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Abstract: Wind power is a vital power grid component, and wind power forecasting represents a
challenging task. In this study, a series of multiobjective predictive models were created utilising
a range of cutting-edge machine learning (ML) methodologies, namely, artificial neural networks
(ANNs), recurrent neural networks (RNNs), convolutional neural networks, and long short-term
memory (LSTM) networks. In this study, two independent data sets were combined and used to
predict wind power. The first data set contained internal values such as wind speed (m/s), wind
direction (◦), theoretical power (kW), and active power (kW). The second data set was external values
that contained the meteorological data set, which can affect the wind power forecast. The k-nearest
neighbours (kNN) algorithm completed the missing data in the data set. The results showed that the
LSTM, RNN, CNN, and ANN algorithms were powerful in forecasting wind power. Furthermore,
the performance of these models was evaluated by incorporating statistical indicators of performance
deviation to demonstrate the efficacy of the employed methodology effectively. Moreover, the
performance of these models was evaluated by incorporating statistical indicators of performance
deviation, including the coefficient of determination (R2), root mean square error (RMSE), mean
absolute error (MAE), and mean square error (MSE) metrics to effectively demonstrate the efficacy of
the employed methodology. When the metrics are examined, it can be said that ANN, RNN, CNN,
and LSTM methods effectively forecast wind power. However, it can be said that the LSTM model is
more successful in estimating the wind power with an R2 value of 0.9574, MAE of 0.0209, MSE of
0.0038, and RMSE of 0.0614.

Keywords: artificial neural network; convolutional neural network; recurrent neural network; long
short-term memory; wind power forecasting

1. Introduction

Within the realm of renewable energy, wind power has emerged as a prominent
contender, primarily due to its sustainable nature, lack of pollution, and minimal cost impli-
cations. However, the randomness of wind power generation challenges the power grid’s
secure dispatch and stable operation. Hence, precise wind power forecasting significantly
reduces grid dispatching costs and enhances system performance [1,2]. Various factors,
including climate, seasons, and the intermittent nature of wind, make forecasting wind
power complex [3]. Furthermore, the lack of predictive abilities in wind power systems
that undergo substantial fluctuations may result in contradictions and pose significant
obstacles for power systems. Therefore, the successful integration of wind power at a
global level relies heavily on accurate wind power prediction. It is demonstrated that
challenges such as insufficient regulation and reserve power, often linked to the variability
and limited predictability of wind power, can only be comprehensively evaluated when
considering the characteristics of the conventional generation system with which wind
power is integrated [4,5].

Scientists worldwide have conducted numerous research efforts to realise wind power
prediction by developing various models in recent years. Numerous researchers, e.g.,
Rahman et al. [6], Ray et al. [7], and Abdalla et al. [8], have undertaken significant investi-
gations to develop refined software models that are intended to predict power generation
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via the utilisation of RES. Some researchers have found that the amount of variable data
affects wind power forecasting performance [9,10]. Li and Mao [11] proposed a method
that utilises two-day historical climate data and wind power data for training a back
propagation neural network. This network is employed to predict ultra-short-term wind
power in the next 4 h based on numerical weather forecasts. Ma et al. [12] discovered
in their study on short-term generation forecasting in a microgrid that neural networks
consistently exhibit high performance across seasons. Unlike other algorithms, this method
is not influenced by temperature variations, showcasing its remarkable flexibility. Lahouar
et al. [13] studied hour-ahead wind power forecasting. They observed that neural networks
are sensitive to irrelevant data, with model performance decreasing as the number of
features increases. Additionally, their research revealed that the performance of neural
networks can be compromised if their numerous parameters are not adequately tuned. In a
study referenced in [14], a probability forecasting model for ultra short-term wind power
was developed using a CNN. The accuracy of this model was subsequently evaluated to
assess its performance. In [5], CNN and a physical model were integrated to enhance the
accuracy of short-term wind power forecasting, significantly reducing forecasting errors.
In [15], LSTM models have been utilised in short-term wind speed and power forecasting.
Solas et al. [16] put forward a concise approach for wind power prediction, which relies
on a CNN. Their findings revealed that this method outperforms ARIMA and Gradient
Supercharger regarding wind power forecasting accuracy. Liu and colleagues [17] posited
an innovative methodology for short-term wind power forecasting that leverages image
representations of temporal data and applies CNN architectures for analysis. Comparative
analyses with current approaches in wind power prediction, namely, RNN, LSTM, and
GRU, exhibit the superior performance of the proposed method.

