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Abstract: The reliability of gearboxes is extremely important for the normal operation of mechanical
equipment. This paper proposes an optimized long short-term memory (LSTM) neural network fault
diagnosis method. Additionally, a feature extraction method is employed, utilizing variational mode
decomposition (VMD) and permutation entropy (PE). Firstly, the gear vibration signal is subjected to
feature decomposition using VMD. Secondly, PE is calculated as a feature quantity output. Next, it
is input into the improved LSTM fault diagnosis model, and the LSTM parameters are iteratively
optimized using the chameleon search algorithm (CSA). Finally, the output of the fault diagnosis
results is obtained. The experimental results show that the accuracy of the method exceeds 97.8%.

Keywords: fault diagnosis; variational mode decomposition; chameleon search algorithm; long
short-term memory neural network; gearbox

1. Introduction

With the development of modern industry, gears have become one of the most critical
parts of modern industry. Gearboxes have been widely used in various machines due
to their fixed transmission ratio, high transmission torque, and compact structure. The
gearbox has become a variable speed transmission component for all kinds of machines.
According to Nippon Steel Corporation [1], gear failures account for about 10.3% of the
total number of machine failures. According to the statistics regarding gearboxes’ failure
parts, the failure of the gear itself accounted for the largest proportion of failures, about
60%; the gear drive is an important part of induced machine failure. Therefore, gearbox
fault diagnosis research has important significance.

Gearboxes are mechanical systems in which several components operate in a lubricated
environment, and lubrication analysis, acoustic emission analysis, and vibration analysis
can be applied to detect faults [2]. Among these, vibration signals have been widely
considered. Many studies have proposed monitoring methods based on vibration signals.
For example, S et al. proposed a comprehensive method for detecting and classifying
rotating bearing faults in machines, by combining permutation entropy (PE) with Flexible
Analytic Wavelet Transform (FAWT) methods. Healthy FAWT decomposition signals faulty
bearing systems under different operating conditions. In decomposition, the PE value is
used to calculate the signal and then it is provided as a feature vector for a support vector
machine (SVM) classifier for different types and fault sizes [3]. The present paper provides
a novel approach for a Network Intrusion Detection System using machine learning and
deep learning. Our approach uses two MLP (Multi-Layer Perceptron) models, one with
three layers and the other with six layers. Random Forest is also used for classification.
These models are ensembled in such a way that the final accuracy is boosted and the testing
time is reduced. The novelty of this paper lies in the choice and the combination of the
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models for network security [4]. Scholars have conducted in-depth research on the feature
extraction and diagnosis methods of gearbox transmission faults based on vibration signals,
and the current analysis methods based on the vibration signals of gearboxes mainly
include Fourier transforms, empirical modal decomposition [5], ensemble empirical modal
decomposition [6], wavelet packet decomposition [7], variational mode decomposition,
and so on. These methods achieve, to some extent, the pre-processing of gearbox vibration
signals and the classification and identification of transmission faults. Empirical modal
decomposition can adaptively decompose vibration signals; however, the problem of modal
aliasing is prominent, which makes the physical meaning of the missing decomposed modal
components and the cause of the faults difficult to explain. Ensemble empirical modal
decomposition is improved (based on empirical modal decomposition) by adding white
noise signals, which suppresses the endpoint effect and modal aliasing to a certain extent,
but its computational complexity increases. Wavelet packet decomposition solves the
problem of insufficient extraction of high-frequency components of the signal based on
a wavelet transform; however, its decomposition effect is very dependent on a manual
wavelet base selection, which does not meet actual online diagnosis needs. Variational
mode decomposition (VMD) solves the problem of modal aliasing, has a solid theoretical
foundation, and can be used for better diagnosis.

VMD can better restore the original signal and adaptively decompose it into a time
series with different frequencies that are relatively smooth. Therefore, in this paper, the
vibration signal is analyzed by variational mode decomposition, to decompose the modal
components that contain the information of normal and wear faults of gear transmission
systems. In many cases, the VMD method provides a solid solution to the mode mixing
problem in empirical mode decomposition (EMD) methods. As a result, this method has
been used in many research areas such as mechanical diagnostics [8]. VMD methods
have also provided good performance in planetary gearbox research, as was executed by
Feng et al. using joint VMD-based amplitude and frequency demodulation analysis and by
Yong Li et al. using VMD power spectral entropy and deep neural networks (DNNs) [9]. To
detect faults in a two-stage planetary gearbox, Wu et al. demonstrated a new method based
on Renyi entropy, two-dimensional VMD, full-vector spectral techniques, and compressive
sensing [10]. To verify correctness, an experimental study of fault test signals from a gearbox
was carried out [11]. Zhang et al. proposed a VMD based on the Locust Optimization
algorithm for the selection of mode numbers and balance parameters [12]. These proposals
provide a good solution for selecting the mode number [13].

