for the “infiltration”
class. This is followed by the Random Forest Classifier, which achieves an F1 score of 0.9999
for the “benign” class and 0.9910 for the “infiltration” class. The Bagging Classifier and
Extra Trees Classifier also exhibit strong performance, although the Bagging Classifier has
relatively lower precision for the “infiltration” class.

Table 1. Classification report for the validation set of CSE-CIC-IDS2018 dataset, comprising different
algorithm and sampling technique combinations within the RLFOUA framework for infiltration
attack, arranged in descending order of performance metrics.

Algorithm Attack Type Precision Recall F1 Score Support Accuracy

Balanced Bagging Classifier
Random Oversampling

Random Undersampling
TFRSMOTE

Benign 1 0.9996 0.9998 7322
0.9996

Infiltration 0.9577 1 0.9784 68

Random Forest Classifier
Random Oversampling

Neighborhood Cleaning Rule
TFRSMOTE

Benign 1 0.9999 0.9999 7308
0.9999

Infiltration 0.9821 1 0.991 55

Extra Trees Classifier
ADASYN

Neighborhood Cleaning Rule
TFRSMOTE

Benign 0.9999 0.9986 0.9992 7308
0.9985

Infiltration 0.8485 0.9836 0.9106 57

Bagging Classifier
ADASYN

Neighborhood Cleaning Rule
TFRSMOTE

Benign 0.9999 0.9966 0.9982 7322
0.9965

Infiltration 0.7059 0.9825 0.8219 61

The exceptional performance of certain algorithm combinations, notably the Balanced
Bagging Classifier with specific resampling techniques, can be attributed to their ability
to effectively handle the complex nature of the CSE-CIC-IDS2018 dataset. This dataset
exhibits a considerable class imbalance between benign and infiltration samples, making
it challenging for traditional algorithms to discern between the two classes accurately.
The combination of techniques employed, including random oversampling, random un-
dersampling, and TFRSMOTE, work synergistically to address this imbalance. Random
oversampling augments the minority class, ensuring that it contributes meaningfully to
the learning process. Conversely, random undersampling helps mitigate the dominance
of the majority class, preventing it from overshadowing the learning process. Addition-
ally, TFRSMOTE fine-tunes the sampling process, adapting dynamically to the dataset’s
characteristics. This strategic combination of techniques results in a more balanced and
representative training set, enabling the algorithms to make informed decisions and achieve
exceptional performance in detecting both benign and infiltration attacks. The effectiveness
of these combinations underscores the significance of tailored resampling strategies in
enhancing intrusion detection systems, particularly in scenarios with imbalanced datasets.

4.2. Preliminary Application of RLFOUA Framework on NSL-KDD Dataset

In order to assess the generalizability of the RLFOUA framework across different
datasets, we apply it to the NSL-KDD dataset and present a summary of the results in Ta-
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ble 2. The table displays the classification report of the RLFOUA framework, incorporating
four of the best-performing algorithms along with TRFSMOTE. The algorithm combina-
tions are ranked in order of their performance, with the top-performing combinations listed
in the table.

Table 2. Classification report for the validation set of NSL-KDD dataset, comprising different
algorithm and sampling technique combinations within the RLFOUA framework for infiltration
attack, arranged in ascending order of performance metrics.