ANN-based forecasting enables rapid wind farm output power prediction despite
the potential for significant output power disparities amongst individual wind generators
resulting from inconsistencies in wind speed at each turbine [18]. Deep learning (DL)
models offer a more robust computational capability and are better equipped to handle
complex functions than shallow ML approaches. Using multi-layered network structures
and nonlinear optimisation techniques, DL models could automatically extract meaningful
features from data at various levels of abstraction, from low-level to high-level representa-
tions [19]. Several scientists endeavour to employ DL models in wind power prediction
using past data to enhance the precision of wind power forecasting [20–22]. Recently, there
has been an extensive exploration into the realm of DL, focusing on its implementation in
short-term wind power prediction [13]. LSTM and CNN are recognised as the two primary
DL models [23]. Existing individual CNN and LSTM models can establish nonlinear corre-
lations between output and input variables by utilising large amounts of historical data.
This enables accurate predictions of wind speed or wind power [24]. These days, there has
been notable progress in utilising DL algorithms for short-term wind power forecasting.
Amongst the most distinct techniques employed is the LSTM network, which has proven
to be highly effective [1]. LSTM networks can efficiently leverage the internal associations
among time series data. However, they must achieve high prediction accuracy when
dealing with discontinuous data features [25]. Among the diverse deep neural networks
(DNNs), CNNs stand out for their seamless processing of multi-dimensional data samples.
This distinctive attribute enables CNNs to extract intrinsic features from the data effec-
tively. Furthermore, the weight-sharing structure inherent to CNNs reduces the number
of parameters, resulting in decreased network complexity and effectively addressing the
concern of overfitting [26,27]. The literature encompasses numerous studies on wind power
estimation utilising CNN and LSTM models.

This research aimed to estimate the power generation of the wind power plant using
ML techniques, namely, ANN, RNN, CNN, and LSTM networks. This study combines two
independent data sets to predict wind power accurately. The first data set contains internal
values such as theoretical power (kW) and active power (kW) of the wind turbine. This first
data set was taken from the Esenkoy wind power plant SCADA system. The second data
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set is external values that contain the meteorological data set, which can affect the wind
power forecast. The second data set was obtained from MERRA-2 Global. Subsequently,
the prediction performances generated by these methods were evaluated and compared
using a variety of metrics [28,29].

The current investigation has achieved significant progress, which can be summarised
in four key points.

1. In the current investigation, a series of multi-objective predictive models were created
utilising a range of cutting-edge ML methodologies, such as CNN and LSTM, to
augment the precision of prognostication.

2. Additional input parameters have been incorporated with wind speed, wind direction,
active power, and theoretical power data obtained via the SCADA system to enhance
the models’ predictive capabilities. These supplementary parameters encompass a
range of weather-related factors, such as air temperature, precipitation, and air density.

3. The current investigation incorporates statistical performance deviation indicators to
substantially augment the precision of prognostications and effectively demonstrate
the efficacy of the employed methodology.

4. The current investigation entails meticulously analysing methodologies’ most favourable
parameter parameters through input-output correlation matrices. Consequently, the de-
gree to which the independent variables influence the dependent variable is established.

The following sections of this manuscript are structured as follows. In Section 2, we
offer insights into data sources, data preprocessing, error metrics, and the fundamental
methodology. In Section 3, we present the wind power estimation results, including
R2 values and error metrics for the proposed methods. Within Section 4, we conduct a
comprehensive analysis of the findings presented in this study and evaluate the forecasting
performance, while also assessing the limitations and shortcomings of the proposed models.
Additionally, this section explores potential avenues for future research.

2. Materials and Methods

This section explains the steps of data collection, data pre-processing, application of
ML algorithms, and feature selection for active wind power forecasting.

2.1. Obtaining Parameters and Pre-Processing

Two types of input data sets, internal and external, were used to estimate wind power.
External inputs for ML algorithms must be carefully selected to estimate wind power. In
this context, the environmental conditions in which the wind turbine is located should
be considered, and the effect of the wind turbine on the active power output should be
carefully evaluated. In this study, two independent data sets were combined and used
to predict the wind power correctly. The first data set contained internal values, such as
theoretical power (kW) and active power (kW) of the wind turbine. The second data set
comprised external values containing the meteorological data set, which can affect the
wind power forecast. Wind power was determined as the dependent output data.