Quantification of the fault information contained in a time series of vibration signals
that have undergone variational mode decomposition can be calculated using time series
complexity metrics, such as approximate entropy, arrangement entropy, and other methods.
Among them, the permutation entropy (PE) method is based on the spatial characteristics
of a time series. Based on the spatial characteristics of the time series, it amplifies the
small changes in the signal, which is more effective than other indicators in the diagnosis
of abnormal states of mechanical equipment. Therefore, this paper chooses to apply
permutation entropy in the process of gear transmission feature extraction to reflect the
dynamic changes in the time series in different states of transmission.

With the rapid development of computer technology in recent years, LSTM models
based on deep learning theory [14] have been heavily researched in recent years. Compared
with other data-driven models, the LSTM neural network shows better prediction results,
but the model performance is still vulnerable to the influence of data series and initial
values of model parameters. Its convergence performance is greatly reduced when the
number of classifications increases due to the increase in sample size. For this reason,
optimization algorithms can be introduced to optimize its parameters. Commonly used
examples are grid search methods, genetic algorithm, etc., but these methods have large
computational complexity and easily fall into local optimum and present other problems.
For this reason, a new algorithm named intelligent optimization is introduced to perform
parameter optimization and fault classification on LSTM models. There have been many
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studies on the analysis of runoff sequences and the optimization of model parameters’
initial values [15]. For example, Sun constructed the idea of “decomposition–prediction–
reconstruction” and used a variational mode decomposition LSTM neural network model
for runoff prediction of the Three Gorges reservoir, and the results showed that the model
could effectively improve the accuracy of runoff prediction [15]. Wei Qin et al. developed a
simulated annealing long short-term memory network (SA-LSTM) model, which can more
accurately describe the dynamic lag time relationship between hydropower stations [15].
However, most of these studies focus on single data series decomposition or initial value
optimization of LSTM model parameters, while there are few research results combining
both. In this paper, we propose a coupled model, including variational mode decomposition
(VMD), chameleon search algorithm (CSA), and long short-term memory (LSTM) neural
networks, which is used in the mechanical field for fault diagnosis of a gearbox.

On this basis, an optimization method for long- and short-sequence fault diagnosis
of gearbox transmissions based on variational mode decomposition substitution entropy
and the chameleon search algorithm is proposed, and the actual test data of a gearbox
transmission are divided into a training set and a test set, and the training set and the test
set are further divided into two sets each. The features of the training set are extracted using
VMD-PE, and models in the test set are trained and fault-diagnosed using CSA–LSTM. The
results show that the method can accurately and quickly identify gearbox faults under 60%
to 110% rated pressure test conditions, which is better than existing methods.

The second part of this study describes the construction, inference, and optimization
process of the gearbox fault diagnosis model based on the VMD algorithm and the improved
LSTM algorithm. The third part describes the setup of the experimental platform and the
relevant parameters and conducts experimental validation and comparative experiments on
the method proposed in this paper through examples, which further verifies the superiority
of the method. Fault classification and diagnosis are carried out by the improved long short-
term memory neural network algorithm and the experimental results are analyzed. The
fourth part is the summary of the whole paper and discusses the outlook for future work.

2. Feature Extraction of Vibration Signals Based on Variational Mode Decomposition
and Arrangement Entropy

As depicted in Figure 1, the proposed model operates in a series of steps to assess the
condition of a gearbox. Initially, vibration signals are captured from the gearbox at a motor
speed of 1420 rpm, employing a sampling frequency of 10 kHz. These signals are recorded
in various states of gear looseness and wear, as well as when the gearbox is in optimal
condition. The second phase involves the implementation of VMD to dissect the vibration
signals. For a gearbox in pristine condition, the VMD solely is adept at extracting pertinent
data. However, when evaluating a gearbox with transmission defects, a combination of
VMD and arrangement entropy proves instrumental in isolating the characteristic features
of these imperfections. In the subsequent stage, the identification of patterns indicative of
gear wear states is executed by the chameleon search-optimized long short-term memory
sequence algorithm. This innovative approach is meticulously designed to delineate and
recognize intricate patterns associated with various stages of gear deterioration. The final
comparative analysis reveals the superior efficacy of the presented model over conventional
methodologies. VMD outperforms empirical mode decomposition in signal decomposition
efficiency. Similarly, arrangement entropy exhibits enhanced precision in quantifying
fault features compared to multi-scale arrangement entropy and approximate entropy,
among other time series complexity calculations. This rigorous assessment underscores
the proposed model’s enhanced accuracy and reliability in diagnosing and characterizing
gearbox anomalies.
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2.1. Feature Extraction Methods

In this study, VMD and PE algorithms were employed to distill the fault characteristics
inherent in the gearbox transmission. Figure 2 delineates the comprehensive flowchart
outlining the intricate process of feature extraction, expounded in the subsequent steps.
This systematic approach ensures a meticulous analysis, shedding light on the nuanced
anomalies and operational inefficiencies within the gearbox transmission. The approach is
outlined as follows:

(1) VMD decomposition of the vibration signal of the gearbox transmission is performed
to obtain K components.