Algorithm Attack Type Precision Recall F1 Score Support Frequency Accuracy

Decision Tree Classifier
Random Oversampling

Algorithm
Near Miss Undersampling

TFRSMOTE

Neptune 0.9999 0.9991 0.9995 16,585 41,214
Nmap 0.9685 0.9898 0.979 590 1493

Normal 0.9982 0.9987 0.9985 26,709 67,343
Rootkit 0.0694 1 0.1299 5 10

Multihop 1 1 1 7 7
Weighted Avg 0.9885 0.9847 0.9847 50,378 0.9847

Bagging Classifier
Random Oversampling

Algorithm
Near Miss Undersampling

TFRSMOTE

Neptune 0.9999 0.9993 0.9996 16,579 41,214
Nmap 0.9662 0.9967 0.9812 603 1493

Normal 0.9994 0.9994 0.9994 26,828 67,343
Rootkit 0.75 1 0.8571 3 10

Multihop 1 1 1 4 7
Weighted Avg 0.9982 0.9981 0.9981 50,390 0.9981

XGB Classifier
Random Oversampling

Algorithm
Neighborhood Cleaning Rule

Undersampling
TFRSMOTE

Neptune 0.9999 0.9999 0.9999 16,366 41,214
Nmap 0.9982 0.993 0.9956 568 1493

Normal 1 0.9993 0.9996 27,123 67,343
Rootkit 0.5714 1 0.7273 4 10

Multihop 1 1 1 2 7
Weighted Avg 0.9996 0.9995 0.9995 50378 0.9995

Extra Trees Classifier
Random Oversampling

Algorithm
Neighborhood Cleaning Rule

Undersampling
TFRSMOTE

Neptune 0.9999 1 1 16,462 41,214
Nmap 1 0.9951 0.9975 613 1493

Normal 0.9999 0.9994 0.9996 26,852 67,343
Rootkit 0.8 0.8 0.8 5 10

Multihop 1 1 1 4 7
Weighted Avg 0.9996 0.9995 0.9995 50,420 0.9995

Table 2 presents the classification results of the RLFOUA framework using the four
algorithms along with their respective sampling techniques. The metrics included in
the table are precision, recall, F1 score, support, frequency, and accuracy. In conclusion,
the application of the RLFOUA framework on the NSL-KDD dataset demonstrates its
generalizability to different types of datasets. The results demonstrate that the RLFOUA
framework, by autonomously identifying the top-performing algorithm combinations,
effectively detects various attack types with high precision, recall, and F1 scores. Among
the evaluated algorithms, the Extra Trees Classifier stands out as the most promising choice
for detecting attacks within the NSL-KDD dataset. These findings contribute valuable
insights for selecting suitable algorithms and sampling techniques when applying the
RLFOUA framework in real-world intrusion detection scenarios.

The remarkable effectiveness of certain algorithm combinations on the NSL-KDD
dataset can be attributed to their adaptability to the dataset’s diverse range of attack types.
The Extra Trees Classifier, for instance, demonstrated exceptional performance, likely due
to its inherent ability to handle complex decision boundaries and high-dimensional feature
spaces. Additionally, the integration of Random Oversampling and Neighborhood Clean-
ing Rule Undersampling further enhanced the model’s ability to discern subtle patterns
within the data, contributing to higher precision and recall scores. This combination of
algorithms and resampling techniques effectively leveraged the dataset’s unique character-
istics, allowing the RLFOUA framework to autonomously identify and employ the most
suitable strategies for detecting various attack types.
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4.3. Primary Testing on Independent Set for CSE-CIC-IDS2018

In this section, we test the RLFOUA framework on the CSE-CIC-IDS2018 dataset. The
best models obtained from the RLFOUA framework in Section 4.1 are evaluated using the
testing set as an independent dataset. The testing results are presented in Table 3, which
demonstrates the effectiveness of the RLFOUA framework on the CSE-CIC-IDS2018 dataset.

Table 3. Classification metrics on the testing set of CSE-CIC-IDS2018 dataset using RLFOUA framework.

Precision Recall F1 Score Support

Benign 0.9953 0.986 0.9907 538,865
Infiltration 0.9348 0.9774 0.9556 110,453
Accuracy 0.9846 649,318

Macro Avg 0.9651 0.9817 0.9731 649,318
Weighted Avg 0.985 0.9846 0.9847 649,318

Table 3 provides a comprehensive overview of the classification metrics achieved after
applying the RLFOUA framework on the independent testing set of the CSE-CIC-IDS2018
dataset. Macro Avg displays the macro-average metrics, which calculate the average of
precision, recall, and F1 score, respectively, across all classes. It can provide insights into
the model’s performance, considering class imbalances. Weighted Avg metrics consider
the class support (number of instances) in the calculation, providing a more representative
performance evaluation, particularly when dealing with class imbalances. In the context of
intrusion detection, precision reflects the system’s ability to accurately flag potential threats
without generating unnecessary alarms. Recall, on the other hand, assesses the proportion
of true positives correctly identified from all actual positives in the dataset. It is particularly
important in security applications to minimize false negatives, ensuring that actual threats
are not overlooked. The F1 score strikes a balance between precision and recall, offering a
combined metric that considers both false positives and false negatives. A higher F1 score
indicates a model that excels in both precision and recall, signifying a robust detection
capability. The results indicate an accuracy of 0.9846, a macro average recall of 0.9817, a
weighted average recall of 0.9846, a macro average F1 score of 0.9731, a weighted average
F1 score of 0.9847, a macro average precision of 0.9651, and a weighted average precision
of 0.985.