The internal data set contained information taken from the Esenkoy wind power plant
shown in Figure 1 in the northwest part of Turkey (coordinate information “X: 40.58545 Y:
28.99035”), and this information was taken from a freely accessible wind turbine SCADA
database [28]. The turbine used in the power plant was the N117/3600 model turbine
produced by the Nordex company. Within the SCADA system, data such as wind speed
(m/s), wind direction (◦), theoretical power (kW), and active power (kW) belonging to the
wind turbine for one year (1 January–31 December 2018) were periodically recorded.
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Figure 1. Esenkoy wind turbine location [30].

The external data set, calculated using the latitude and longitude coordinates of
the wind turbine, consisted of meteorological parameters provided by MERRA-2 Global
(Modern Era Retrospective Analysis for Research and Applications) [29] and belonged to a
specific date range (1 January–31 December 2018). In this data set, information regarding
the turbine’s location is recorded hourly, including temperature (◦C), precipitation amount
(mm/hour), air density (kg/m3), solar radiation at ground level (W/m2), solar radiation
above the atmosphere (W/m2), and cloud cover ratio. To achieve the most accurate results
for predicting active power, merging two data sets within the same time interval was
necessary. The first data set comprised 50,530 samples, among which 2030 missing data
instances were identified. Therefore, the missing data were successfully imputed using
the kNN algorithm, an ML technique employed for effectively completing missing data
instances [31]. Subsequently, a new data set was created by filtering only the hourly data.
Finally, the new data set was merged with the second data set, resulting in a final data set
comprising 8760 observations.

It is crucial to determine and quantify the strength of the impacts of the features in
the data set on the generation of active wind power compared to other sources. Given
the influence of multiple factors on power production, it is imperative to comprehend the
interrelationships among these factors. To this end, a correlation matrix can be utilised
to evaluate the correlations between the various elements. As illustrated in Figure 2,
a visual depiction of the correlation coefficients between all input features and active
power is provided. This graph expresses the correlation between one parameter and
another numerically, ranging from −1 to +1. This correlation matrix shows how these
independent input variables and the dependent output value affect each other. Upon
analysing the correlation matrix presented in Figure 2, it becomes evident that the most
significant influences on active power are attributed to the theoretical power curve and wind
speed. Conversely, dynamic control negatively correlates with wind direction, temperature,
and radiation rates. The temperature rise reduces air density, consequently negatively
impacting wind power generation. Furthermore, heightened solar radiation elevates
temperature levels, indirectly contributing to declining wind power potential. On the other
hand, parameters such as air density, cloud cover ratio, and precipitation demonstrate a
positive influence.
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Figure 2. Correlation of input parameters with active power.

Some terms in the correlation matrix are here briefly explained. Rainfall has its
quantity expressed in millimetres per hour. Air density pertains to the air per unit volume
group, which indicates the air mass that fills a given space. Furthermore, solar radiation
denotes the energy emitted by the sun through electromagnetic waves. Cloud cover ratio,
also known as cloud cover percentage or cloudiness, pertains to the proportion of the sky
obstructed by clouds at a particular location and time. Wind speed relates to the velocity at
which air molecules move horizontally within the atmosphere. Wind direction denotes the
direction from which the wind emanates.

Figure 3 illustrates paired scatter plots that depict the interrelationships among various
features. The scatter plots featuring a diagonal structure visually present histograms
that outline the probability distribution of individual weather features. Scatter plots
visualise the connections between these distinct features within the lower and upper
triangles. Furthermore, each feature exemplifies its distribution alongside the other features.
These paired scatter plots make alterations in one specific feature concerning all other
features apparent.

