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Abstract: This paper studies the design of dual-mode resilient event-triggered control strategy for
Markov jump cyber–physical systems (MJCPSs) under denial-of-service (DoS) attacks. Firstly, a novel
resilient event-triggering scheme dependent on the DoS signal is developed to select the correspond-
ing control protocol based on the current network quality of services. Particularly, the potential
relationship between the triggering signal and system mode under DoS attacks is discussed, aiming
to eliminate both Zeno behavior and singular triggering behavior by calculating the minimum and
maximum data update rates. Then, we design an event-based dual-mode security controller to ensure
that the closed-loop system has stochastic stability and good robust H∞ performance under DoS
attacks. By constructing a Lyapunov–Krasovskii functional which depends on the lower and upper
bounds of time delay, sufficient conditions for the existence of dual-mode security controller gains
and resilient triggering parameters are presented with the LMI form. Finally, simulation results show
that the proposed security control strategy has good robustness against DoS attacks.

Keywords: Markov jump cyber–physical systems (MJCPSs); denial-of-service (DoS) attacks;
event-triggered control; resilient control; dual-mode switching strategy

1. Introduction

With the rapid development of artificial intelligence and other technologies, cyber–
physical systems (CPSs) that can highly integrate computation, communication, and control
have emerged and been widely used in critical infrastructures, such as smart grids [1],
intelligent transportation [2], industrial internet [3], and so on. In essence, CPSs are a class of
complex networked control systems with a cyclic feedback mechanism, and the ubiquitous
interconnection features make the openness increasingly enhanced [4]. This means that the
deep interaction between the information world and physical plant has achieved global
autonomy and collaboration. However, the influence of cyber security threats and physical
safety issues has brought great challenges to the integrated protection of CPSs. Once the
security defense mechanism deployed on the information layer fails, malicious adversaries
can covertly invade the information systems, causing CPS-induced failures to spread
rapidly in the communication media, thereby making the serious non-contact damage to
the physical process. Since physical systems operate in a relatively isolated environment,
there is a lack of in-depth understanding of external network threats and internal security
vulnerabilities [5]. Thus, it is of great value to design advanced security control strategies to
ensure the safe operation of plants in an unreliable network environment. Recently, security
issues for CPSs have attracted widespread attention, such as intrusion identification [6–8],
secure state estimation [9–11], stability analysis [12–15], and resilient control [16–19].
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In CPSs, malicious attackers have developed various remote intrusion modes by
destroying the security requirements of physical systems, such as denial-of-service (DoS)
attacks, false data injection (FDI) attacks, and deception attacks [20], where DoS attacks
force system service interruption by occupying the limited communication bandwidth.
In addition, DoS attacks do not need to acquire any prior system knowledge, which implies
that DoS attacks can be easily launched without regard for privacy protection [21]. In this
attack scenario, the abnormal behaviors caused by DoS attacks can be quickly perceived.
However, the access to control and measurement signals will be lost, making it impossible
to effectively deal with this attack behavior. Thus, it is necessary to develop an advanced
security control strategy with robustness and intrusion tolerance to ensure that CPSs can
operate smoothly in a degraded manner under DoS attacks. The authors in [12] have
proposed the concept of “resilient control” to characterize the basic ability of CPSs to defend
against DoS attacks. In [13], the authors developed an observer-based security control
strategy for linear CPSs with multiple parallel transmission channels. The maximum
operational duty cycle tolerated by CPSs under DoS attacks was obtained. To ensure both
steady-state accuracy and transient security, the authors in [22] designed an active security
control policy, where DoS attacks are assumed to occur in both control and measurement
channels. The relationship between the resilience and communication bandwidth was
studied in [23], where the bit rate condition under DoS attacks depends on the attack
parameters and system matrices. The issue of secure consensus for interconnected CPSs
under DoS attacks was discussed in [24–28], where the authors in [25] developed a time-
varying resilient control scheme to ensure the secure consensus of the agent team. In [28],
the authors discussed the co-design of the fault detection algorithm and consensus control
protocol for interconnected CPSs under hidden DoS attacks. Since CPSs are susceptible
to environmental mutations or random failures of physical components, they may consist
of multiple subsystems with different structures and parameters. However, the above
achievements are research on the security of deterministic CPSs, ignoring the research on
CPSs with random jumps under cyber attacks.