(2) The number of correlations between the original transmission vibration signal and the
modal components decomposed by VMD is calculated. A value less than 0.1 indicates
that it is a non-effective state component. A value less than 0.1 indicates that it is a
non-valid state component, and the component is removed.

(3) The entropy of each modal component is calculated as a feature quantity.
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2.2. Variational Mode Decomposition (VMD)

This article tackles the issue of limited robustness encountered during the extraction
of fault feature frequencies within gearbox systems. Utilizing the VMD method, signals
indicative of wear or tooth breakage faults within the gearbox are decomposed into several
Intrinsic Mode Function (IMF) components. Subsequently, a correlation coefficient analysis
is employed to meticulously identify those modal components that are imbued with fault
signals. These selected components then undergo envelope spectrum analysis, a process
that efficiently extracts and illuminates the fault feature frequencies, offering insights into
the intricate dynamics of the gearbox’s operational deficiencies. This refined approach
enhances the precision and reliability of detecting and analyzing faults, thereby contributing
to the optimization of maintenance and repair strategies.

Variational mode decomposition (VMD) is characterized as a fully non-recursive de-
composition model. Introduced by Dragomiretskiy et al. in 2014, the essence of VMD is an-
chored in the utilization of central frequencies and bandwidths of the extracted modes [16].
The triumph of this decomposition technique is attributed to its approach of considering
the solution as a constrained variational problem. Each process is meticulously crafted,
ensuring that the extracted signals are both comprehensive and precise, thus bolstering the
reliability and applicability of VMD in various analytical and diagnostic applications.

min
{uk},{ok}

{∑K
k=1 ‖ δt[(δ(t) +

j
πt

)× uk(t)]e−jωkt ‖2
2} (1)

subject to∑k
k=1 uk = f

where uk denotes the decomposition mode, δ is the Dirac distribution, and × denotes the
convolution. ωk is the corresponding central frequency of the quadratic penalty term and
Lagrange multipliers are introduced to solve the Equation (1). The augmented Lagrange
quantities are shown below:

L({uk}, {ωk}, λ) = α
k
∑

k=1
‖ ∂t[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt ‖2

2

+V f (t)−
K
∑

k=1
uk(t) ‖2

2 + 〈λ(t), f (t)−
K
∑

k=1
uk(t)〉

(2)

where λ is the Lagrangian multiplier coefficient. The model number is provided in advance
as a priori information K and the equilibrium reference α. Equation (2) can be solved by
the alternating direction method of multipliers (ADMM) [17]. All decomposed modes and
the corresponding central frequencies are then updated according to (3) and Equation (4),
respectively:

ûn+1
k (t)←

f̂ (ω)− ∑ i<kûn+1
i (ω) − ∑ i>kûn

i (ω) + λ̂n(ω)
2

1 + 2α(ω−ωn
k )

2 (3)

ωn+1
k ←

∫ ∞
0 ω| ûn+1

k (ω) |2dω∫ ∞
0 | ûn+1

k (ω) |2dω
(4)

A detailed mathematical derivation and full algorithm for VMD can be found in [17].
VMD has been reported to have better performance in identifying fault features from noisy
and complex vibration signals compared to local mean decomposition (LMD), ensemble
empirical mode decomposition (EEMD), and conventional EMD [18].

2.3. Entropy of a Permutation (Physics)

Alignment entropy is a measure of the complexity of a time series that introduces the
idea of alignment [19] and is commonly used for kinetic mutation detection as follows:
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Let there be a time series {x1,x2,· · · ,xN} of length N for which the phase space recon-
struction yields

Xi =
{

xi, xi+τ , · · · , xi+(m−1)τ

}
(5)

In Equation (5): m is the embedding dimension; τ is the time delay. Ranking the
quantities in Xi in ascending order, we have

xi+(j1−1)τ 6 xi+(j2−1)τ 6 · · · 6 xi+(jm−1)τ (6)

In Equation (6), j1, j2, . . ., jm are used to denote the column indexes where each element
in Xi is located within the column index.

If two neighboring values are equal during the sorting process, they are sorted in
ascending order by the subscript i of ji. In this way, Xi is mapped to a set of symbols
S(k) = (j1, j2, . . ., jm), where k = 1,2, . . ., K, where K ≤ m!, embedded in the time series of
dimension m; there are a total of m! arrangements, that is, each m-dimensional subsequence
Xi is mapped to one of m! arrangements.

Calculate the probability of occurrence of each symbol sequence with P1, P2, . . ., PK,
which is satisfied by

∑K
k=1 Pk = 1 (7)

Define the arrangement entropy of the time series (x1, x2, · · · , xN) as

H(m) = −∑K
k=1 Pk ln Pk (8)

The normal is ation of H(m) is given as

H = H(m)/ ln m! (9)

The value of H ranges from 0 ≤ H ≤ 1. The smaller the value of H, the more regular
the time sequence is and vice versa. The smaller the value of H, the more regular the
sequence is and, vice versa, the more complex it is. The value of H amplifies the small and
complex dynamics exhibited by the respective modal components of the normal and faulty
states of the equipment.