Before model training, the removal of outliers is necessary. This process may involve
handling missing data by either removing or imputing them, converting categorical vari-
ables into numerical values, and scaling the data. Wind speed values below 3.5 m/s or
above 25.5 m/s need to be cleaned, as they do not align with the turbine’s appropriate
power curve. This specific range represents values within which the turbine operates effi-
ciently. Similarly, even if the wind speed exceeds 3.5 m/s, if the active power value is zero,
this indicates that the turbine is not active during those time intervals. Lastly, data points
with negative active power values should also be cleaned. I utilised the quartile method
to clean outliers in the active power column, which involves identifying and removing
outliers in a data set using the data’s quartiles (Q1 and Q3) along with the calculation of
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the interquartile range (IQR). Outliers were defined as values that fall outside the range of
Q1 − 1.5 * IQR to Q3 + 1.5 * IQR, and these values were excluded from the data set. As
a result of this process, 68 outliers were removed. kNN can be particularly effective in
completing missing data, especially in the case of minor data gaps and when a suitable
similarity measure is chosen. However, its performance may decrease with significant data
gaps or high-dimensional data sets, so it is crucial to select an appropriate approach to
address data incompleteness. In this study, the kNN technique was employed for imputing
missing values, with the chosen value of K being 5. Figure 4 illustrates the wind power
curve generated from the cleaned data after removing the outlier. This curve visually
represents the variation of active and theoretical power for wind speed. Upon analysis of
the chart, it is evident that the power production curve attains its utmost point when the
wind speed approaches approximately 13 m/s and continues in a straight line.
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The parameters used in active power prediction models have different vector val-
ues. Hence, normalising these input vectors provides several advantages to ensure their
standardisation. Hence, the input features/tensors were scaled to a range of 0 to 1 before
being fed into the DL layers using a min-max scaler. The normalised scale of a value was
calculated using Equation (1):

Xscaled =
xo − min(x)

max(x)− min(x)
(1)

Here, Xscaled is the normalised value, xo is the original value, and max(x) and min(x)
are the series’ most significant and minor values, respectively.

The designated power of the wind turbine indicated the maximum limit of the tur-
bine’s power production, which was determined by the producer and authorised during
the developmental stage. In Figure 5, theoretical and active power curves are presented vi-
sually. The theoretical power curve, otherwise referred to as the power–performance curve
or simply the power curve, is a visual representation that elucidates the correlation between
the wind speed and the power output of a wind turbine. Under ideal circumstances, it
showcases the maximum quantity of power that a wind turbine can produce at varying
wind speeds. Active power, frequently called absolute power, constitutes a fundamental
concept in electrical engineering and power systems. It embodies the authentic power that
a wind turbine generates in this study.
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2.2. Proposed Model Architecture

The predictive performance of the intended models was evaluated using two data
sets. The first data set pertains to internal wind turbine data, while the second comprises
external weather-related data. These two data sets were merged to create a final data
set with 8760 observations. The initial data set consisted of 50,530 samples, with 2030
missing data instances identified. The missing data was successfully imputed using the
kNN algorithm to address this. Following this imputation, a new data set was generated
by filtering only the hourly data points. After completing the data pre-processing steps, the
data set was split into 75% for training and 25% for testing, using a random state value of 42.
To maintain consistency among the data set’s features, the training and testing data were
normalised using the min-max scaling method. During the training process, the parameter
optimisation was carried out using the Adam (Adaptive Moment Estimation) algorithm,
with an initial learning rate value set to 0.001. The MSE was employed as the loss function
between the input and output. For each model, the number of epochs was developed to
100, and the batch size was 32. Subsequently, utilising these parameters, four different
state-of-the-art and popular DL neural network architectures were compared to identify
the optimal model for wind power estimation. Wind power was estimated using ANN,
CNN, RNN, and LSTM methods using meteorological and turbine characteristic data.

Figure 6 represents a flowchart of the intended prediction model. In the study, the
first model employs an ANN-based approach, the second model utilises a CNN-based DL
architecture known for its success in large data sets, the third model incorporates an RNN
architecture that is effective for time series data, and the fourth model employs an LSTM
model, which yields successful results in analysing time series with more extended time
intervals or complex structures. The objective is to identify the optimal hyperparameter
combination that maximises model performance. To achieve this, a randomised search was
employed, testing numerous hyperparameter settings to identify those that yielded the
best performance.
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Among ML methods, ANNs, RNNs, CNNs, and LSTMs are important in wind power
forecasting. The ANN model is known for its ability to learn complex relationships and is
useful for discovering patterns within large data sets. It also has a flexible structure and is
effective for general predictions. CNNs are particularly successful in visual data processing
but can also work well with time-series data. It is suitable for processing multidimensional
data, such as wind speed and direction. RNNs are designed for processing time-series data
and maintain information from previous time steps. This makes them a suitable choice for
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modelling changes over time. LSTMs are an improved version of RNNs and can handle
long-term dependencies. They are well-suited for modelling various effects over time in
wind power prediction.