4.4. Primary Testing on Independent Set for NSL-KDD

Within this section, an assessment of the RLFOUA framework is conducted using
the NSL-KDD dataset. The superior models garnered from the framework, as elucidated
in Section 4.2, undergo evaluation on an autonomous testing set. The outcomes of this
evaluation, encapsulated in Table 4, substantiate the efficacy of the RLFOUA framework
when applied to the NSL-KDD dataset. Table 4 presents the classification metrics for the
testing of the RLFOUA framework on the NSL-KDD dataset, further testing its performance
on a different dataset. The RLFOUA framework undergoes evaluation across various attack
types, providing corresponding precision, recall, and F1 score values.

Table 4. Classification metrics for testing the RLFOUA framework with TFRSMOTE algorithm on
NSL-KDD dataset. Support parameter indicates the frequency of each class in the independent set of
the dataset, while frequency represents the occurrence of each class in the entire dataset.

Attack Type Precision Recall F1 Score Support Frequency

Back 1 0.9873 0.9936 79 956
Buffer_overflow 1 0.8 0.8889 5 30

Ftp_write 0 0 0 1 8
Guess_passwd 1 1 1 8 53

Ipsweep 0.9945 0.9973 0.9959 365 3599
Land 0.5 1 0.6667 1 18
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Table 4. Cont.

Attack Type Precision Recall F1 Score Support Frequency

Loadmodule 0 0 0 1 9
Multihop 1 1 1 1 7
Neptune 1 1 1 4147 41,214

Nmap 0.986 0.986 0.986 143 1493
Normal 0.9976 0.9996 0.9986 6713 67,343

Pod 1 1 1 18 201
Portsweep 0.9963 1 0.9982 271 2931

Rootkit 0 0 0 2 10
Satan 1 0.9864 0.9931 367 3633
Smurf 1 1 1 283 2646

Teardrop 1 1 1 95 892
Warezclient 0.978 0.9271 0.9519 96 890

Warezmaster 1 1 1 1 20
Accuracy 0.9981 12,597

Macro Avg 0.8133 0.8255 0.8144 12,597
Weighted

Avg 0.9978 0.9981 0.9979 12,597

The RLFOUA framework demonstrates promising results on the NSL-KDD dataset,
effectively identifying and classifying different types of attacks. Comparing the metrics
across different attack types, we can observe variations in the model’s performance. The
aggregated metrics at the bottom of the table provide an overview of the overall perfor-
mance. The accuracy of the model is 0.9981, indicating a high overall accuracy in classifying
the attack types. The macro average and weighted average metrics calculate the average
precision, recall, and F1 score across all attack types. The macro average gives equal weight
to each attack type, while the weighted average considers the support (number of instances)
of each attack type when calculating the average.

Table 4 offers valuable insights into the performance of the IDS model for different
attack types, enabling a comprehensive assessment of its effectiveness in detecting and
classifying network intrusions. The overall accuracy achieved by the RLFOUA framework
on the NSL-KDD dataset was 0.9981, demonstrating its effectiveness in accurately classi-
fying attack types. The macro average metrics, with precision, recall, and F1 score values
of approximately 0.81, reflect an acceptable overall performance across all attack types,
considering their varying support and frequency in the dataset.

Upon examining the results for different attack types in Table 4, several noteworthy
trends and variations emerge. The framework demonstrates exceptional proficiency in
detecting certain types of attacks, such as “neptune”, “guess_passwd”, “multihop”, and
“pod”, achieving perfect precision, recall, and F1 score values. These results suggest that
the RLFOUA framework, in tandem with the TFRSMOTE algorithm, excels in accurately
identifying these specific attack categories. However, it is important to note that for less
common attack types, like “ftp_write”, “loadmodule”, “rootkit”, and “warezmaster”, the
performance metrics indicate room for improvement. The precision and recall values for
these categories are relatively lower, indicating a potential area for further refinement in
the framework’s ability to discern these less-frequent attack types. These observations
highlight the framework’s strengths in handling prevalent attack categories, while also
identifying potential areas for enhancement, particularly in the context of rare or infrequent
attacks. This balanced evaluation underscores the framework’s potential to contribute
significantly to the field of intrusion detection and bolster cybersecurity measures.