2.4. Chameleon Search Algorithm (CSA)

The CSA is a novel meta-heuristic optimization algorithm based on the foraging
strategy of chameleons proposed by Braik in 2021 [20]. This article optimizes the parameters
of LSTM based on CSA. The algorithm focuses on solving the optimization problem through
a three-stage position involving searching for prey, eye rotation to find prey, and capturing
prey. The CSA is mathematically described as follows:

Initialization: The CSA begins by randomly initializing individuals of the chameleon
population, each of which is a candidate solution to the target problem. Let the initial
position of a chameleon individual with population size n in the dimensional search
space be

xij = Ub + r× (Ub− Lb) (10)

where xij is the first i chameleon’s j dimension and r is a random number uniformly
generated in the range (0,1).

Searching for prey: Chameleon groups search for and find food during foraging
primarily by location updating via Equation (6). The location update is mathematically
described as

xt+1
ij = xt

ij + p1r2

(
Pt

ij − Gj

)
+ p2r1

(
Gj − xt

ij

)
r > Pp

xt+1
ij = xt

ij + µ[r3(Ub− Lb) + Lb]sgn(rand− 0.5)
r < Pp

(11)
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where xt+1
ij is the first ij-th dimensional space of a chameleon at the t + 1 position of the

second iteration. xt
ij is the t-th iteration position in the j-th dimension of the chameleon

and p1 and p2 are the development capacity control coefficients. r1 and r2 are random
numbers uniformly generated in the range (0,1), Pt

ij is the position of the i t-th iteration
of the j-th dimensional space of the chameleon at the best position, Gj is the iteration’s
globally optimal position of the chameleon, Pp is the chameleon perception probability,
µ is the search ability control parameter, described as µ = e(−αt/T)∗ , α is the sensitivity
coefficient, and T and t are the maximum and current iteration numbers.

The eyes rotate to spot prey. The chameleon’s eyes can rotate 360◦ to search for
prey and update their position based on the position of the prey. The position update is
mathematically described as

xt+1
i = m×

(
xt

i − x̄t
i
)
+ x̄t

i (12)

where xt+1
i is the first i chameleon’s t + 1 position of the second iteration, xt

i is the i-th
iteration position of the chameleon, x̄t

i is the position of the center of the iteration of the
chameleon, and m is the rotation matrix.

Catching prey: When the prey is close to the chameleon, the chameleon uses its tongue
to attack the prey and capture it. The position is updated mathematically, described as

xt+1
ij = xt

ij +

[(
vt

ij

)2
−
(

vt−1
ij

)2
]

/2a (13)

where vt
ij is the speed of the first i chameleon’s current velocity, vt−1

ij is the i velocity of

the last iteration of the chameleon, a is the acceleration, and a = 2590 (1−e−lgt).

2.5. Long Short-Term Memory (LSTM) Neural Network

The architecture of LSTM neural networks is intricately designed, comprising an input
layer, a hidden layer, a recurrent layer, and an output layer. Addressing the challenges
of gradient vanishing and explosion inherent in recurrent neural networks (RNN), LSTM
neural networks incorporate memory unit states within the hidden layer. This modification
fosters enhanced computational efficiency and learning precision. Within this hidden layer,
control units are distinctly categorized into the input gate, forget gate, and output gate.
The input gate is tasked with the selective recording of new information into the cell state,
ensuring that only relevant data are assimilated. Conversely, the forget gate is instrumental
in selectively discarding redundant or irrelevant information from the cell, optimizing the
storage efficiency. The output gate then meticulously channels the retained information
to the succeeding neuron. This selective retention and omission of information endow
the LSTM neural network with the capacity for long-term memory, enabling it to adeptly
extract temporal features. By meticulously curating and processing data, the LSTM neural
network stands as a robust model for managing complex sequential and time series data,
ensuring precision and reliability in predictions and analyses.

Initially, vibration signals indicative of gearbox faults were meticulously collected.
Based on the distinct characteristics of these signals, an LSTM model was thoughtfully
designed and calibrated. Subsequently, an illustrative analysis was undertaken wherein
the original vibration signals, obtained from the gearbox, were decomposed utilizing the
VMD method. This allowed for an intricate examination and processing of the signals,
ensuring that nuanced features were not overlooked. The sorted dataset, enriched with
comprehensive insights, was then subjected to temporal information fusion. This process
was facilitated by the rigorously established long short-term memory neural network
model, ensuring that the resultant data were both holistic and precise, ready for further
analysis and interpretation.

f (t) = σ
(

W f h(t−1) + W f x(t) + b f

)
(14)
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where, σ is the Sigmid activation function. b f is the threshold of the forgetting gate. W f is
the weight of the forgetting gate.