2.2.1. Artificial Neural Network Structure

Artificial intelligence is dedicated to researching and developing methods that en-
able machines to exhibit human-like capabilities such as reasoning, judgment, emotional
experience, language understanding, and problem-solving. One prominent approach in
artificial intelligence is the ANN model, which is modelled after the structure of the human
brain. However, the quantity of neurons within ANNs is established according to the
demands of a given predicament, in contrast to the approximate 15 billion neurons within
the human brain [32,33]. ANNs can learn from data and apply acquired knowledge, leading
to their widespread utilisation in various domains, including but not limited to forecasting,
classification, identification, and control. In this study, a feedforward neural network was
constructed for wind power estimation, employing the general structure of a feedforward
multilayer neural network, outlined as follows [34,35].

A multilayer feedforward network consists of various layers, including an input layer,
an output layer, and one or more hidden layers positioned in between. The input layer is
responsible for receiving the input data, which is then processed through the hidden layers,
ultimately resulting in the generation of the final output by the output layer. The hidden
layers play a fundamental role in effecting the transformation of the input data through
a set of weighted connections and activation functions, thereby facilitating the network’s
ability to comprehend intricate patterns and relationships within the data. Lastly, the
output layer generates the final prediction based on the transformed information derived
from the hidden layers. Table 1 shows that the ANN architecture begins with a dense layer
in the first layer, consisting of 64 neurons and utilising the Rectified Linear Unit (ReLU)
activation function. Following this, a second thick layer with 32 neurons and the ReLU
activation function is employed. Finally, the model is completed with a dense layer with a
single output and utilises the linear activation function.

Table 1. ANN structure parameters.

Layer Output Shape Parameter

Dense (, 64) 704
Dense (, 32) 2080
Dense (, 1) 33

Total Parameter 2817

2.2.2. Convolutional Neural Network Structure

Among various neural network architectures, CNNs are commonly employed for tasks
such as image recognition, image classification, object detection, and facial recognition [36].
CNNs consist of neurons with trainable weights and biases, allowing them to capture
and enhance low-level features in data. The convolutional layers in CNNs utilise filters
to extract the spatial hierarchies of features, while the pooling layers reduce the spatial
dimensionality of the extracted features. This hierarchical feature extraction process enables
CNNs to effectively analyse and understand complex visual patterns in images. As a result,
CNNs have achieved significant success in various computer vision tasks [37,38].

This method exhibits a practical capability for feature extraction. CNN structure
parameters are given in Table 2. In the model, the data were first reshaped into a 1D array
to make it suitable for the model and then presented as input. The model’s first layer was
instantiated with 32 filters, a kernel size of 3, and the ReLU activation function. This layer
was succeeded by a max-pooling layer that utilised a 2D pooling size. The third and final
layer was the flattening layer, which flattened the data. The fourth layer comprised fully
connected (dense) layers, where neurons combined their inputs. The first thick layer had
64 neurons with the ReLU activation function, while the second dense layer had 32 neurons
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with the ReLU activation function. The final layer, composed of a solitary output neuron,
was represented by the output layer and employed the linear activation function.

Table 2. CNN structure parameters.

Layer Output Shape Parameter

Conv1D (, 8, 32) 128
Max Pooling 1D (, 4, 32) 0

Flatten (, 128) 0
Dense (, 64) 8256
Dense (, 32) 2080
Dense (, 1) 33

Total Parameter 10,497

2.2.3. Recurrent Neural Networks Structure

RNNs have been utilised to assimilate the short-term temporal dependency on wind
power. RNNs can consider antecedent information and formulate a prediction [39]. RNNs
learn their predictions by adjusting ML parameters through backpropagation and gradient
descent. RNNs are designed to process input data and model dependencies in sequential
data. As a result, RNNs typically consist of multiple neuron layers, with each layer
improving by utilising the previous layer’s outputs.

RNN structure parameters are shown in Table 3. The proposed architecture comprised
32 neurons with a ReLU activation function in the first layer. Following this, a flattened
layer was implemented, after which, a dense layer comprising 64 neurons and utilising a
ReLU activation function was employed. This was then succeeded by another thick layer
containing 32 neurons and a ReLU activation function. Finally, the model was completed
with a dense layer with a single output and a linear activation function.

Table 3. RNN structure parameters.