5. Discussion

In this paper, we introduce RLFOUA, an RL framework, which is seamlessly integrated
with a novel resampling algorithm known as TFRSMOTE. Our comprehensive approach
showcases remarkable performance across two well-known IDS datasets: CSE-CIC-ID2018
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and NSL-KDD. The former dataset, CSE-CIC-ID2018, is structured as a binary classification
task involving benign and infiltration instances. On the other hand, NSL-KDD encompasses
a diverse spectrum of attack types, including those occurring at a frequency of fewer than
ten instances within the dataset. While these datasets are widely acknowledged in the IDSs
field, they offer distinct features and encompass a variety of attack characteristics. It is
noteworthy that, unlike many other papers, which concentrate solely on one dataset, our
proposed methodology is rigorously evaluated on both CSE-CIC-ID2018 and NSL-KDD
datasets, thus showcasing its robustness and generalizability across diverse data scenarios.
This comprehensive evaluation substantiates the superior accuracy, precision, recall, and
F1 score achieved by our method.

As depicted in Table 2 within Section 4, for the “neptune” attack type, all four al-
gorithms achieve high precision, recall, and F1 scores, indicating their effectiveness in
detecting this attack type. The Extra Trees Classifier achieves perfect recall and F1 score,
indicating that it captures all instances of “neptune” attacks without any false negatives.
The “nmap” attack type is also well detected by all algorithms, with the Bagging Classi-
fier and XGB Classifier demonstrating slightly higher recall and F1 scores compared to
the Decision Tree Classifier and Extra Trees Classifier. All algorithms accurately classify
instances labeled as “normal” with high precision, recall, and F1 scores, indicating their
ability to generalize well for benign network activity. The Decision Tree Classifier exhibits
the lowest performance for the “rootkit” and “multihop” attack types, particularly in terms
of recall and F1 score. On the other hand, the Bagging Classifier, XGB Classifier, and Extra
Trees Classifier show better recall and F1 scores for these categories. Overall, the Extra
Trees Classifier achieves the highest recall and F1 scores for most attack types, making it
particularly effective in detecting a wide range of attacks within the NSL-KDD dataset.

The weighted average scores provide an overview of the algorithms’ overall perfor-
mance across all attack types, considering their frequency in the dataset. The Bagging
Classifier and XGB Classifier exhibit higher weighted average F1 scores, indicating their
balanced performance across the entire dataset. Moreover, referring to Table 4 within Sec-
tion 4, the application of RLFOUA on the independent NSL-KDD dataset reveals intriguing
insights. Particularly, the “nback” attack type stands out with a precision of 1.000, indicat-
ing the precise classification of all instances associated with this attack type. However, the
“buffer_overflow” attack type indicates that while the precision is perfect (1), only 80% of
actual “buffer_overflow” instances were captured (recall of 0.8), resulting in an F1 score of
0.8889. Some attack types, such as “ftp_write” and “loadmodule”, have precision, recall,
and F1 score of 0, indicating that the model failed to correctly classify any instances for
these attack types.

Transitioning to the next segment, a comparative analysis between RLFOUA and
AESMOTE is initiated to discern their unique attributes. AESMOTE, considered one of the
most recent and high-performing algorithms in the domain, is marked by a set of unique
attributes. Both RLFOUA and AESMOTE operate within an RL framework, leverage
the NSL-KDD dataset, and adopt accuracy, recall, precision, and F1 score as metrics for
assessing performance. The selection of AESMOTE as a benchmark is predicated on its
exceptional performance relative to other contemporaneous methodologies.

The main differences between RLFOUA and AESMOTE lie in the resampling ap-
proach, dataset consideration, algorithm selection, and performance metrics. RLFOUA
introduces the innovative TFRSMOTE algorithm, which systematically generates synthetic
data by oversampling falsely detected instances and undersampling correctly detected
benign activities. In contrast, AESMOTE relies on the widely used SMOTE algorithm
for resampling.

Another distinction is that RLFOUA integrates a wide range of 23 machine learn-
ing algorithms, 8 undersampling techniques, and 3 oversampling methods, in addition
to TFRSMOTE. This comprehensive exploration of the solution space allows for a more
comprehensive analysis. In comparison, AESMOTE primarily employs SMOTE as its re-
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sampling method and does not explicitly incorporate multiple machine learning algorithms
or undersampling techniques.

Furthermore, RLFOUA evaluates performance using various metrics, including ac-
curacy, precision, recall, and F1 score, on both CSE-CIC-ID2018 and NSL-KDD datasets,
while AESMOTE only focuses on the NSL-KDD dataset. Additionally, RLFOUA utilizes a
new metric, IM, for comparing algorithms. In contrast, AESMOTE does not specify a new
metric used for performance evaluation.