Update the two-part output of the input gate. The equation is

i(t) = σ
(

Wih(ı−1) + Wix(ı) + bi

)
(15)

c′(t) = ·anh
(

Wch(t−1) + Wcx(t) + bc

)
(16)

Update the cell state. The formula is

C(t) = C(t−1) ∗ f (t) + i(t) ∗ C′(t) (17)

where C(t−1) is the memory unit at moment t − 1.
Update the output gate output. The formula is

o(t) = σ
(

W◦h(t−1) + W◦x(ı) + b◦
)

(18)

h(t) = o(t) ∗ tanh
(

C(t)
)

(19)

where, W◦, b◦ are the weights and thresholds corresponding to the output gates, respectively.
h(t) is the output vector of the hidden layer.

Update the forecast output at the current moment. The formula is

∼
y
(t)

= σ
(

Vh(t) + c
)

(20)

where V and c are the weights and thresholds of the implicit to-output layer connections,
respectively. Equations (14)∼(20) comprise the process of LSTM forward propagation, and
then the error between the predicted and actual values is back-calculated to update the
weights and thresholds until the maximum number of iterations is satisfied.

2.6. Chameleon Search Algorithm for Optimizing Long Short-Term Memory Neural Networks

The classification efficacy of a long short-term memory neural network machine is
contingent upon specific parameters. In pursuit of optimizing parameters c (penalty factor)
and g (variance), we introduce the chameleon search optimization–long short-term memory
neural network machine algorithm. This tailored approach is designed to meticulously
refine these parameters, ensuring enhanced classification performance and accuracy in
diverse applications. The specific steps of the chameleon search optimization–long short-
term memory neural network algorithm are as follows:

(1) Import the training set and test set, and do the normal is action process;
(2) Initialize the parameters: initial penalty factor c0, initial variance g0, in the range

of [21,22];
(3) Setting the eye rotation degree function, i.e., the function to be optimized, as the long

and short-term neural network diagnostic accuracy function f with c and g as the
relevant parameters, and adopting the chameleon search to find the optimum for c
and g;

(4) When there is a situation where the eye rotation position is the same, i.e., the accuracy
rate is the same, the combination of parameters with smaller value of c is selected to
reduce the computational complexity;

(5) Iterate the loop until the maximum number of iterations N is reached;
(6) Output the position of the chameleon, i.e., the optimal values of c and g, which are

used as the given parameters to train the long and short-term neural network model;
(7) Use the trained long and short-term sequence model to identify the gear wear level

faults on the test set and derive the diagnostic results.
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3. Comparison of Application Cases and Methods

This study employs a publicly accessible dataset for gearbox fault diagnosis, originally
compiled by Zamanian, A.H., and colleagues in 2014, serving as a foundational resource
for experimental validation [23]. The test rig underwent evaluations under varied pinion
conditions, with vibration signals meticulously captured by accelerometers operating at a
sampling rate of 10 kHz over a 10-second duration. The compiled data are organized into
three distinct packages, each representing a specific fault type. These encompass datasets
characterizing the healthy state, gear breakage, and gear wear conditions, providing a
comprehensive spectrum for in-depth analysis and evaluation.

The core components of the test stand unit’s drive system primarily include a motor
that functions as the drive input. This motor propels the gearbox via a belt and, in turn,
the gearbox’s output drives the brake system, also connected by a belt. Data acquisition is
facilitated by an accelerometer strategically positioned on the drive end of the induction
motor [24]. With a sampling frequency set at 10 kHz and a sampling duration of 10 seconds,
the parameters for data capture are meticulously defined. The motor operates at a speed
of 1420 rpm/min. Given that the pinion gear is equipped with 15 teeth and the large
gear with 110 teeth, the calculated meshing frequency equates to 355 Hz, derived from
the formula (1420/60) × 15. However, spectrum analysis reveals an actual meshing
frequency proximate to 365 Hz, offering nuanced insights into the intricate dynamics
of gear engagement and operation.

3.1. Comparison of Modal Decomposition Methods

To assess the efficacy of the integrated approach combining VMD alignment entropy
and the CSA-optimized LSTM algorithm, a comprehensive validation was conducted,
particularly focusing on performance under variational mode decomposition techniques.
To meticulously evaluate the effectiveness of the combined VMD and CSA-optimized LSTM
algorithm, experimental data were derived from the vibration signals of gearboxes in three
distinct states: normal gearing, worn gears, and broken gears. These signals were analyzed
under the stringent condition of 100% rated lubricating oil pressure to ensure an exhaustive
examination of the algorithm’s performance across a spectrum of operational and wear
conditions, thereby underscoring its versatility and robustness.

The VMD algorithm initiates by pre-setting the number of decomposed modes, de-
noted as K. Illustratively, taking the vibration signal of a gearbox in its normal state, a
Fourier transform is applied. This process yields a detailed spectrogram, vividly illustrating
the vibrational signal characteristics of the gearbox in its pristine operational state. Fol-
lowing this, VMD decomposition is executed, effectively distilling the intrinsic vibrational
modes and their respective characteristics.