Layer Output Shape Parameter

Simple RNN (, 32) 1088
Flatten (, 32) 0
Dense (, 64) 2112
Dense (, 32) 2080
Dense (, 1) 33

Total Parameter 5313

2.2.4. Long Short-Term Memory Structure

LSTMs are a variant of RNNs that can capture relationships in time series or sequential
data by storing information from previous steps in their memory. By incorporating spe-
cialised memory cells, LSTMs can retain relevant information over longer sequences and
selectively update or forget information as needed [16]. The memory mechanism employed
by LSTMs facilitates their ability to surmount the obstacles presented by the vanishing
or exploding gradients that afflict conventional RNNs. Therefore, this mechanism aug-
ments the proficiency of LSTMs in efficiently grasping and exploiting enduring correlations
inherent in a given data set [40].

LSTM structure parameters are shown in Table 4. The architecture of our model
started with a Conv1D layer, which consisted of 32 filters, a kernel size of 3, and a ReLU
activation function. This layer was initially employed to effectively capture local patterns
and enable the extraction of relational meanings from the intended sequences before the
LSTM layer. Subsequently, an LSTM layer with 64 neurons and a ReLU activation function
was employed. The third layer continued with a dense layer of 64 neurons and a ReLU
activation function. Incorporating a ReLU activation function, 32 neurons were utilised in
the fourth layer. Due to its singular output, a linear activation function was employed in
the last layer to finalise the model architecture.
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Table 4. LSTM structure parameters.

Layer Output Shape Parameter

Conv1D (, 8, 32) 128
LSTM (, 64) 24,832
Dense (, 64) 4160
Dense (, 32) 2080
Dense (, 1) 33

Total Parameter 31,233

2.3. Error Metrics

This paper employed various statistical methods to evaluate the accuracy of the ANN-
RNN-CNN-LSTM model’s predictions. These criteria encompassed commonly utilised
error metrics, including RMSE, MAE, and MSE. These were employed to assess the disparity
between the predicted and actual values, disregarding the direction of errors or their
compensatory effects. Error metrics quantitatively measure how close predictions are to
actual data. This helps us evaluate how accurate predictions are. Accurate predictions are
crucial for reliable applications like energy resources.

MAE represents the measurement of the absolute difference between the predicted
and actual variables. RMSE represents the standard deviation in prediction errors, with
a lower value indicative of a superior model. If the RMSE values of training and testing
samples fall within a limited range, the model is considered satisfactory without overfitting.
MSE represents the average of the square of errors. The aim was to achieve low MAE,
MAPE, and RMSE values indicative of enhanced predictive accuracy. Statistical indicators
like MSE, RMSE, and MAE have their advantages and disadvantages. MSE assigns greater
weight to larger errors, which makes it more sensitive to outliers or significant errors. This
property can be advantageous when dealing with large errors that are particularly costly
or need to be minimised. MSE has excellent mathematical properties. It is differentiable,
making it suitable for optimisation algorithms and the basis for many statistical methods.
While its sensitivity to errors can be advantageous, it can also be a disadvantage. Outliers
can disproportionately impact MSE, potentially leading to an inaccurate assessment of
model performance. MAE is less sensitive to outliers compared to MSE. It gives equal
weight to all errors, which can provide a more robust performance measure in the presence
of outliers. MAE gives equal weight to all errors; it may not penalise large errors as heavily
as MSE. This can be a disadvantage when large errors need to be minimised or when they
are particularly costly [41–43].

R2 functions as a statistical metric that denotes the degree to which the alteration in
the independent variable accounts for the variance observed in the dependent variable. It
is noteworthy that the R2 value lay between 1 and 0. A higher R2 value signifies a better
fit of the regression line, indicating that changes in the dependent variable are primarily
attributed to changes in the independent variable. Equations (2)–(5) provide the formulas
for R2, RMSE, MSE, and MAE [44,45].
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(
∑N
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(
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i

)
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2
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MAE =
1
N

N

∑
i=1

∣∣∣xi − x*
i

∣∣∣ (5)

Here xi, x*
i , N, xi, andx*

i represent the predicted value, actual value, sample size, mean
predicted value, and mean actual value, respectively.