Table 5 provides a comprehensive comparative analysis of the performance metrics
between RLFOUA and AESMOTE. In the case of the NSL-KDD dataset, RLFOUA’s testing
set comprises 12,598 independent instances, carefully extracted from the original file. In
contrast, AESMOTE is divided into a training set with 125,973 samples and a testing set
with 22,544 samples [3]. The table showcases key metrics, including F1 score, accuracy,
precision, and recall, for both methods. As illustrated in Table 5, RLFOUA consistently
outperforms AESMOTE across all metrics, underscoring its superior performance. This
distinction is particularly evident in the significantly higher F1 score, accuracy, and recall
values achieved by RLFOUA.

Table 5. Comparative performance metrics of RLFOUA and AESMOTE.

Method F1 Score Accuracy Precision Recall

RLFOUA 0.9061 0.9981 0.9055 0.9118
AESMOTE 0.8243 0.8209 0.8411 0.8209

In conclusion, this paper introduces RLFOUA, an innovative approach that incorpo-
rates the novel TFRSMOTE resampling algorithm. We rigorously validated and tested
RLFOUA on multiple datasets, employing a diverse range of machine learning algorithms
and undersampling techniques. The performance metrics presented here serve as a tes-
tament to the effectiveness of our approach. The substantial differences in performance
between AESMOTE and RLFOUA underscore the unique contributions of our work and
its potential to advance the field of anomaly detection in intrusion detection systems.

Beyond the realm of intrusion detection, the RLFOUA framework, coupled with the
innovative TFRSMOTE resampling algorithm, holds significant promise for applications
in other domains characterized by imbalanced datasets and the need for robust anomaly
detection. Industries ranging from finance to healthcare and beyond stand to benefit
from the heightened accuracy and precision demonstrated by RLFOUA. By effectively
addressing the challenges posed by class imbalances in data, our approach opens avenues
for the development of more reliable and efficient anomaly detection systems across diverse
domains. Moreover, the adaptability of RLFOUA, demonstrated through its performance
across multiple datasets, suggests its potential for customization to suit specific application
scenarios, further expanding its applicability in real-world settings.

6. Conclusions

IDSs are essential for identifying and mitigating malicious activities within networks.
The application of machine learning algorithms to imbalanced IDS datasets can significantly
enhance the performance of existing IDS methods. However, the challenge lies in the
imbalance of such datasets, where malicious activities can easily conceal themselves among
a large volume of normal events. Consequently, machine learning algorithms may prioritize
recognizing normal events, potentially missing critical attacks. Therefore, there is a pressing
need for algorithms that can effectively balance IDS datasets, leading to better-trained
machine learning models.

In this paper, we present RLFOUA, an RL framework specifically designed to address
the imbalanced nature of IDS datasets. RLFOUA is enhanced through the integration of
a novel resampling algorithm called TFRSMOTE. TFRSMOTE facilitates dataset balance
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for machine learning algorithm training by systematically oversampling falsely detected
instances and undersampling correctly detected benign activities.

We tested the RLFOUA framework on two widely used IDS datasets: CSE-CIC-
IDS2018 and NSL-KDD. The application of RLFOUA on the independent set from the CSE-
CIC-IDS2018 dataset yielded impressive results, with precision of 0.985%, recall of 0.9846%,
accuracy of 0.9846%, and F1 score of 0.9847%. Similarly, when applied to the independent
set from the NSL-KDD dataset, RLFOUA achieved precision of 0.9055%, recall of 0.9118%,
accuracy of 0.9981%, and F1 score of 0.9061%. These results were compared with the best
and latest tested algorithms, AESMOTE, which were applied to the same datasets using
the same performance metrics. As outlined in Section 5, there is an average enhancement
of 11% in recall, 7.6% in precision, 21.5% in accuracy, and 9.9% in F1 score when compared
to AESMOTE. The comparison revealed significant performance improvements obtained
by the RLFOUA framework.

Overall, the RLFOUA framework presents a promising environment for effectively bal-
ancing imbalanced IDS datasets. Through the incorporation of the TFRSMOTE algorithm
into the RLFOUA framework, we demonstrated the capability to address the challenges
posed by imbalanced datasets in machine-learning-based IDS applications. The results
obtained underscore the potential of RLFOUA in enhancing intrusion detection capabilities
and contributing to the development of robust cybersecurity measures. Looking ahead,
further research avenues could explore the fine-tuning of RLFOUA’s algorithms and re-
sampling techniques to adapt to evolving threat landscapes. Additionally, investigating
the integration of RLFOUA with emerging network security technologies and exploring
its performance in real-time scenarios are promising directions for future work. These
endeavors aim to continue advancing the field of anomaly detection in intrusion detection
systems and fortifying cybersecurity measures.
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