The outcomes of this decomposition process are systematically illustrated in Figure 3,
providing a visual and analytical insight into the vibrational dynamics of the gearbox.
In this study, a random selection methodology was employed to curate the training set.
Prior to initiating training, the original data from the gearbox underwent decomposition
via VMD. Through iterative experimentation, it was observed that the VMD variational
mode decomposition, when optimized using CSA, exhibited progressive convergence as
the number of iterations increased. This methodological refinement ensures more accurate
and consistent results, advancing our understanding of gearbox dynamics.

IMF1 is a trend component that reflects the overall trend of gear speed changes in
the gearbox dataset. IMF2~IMFn are the remaining random components, resulting in very
small prediction errors.

When a transmission failure arises, alterations are observed not only in the funda-
mental frequency components but also in the octave components, each exhibiting varying
degrees of suppression or enhancement. If the value of K is set at 3, the distinction between
different models and the frequency components of the transmission vibration signal “a”
becomes minimal. This makes the comprehensive extraction of fault-state information
challenging. On the other hand, a K value exceeding 5 increases the complexity of the
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calculation significantly, introducing the risk of over-decomposition. Such a scenario is not
optimal for prompt fault diagnosis due to the increased computational demands and poten-
tial for muddled insights. To strike a balance, we opted for a K value of 5. This allowed us
to efficiently capture the center frequency of different modes inherent in the normal-state
vibration signal of the gearbox transmission without compromising computational effi-
ciency or clarity of insights. The time-domain plot derived from the VMD decomposition is
depicted in Figure 3a, and the corresponding frequency spectrum is presented in Figure 3b,
offering a visual and analytical exploration of the transmission dynamics.
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Figure 3. Original data and VMD decomposition results of each sequence. (a) Time-domain diagram
of the VMD decomposition. (b) Spectrogram of the VMD decomposition.

As can be seen in Figure 3, the modal aliasing phenomenon of VMD is effectively
solved, and the corresponding center frequency of each modal component is consistent
with the overall characteristics of the frequency derived from the fast Fourier transform,
which realistically restores the information contained in the original signal. Compared
with the existing empirical mode decomposition (EMD), the time-domain diagram of the
transmission system’s normal-state vibration signal decomposed by EMD is shown in
Figure 4.
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Figure 4. Original data and EMD decomposition results of each sequence. (a) Time-domain diagram
of the EMD decomposition. (b) Spectrogram of the EMD decomposition.
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Figure 4 illustrates that as the quantity of decomposed modes escalates, overlapping
of modes commences from mode 6 onward. This overlap gives rise to invalid components,
which are ineffectual in representing information pertinent to the transmission’s wear
state. To mitigate the influence of these non-representative components, we introduced
correlation number analysis. This technique calculates the correlation between each modal
component and the chosen transmission vibration signal, ensuring that only valid and
informative components are retained for subsequent analysis, enhancing the precision and
reliability of the diagnostic insights.

The correlation between each modal component and the selected transmission vibra-
tion signal is calculated to distinguish valid from invalid components based on their ability
to reflect the state of the transmission. Modal components with correlation coefficients
exceeding 0.1 are deemed valid, as they effectively encapsulate the transmission-state
information and are, therefore, selected for further analysis. Conversely, components with
correlation coefficients below 0.1 are classified as invalid, lacking the capacity to serve as
feature quantities indicative of the transmission’s state. These low-correlation components
are unable to accurately portray the variations in vibration signals distinguishing nor-
mal and fault conditions of the transmission and are consequently excluded from further
consideration and analysis. This ensures that the subsequent evaluation and diagnostics
are rooted in the most informative and representative data, enhancing the accuracy and
reliability of the findings.

VMD-PE and EMD-PE are used to extract features from the vibration signals. m
and τ are required to set the embedding dimension and delay time in advance for PE
calculation, and m = 6 and τ = 1 are generally chosen to better reflect the dynamics of the
time sequence, so m = 6 and τ = 1 are chosen. PE is calculated as the feature quantity of
the modal components of the three states of transmission, with a total of 750 sets of data
with 250 sets for each state of the transmission. We randomly select 200 sets of normal
data, 200 sets of incomplete loosening data, and 200 sets of complete loosening data as
the training set and the rest as the test set and carry out the training of the model and the
classification of the results through the CSA-optimized LSTM algorithm. The diagnostic
results are shown in Tables 1 and 2.

Table 1. VMD-PE fault diagnosis results.

Typology Training Sample Test Sample Correct SAMPLE Test Set Correctness/%

Healthy 200 50 50 100

Gear wear 200 50 50 100

Broken gear teeth 200 50 50 100

Aggregate 600 150 150 100

Table 2. EMD-PE fault diagnosis results.