3. Results and Discussion

This section examines the performance results obtained based on the ML models
developed in previous areas. All models were tested and explained in a Jupiter Notebook
development environment running Python 3.9.5. The machine had hardware specifications,
including a dual-core Intel(R) Xeon(R) CPU at 2.20 GHz processor, 32 GB 3200 MHz DDR3
RAM, and a 16 GB Nvidia Tesla P100 GPU. The TensorFlow 2.x library was used to build
DL architectures. TensorFlow is a library that facilitates the efficient processing of large data
sets, especially the flow of multidimensional arrays or tensors from one layer to another in
neural networks.

The model trained competently with the ANN, CNN, RNN, and LSTM methods,
demonstrating their ability to accurately predict the test data set, as shown in Figure 7.
Figure 7 shows linear regression plots for the methods. A linear regression plot is a graph
that visually represents the relationship between two variables. Upon examining the
graphs, it was observed that the LSTM method exhibited the best prediction performance,
with an R2 value of 0.9574.
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By comparing the initial 100 samples of the test data and the first 100 samples pre-
dicted by the ANN, CNN, RNN, and LSTM models, it was established that there exists a
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concordant relationship between the model’s predictions and the test data. This correlation
is demonstrated in Figure 8.
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Figure 8. Comparison of test data with predicted test data by (a) ANN, (b) CNN, (c) RNN, and
(d) LSTM methods.

Figure 9 depicts a scatterplot illustrating the correlation between wind speed (m/s) and
the turbine’s active power generation (kW). The plot also includes the estimated functional
power value and the theoretical power curve. Upon closer examination of the graph, it
becomes evident that the four models’ predicted active power values exceeded the turbine’s
maximum power output, particularly when wind speeds exceeded approximately 13 m/s.
The main reason for the higher prediction accuracy provided by CNNs compared to ANNs
was due to the feature extraction capabilities of CNNs. Notably, under low wind speed
conditions, CNNs exhibited a high level of performance in generating more accurate results.
In contrast, the prediction values showed lower accuracy under challenging conditions like
high wind speeds.
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Figure 9. Active power, estimated active power, and theoretical power curve by (a) ANN, (b) CNN,
(c) RNN, and (d) LSTM methods.

Consequently, during low wind speeds, CNNs effectively leveraged their advanced
feature extraction prowess to discern pivotal data patterns, thereby enhancing the precision
of predictions. However, within intricate contexts like high wind speeds, the projections
sometimes carried a decreased level of accuracy. These findings underscore CNNs as
proficient instruments for addressing problems contingent on temporal fluctuations, as
seen in wind power prediction. Nonetheless, it is discernible that the extent of this efficacy
can fluctuate based on the wind speed magnitude in specific cases. This situation provides
a significant perspective on how CNNs’ feature extraction capabilities prove impactful in
applications like wind power prediction.

Figure 10 graphically shows the comparison of MSE, RMSE, and MAE error metrics
for the four methods. When the graphs are examined, it is observed that the lowest error
metrics belong to LSTM.
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Figure 10. Error metric comparison of methods.

Table 5 presents the R2, MSE, RMSE, and MAE outcomes for the testing and training
data sets that predicted wind power.
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Table 5. Performance metrics of models.

Machine
Learning Models

Performance Evaluation on Training Data Set Performance Evaluation on Testing Data Set Training
Time (s)

MAE MSE RMSE R2 MAE MSE RMSE R2

ANN 0.0224 0.0057 0.0757 0.9345 0.0245 0.0062 0.0787 0.9301 81.6
CNN 0.0218 0.0054 0.0732 0.9388 0.0235 0.0055 0.0742 0.9378 85.3
RNN 0.0196 0.0038 0.0615 0.9567 0.0218 0.0043 0.0656 0.9514 82.7
LSTM 0.0179 0.0027 0.0517 0.9694 0.0209 0.0038 0.0614 0.9574 85.8

As a result, since the RNN architecture could heal itself with the outputs from the pre-
vious layer, it performed more successfully than ANNs and CNNs, especially in sequential
data sets. This finding indicates that upon examination of the graphs, the estimated values
tended to be closer to the actual values. LSTM is an RNN model utilised in sequential or
time series analysis. Particularly in sequential data sets, it demonstrates superior perfor-
mance due to the self-healing capability of LSTMs. As a result, it achieves higher prediction
success compared to other models.

In contrast to Tuerxun et al.’s study [20], which employed 3200 data points, this study
utilised 8760 data points. They have proposed various prediction models. R2 metric was
used to compare these models. They employed a hybrid approach by combining three
methods, achieving the highest R2 value of 0.98. However, they obtained lower R2 values
with three other hybrid methods, specifically 0.48, 0.82, and 0.80. Their study involved
sequential variation mode decomposition (SVMD) to parse pre-processed wind speed
data, then optimised the LSTM algorithm through PSO, TSO, and MTSO optimisation
techniques. This implies that their approach involved a more complex model and additional
data processing stages.

In contrast, our study proposed a simpler model and achieved a high R2 score of 0.95.
Furthermore, we incorporated real climatic conditions and turbine regime periods from
2018, making our method more suitable for real-world applications. This demonstrates that
our work has a broader range of applications, and the results we obtained can be readily
applied in real-world conditions.

4. Conclusions

Due to the inherent variability of wind power, forecasting presents a formidable
challenge. Furthermore, successfully integrating wind power into primary power grids is a
significant obstacle. As such, in this study, popular ML methods (ANN, RNN, CNN, and
LSTM algorithms) with high predictive performance are examined to predict wind power.
The algorithms’ performances were assessed using statistical metrics, namely, MAE, RMSE,
MSE, and R2. Algorithms characterised by minimal errors indicated the most desirable and
precise methodology. When the results presented above are examined, it can be understood
that the proposed ML methods enable successful wind power estimation.

To train and evaluate ML models, a SCADA system was employed to gather empirical
data from January to December 2018, with a sampling frequency of 10 min. Additionally,
the MERRA-2 Global data set, made available by NASA, was employed to evaluate the
impact of meteorological data on wind power. When the correlation matrix between
input parameters and active management is examined, it is observed that the strongest
correlation among weather parameters is a correlation of 0.12 between cloud cover fraction
and dynamic power. When analysing the correlation matrix, it becomes apparent that a
notably robust correlation (0.95) exists between active power and the theoretical power
curve. Then, it is observed that there is a correlation (0.91) between operational management
and wind speed.

The results showed that the LSTM, RNN, CNN, and ANN algorithms are powerful in
forecasting wind power. Among these algorithms, LSTM is the best algorithm, with an R2

value of 0.9574, MAE of 0.0209, MSE of 0.0038, and RMSE of 0.0614. DL models possess the
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ability to acquire intricate connections within data sets. The LSTM model utilised in this
study stands out among deep learning models due to its capability to manage long-term
dependencies effectively. As a result, LSTMs emerge as a valuable instrument for resolving
issues involving time-dependent data, as exemplified by their application in wind power
prediction. In applications like wind power forecasting, temporal changes over time are
crucial. LSTMs can model complex relationships over time by preserving information
from previous time steps, which enables them to be more accurate in predicting future
wind power. This highlights LSTMs’ valuable role in addressing challenges related to time-
dependent data, as evidenced by their successful application in wind power prediction.
Wind power forecasting is critical for energy production planning. The accurate predic-
tions provided by LSTMs and similar deep learning models can enhance the efficiency
of wind energy production scheduling. Based on these forecasts, energy companies can
optimise their resource allocation and grid management. Accurate wind power predictions
contribute to grid stability and reliability. Power grid operators can use these forecasts to
balance energy supply and demand better, reducing the risk of blackouts and ensuring
uninterrupted energy supply to consumers. Improved wind power prediction can lead
to the better integration of renewable energy sources into the grid. This, in turn, reduces
reliance on fossil fuels, decreases greenhouse gas emissions, and contributes to a more
sustainable and environmentally friendly energy ecosystem. The limitations of this study
are as follows: it should be noted that only limited data from the year 2018 were used.
Having more data typically enhances the ability to make better predictions. A larger data
set allows for greater model complexity and depth. Models can make more general and
reliable predictions if more data are available. Constraints on the amount of data can
impact the sharpness and accuracy of predictions. Deep learning models often require a
large amount of data. Limited data can negatively impact the performance of these models
and increase the risk of overfitting. Deep learning models typically require significant com-
putational resources. Particularly, high-performance computers or GPUs may be needed to
train large models. While models like RNN and LSTM are designed to handle time series
data, capturing long-term dependencies can sometimes be challenging. Future work will
evaluate the accuracy of prediction models by incorporating hybrid and ML approaches.
Many studies in the literature show that hybrid models give more successful results. More
accurate and general results will be presented by comparing the prediction performances
of hybrid models and normal machine learning models.
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