Typology Training Sample Test Sample Correct Sample Test Set Correctness/%

Healthy 200 50 50 100

Gear wear 200 50 50 100

Broken gear teeth 200 50 47 94

Aggregate 600 150 145 96.67

Tables 1 and 2 clearly delineate the superior efficacy of the proposed method out- lined
in this paper. It boasts a fault identification rate of 100% for diagnosing transmission wear
associated with varying degrees of loosening. This impressive accuracy eclipses the 96.67%
fault identification rate achieved by the EMD-PE method. This stark contrast in diagnostic
precision attests to the robust capabilities of the VMD method in accurately discerning
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and isolating fault information related to gearbox transmission. The data underscore the
method’s exceptional performance, reinforcing its validity as a premier choice for intricate
and reliable fault identification tasks.

3.2. Comparison of Time Series Complexity Metrics

The effectiveness of arrangement entropy in quantifying fault information for di-
agnosing gear-loosening faults during gearbox transmission is critically assessed. For a
thorough evaluation, time series complexity indices including arrangement entropy, multi-
scale arrangement entropy, approximate entropy, among others, are applied to the modal
components decomposed by VMD.

The CSA-optimized LSTM algorithm is employed for fault diagnosis, facilitating
an intricate analysis and classification of the data. This ensures that the assessment is
both comprehensive and precise, illuminating the nuanced fault characteristics and their
implications.

The diagnostic outcomes, which offer a detailed insight into the capability of arrange-
ment entropy and comparable indices in capturing and quantifying fault information, are
vividly displayed in Figure 5 and itemized in Table 3. This detailed presentation aids in
the meticulous examination of the indices’ performance, offering robust data to inform
optimized fault diagnosis and maintenance strategies.
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Table 3. Complexity index of different time series.

Targets Training Sample Test Sample Correct Sample Test Set Correctness/%

entropy of disorder (physics) 600 150 150 100

Approximate entropy 600 150 143 95.3

Sample entropy (physics) 600 150 145 96.67

Fuzzy entropy (physics) 600 150 147 98

Insights gleaned from Figure 5 and Table 3 reveal a nuanced pattern in the perfor-
mance of arrangement entropy in fault diagnosis. As the scale of arrangement entropy
expands, there is a noted decline in the diagnostic accuracy for incomplete wear and broken
gears. Despite this, arrangement entropy outperforms multi-scale arrangement entropy in
quantifying fault information.

A comparative analysis with other indices underscores the superior efficacy of ar-
rangement entropy, boasting a correct diagnosis rate that peaks at an impressive 100%. This
remarkable precision is consistent, underscoring the robustness of arrangement entropy in
capturing and articulating fault nuances.
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These findings corroborate the assertion that arrangement entropy excels in dynamic
detection performance during the diagnosis of loosening faults in gearbox transmission,
outpacing other indicators. The metric’s adeptness in encapsulating intricate fault dynamics
underscores its pivotal role in enhancing the precision and reliability of diagnostic protocols
in gearbox maintenance and repair.

3.3. Comparison of Optimization Algorithms

To assess the efficacy of the CSA-optimized LSTM model in diagnosing faulty gearbox
transmissions, a comparative analysis was conducted deploying various optimization algo-
rithms. These included the CSA-optimized LSTM algorithm and a grid search-optimized
LSTM algorithm, among others, each applied systematically for fault diagnosis. Each
algorithm’s parameter settings are meticulously detailed in Table 4. The evaluation of
these optimization algorithms’ performance is anchored on two pivotal indices: the time
required for computation and the correct diagnosis rate. These criteria offer a balanced
perspective, encapsulating both the efficiency and accuracy dimensions of the algorithms’
performance. The comparative outcomes, which provide a comprehensive insight into
the relative performance and efficacy of each optimization algorithm, are tabulated in
Table 5. These data serve as a robust foundation for evaluating the nuanced capabilities of
the CSA-optimized LSTM model in the context of faulty gearbox transmission diagnosis,
offering clear benchmarks for performance optimization and enhancement.

Table 4. Parameter setting of each optimization algorithm.

Optimization Algorithm Parameter Is Action

CSA The number of iterations is 200, and the initial c
and g are random numbers from 1 to 5 in high

Grid Search Initially c and g are random numbers from 1 to
5 with an initial step size of 0.1

Genetic algorithm The number of iterations is 200 and the c and
granges from 1 to 5

Particle swarm algorithm The number of iterations is 200 and the c and
granges from 1 to 5

Table 5. Performance comparison.

Optimization Algorithm Computation Time/s Test Set Correctness/%

CSA 3.87 100

Grid Search 9.12 99.4

Genetic algorithm 4.51 98.9

Particle swarm algorithm 15.23 100

As evidenced in Tables 4 and 5, the CSA optimization algorithm outperforms its coun-
terparts, namely the genetic algorithm, grid search method, and particle swarm algorithm,
in terms of convergence speed. Impressively, it attains a test accuracy of 100%, adeptly
circumventing the common pitfall of overfitting. This underscores the CSA optimization al-
gorithm’s superior efficacy and optimization performance, marking it as a leading solution
that combines speed, accuracy, and robustness in delivering optimal results.

3.4. Troubleshooting of Variable Pressure States

High-speed bearings and gear problems such as spalling, pitting, etc., are usually
caused by insufficient local lubrication. Therefore, gear transmission and lubricant pressure
are closely related.
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Since the lubricant pressure is not always maintained at the rated pressure during
the operation of a gearbox, to verify the effectiveness of the method in the fault diagnosis
performance under variable pressure conditions, the method was developed and validated.
The effectiveness of the method in fault diagnosis under variable pressure conditions is
verified. We selected 20%, 40%, 60%, 80%, 100%, and 110% of the rated pressure of the
gearbox transmission vibration data from 750 sets. Using the method proposed in this
paper, gearbox transmission wear fault feature extraction and fault type identification were
carried out. The diagnostic results are shown in Figure 6.
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As depicted in Figure 6, there is a marked increase in the correct diagnosis rate
correlating with the rise in pressure, consistently peaking at 100%. In such scenarios, the
vibration signals of the gearbox transmission are notably susceptible to various forms
of interference, leading to the obscuring of essential fault-state information. However, a
shift is observed with the augmentation of pressure. Distinctive vibration characteristics,
emblematic of varied transmission states, are observed. During this phase, the pervasive
influence of interference factors on the overall fault depiction is markedly subdued. This
resilient performance amidst escalating pressures underscores the method’s adeptness
in meticulously extracting wear-related failure characteristics, attuned to the nuanced
variations in lubricant pressure states of transmission. Such robust diagnostic precision
reaffirms the method’s validity, positioning it as a reliable asset in intricate fault detection
and characterization.

3.5. Comparison of Different K Values for Troubleshooting

The choice of the K value plays a crucial role in effectively extracting information
related to the state of gearbox transmission. It also significantly impacts the time taken for
modal decomposition. The assertion that K = 5 is superior in fault diagnosis is examined
in this context. To validate this claim, the K value is varied, and 750 sets of gearbox
transmission vibration data are employed, all collected under a state of 100% rated pressure.
The proposed method is then applied to extract characteristics indicative of wear faults in
the gearbox transmission and to identify the specific types of faults present. The diagnostic
outcomes, derived from this comprehensive analysis, are systematically presented in
Table 6. This tabulation provides a detailed perspective on the efficacy of different K values
in capturing and elucidating fault characteristics, offering valuable insights into the optimal
K value for enhanced diagnostic accuracy and efficiency.

Table 6. Fault diagnosis results of different K values.

K-Value Modal Decomposition Time/s Test Set Correctness/%

4 2544 91.3

5 3486 100

6 6504 96.7
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As illustrated in Table 6, a modal decomposition number of K = 4 proves to be inade-
quate, resulting in an insufficient extraction of transmission vibration information. This
shortfall precipitates a nearly 10% decline in the diagnosis accuracy rate. Conversely, with
K = 5, a balance is achieved; the modal decomposition is optimal, ensuring a moderate
decomposition time and attaining a 100% correct diagnosis rate. When K is increased to 6,
the decomposition time almost doubles compared to K = 5. This increase in modal decom-
position time correlates with an over-decomposition scenario. The excess decomposition
yields frequency components void of effective transmission-state information, leading to a
nearly 10% reduction in the correct diagnosis rate. These findings corroborate that K = 5
is the optimal number for modal decomposition, striking a balance between efficiency
and accuracy in extracting pertinent transmission vibration information, thereby ensuring
diagnostic precision.

4. Conclusions

In this study, we focus on utilizing vibration signals to diagnose wear faults in gearbox
transmissions. We introduce a novel diagnostic approach that integrates VMD-PE and
CSA–LSTM to enhance the accuracy and efficiency of identifying such faults. The outcomes
and insights derived from implementing this innovative method led us to the following
conclusions:

(1) In this work, we present an optimized LSTM fault diagnosis method tailored for
efficient and accurate transmission vibration signal diagnosis. The CSA is harnessed
to meticulously iterate and optimize the LSTM parameters, enhancing the pattern
recognition of gearbox wear faults. Through a comprehensive comparative analysis
with existing optimization algorithms, our proposed method emerges superior in
fault pattern recognition, computational time complexity, and diagnostic accuracy,
affirming its robustness and efficacy in the intricate domain of fault diagnosis.

(2) This study introduces a feature extraction approach utilizing VMD and PE. This
methodology enables adaptive mode decomposition of the transmission’s vibration
signals, facilitating the quantification of modes derived from the VMD-decomposed
signal. By quantizing the state information encapsulated in the mod-al components
of VMD decomposition, we effectively address the modal overlap issue associated
with EMD. Our simulation test results for fault diagnosis under-score the efficacy of
arrangement entropy in quantifying the state information embedded in the transmis-
sion component. Comparative analysis reveals that arrangement entropy outperforms
multi-scale arrangement entropy, approximate entropy, and other time series complex-
ity indicators in quantifying the transmission vibration signal, marking a significant
advancement in the precision and reliability of fault diagnosis methodologies.
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