Generally, it is difficult for the system to obtain measurement or control signals in
a continuous manner. In order to overcome persistent communication, many sampled-
data control policies based on a time-triggered communication mechanism have been
widely investigated, see [29–32]. However, due to the limited communication bandwidth,
this implies that the time-triggered sampling strategies can generate unnecessary consump-
tion and computing resources. Consequently, the oversampling problem needs to be elimi-
nated. As an effective solution to alleviate the communication burden, the event-triggered
mechanism (ETM) regarded as “on-demand communication” was reported in [33–37], where
the authors in [33] proposed a co-design method for the resilient event-triggered control
(ETC) strategy to tolerate DoS attacks as much as possible. To obtain a higher communica-
tion efficiency, a novel switching-like ETC strategy for continuous CPSs was developed
in [34] to balance the desired communication rate and security performance. In [35], a fully
distributed secure cooperative control protocol for CPSs was developed to guarantee
asymptotic consensus against distributed DoS attacks from multiple adversaries. The au-
thors in [36] formulated a stochastic ETC scheme to overcome the stochastic DoS attacks by
fully using the dynamic features of communication in the open network. Particularly, CPSs
are vulnerable to environmental mutations or random failures of physical components,
resulting in their potential to be composed of multiple subsystems with different struc-
tures and parameters. Therefore, it is necessary to develop appropriate security control
strategies to ensure that jump CPSs still have an acceptable level of operation under cyber
attacks. In addition, the authors in [37] developed a finite-time ETC strategy for nonlinear
semi-Markov jump CPS to quickly defend against FDI attacks in finite time. Note that most
ETC schemes adjust their event-triggering parameters in advance to counter the negative
impact of DoS attacks on data transmission. This indicates that the traditional strategies
have certain limitations when dealing with unpredictable DoS jamming attacks. Recently,
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the impact of DoS attacks was transformed into the uncertainty in triggering rule reported
in [38], which plays a positive role in solving the mentioned problem.

However, very few works are available to solve similar topics for stochastic CPSs
under DoS attacks and Markovian switching, to our knowledge. These facts inspire us to
proceed with the present work.

This paper proposes a novel dual-mode resilient event-triggered control strategy for
MJCPSs under DoS attacks. The salient contributions are as follows:

(1) A novel resilient event-triggering rule that relies on DoS signals is designed to
select corresponding control strategies on demand based on the current network
service quality.

(2) By analyzing the inner relationship between the system mode and the triggering
instant under DoS attacks, the minimum and maximum inter-execution intervals are
calculated to avoid Zeno behavior and singular triggering.

(3) Based on the LMI method and Lyapunov stability theory, sufficient conditions for the
existence of security controller gains and resilient triggering parameters are given in
the form of concise LMIs simultaneously.

The outline of this paper is organized as follows. Section 2 presents preliminaries and
problem formulation. In Section 3, stability analysis under resilient event-triggered rule
and DoS attacks is investigated in detail. The dual-mode security controller is designed in
Section 4. In Section 5, a simulation example is presented to illustrate the effectiveness of
the proposed method. Finally, Section 6 summarizes this paper.

2. Preliminaries and Problem Formulation
2.1. System Framework

Consider MJCPSs defined on a complete probability space (Ω,F ,P), whose dynamics
can be captured by {

ẋ(t) = Ar(t)x(t) + Bu
r(t)u(t) + Bω

r(t)ω(t)

z(t) = Cr(t)x(t) + Du
r(t)u(t)

(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , and z(t) ∈ Rnz are the system state, control input, and reg-
ulated output variables, respectively. ω(t) ∈ Rnω represents an exogenous disturbance
belonging to L2[0,+∞). Ar(t), Bu

r(t), Bω
r(t), Cr(t), and Du

r(t) denote known matrices of com-
patible dimensions.

Let {r(t), t ≥ 0} represent a right-continuous Markov process taking values in a finite
set S , {1, 2, . . . , S}, whose stationary mode transition rate matrix (TRM) Π , [πij] ∈ RS×S

can be given by
Pr{r(t + ∆t) = j|r(t) = i}

=

{
πij∆t + o(∆t), i 6= j

1 + πii∆t + o(∆t), i = j

(2)

where ∆t > 0, lim∆t→0(o(∆t)/∆t) = 0, and TRs from i to j satisfy two conditions, that is,
if i 6= j then πij > 0; otherwise, πii = −∑i 6=j πij for any i, j ∈ S.

On the other hand, Figure 1 presents an advanced event-based control architecture for
MJCPSs subject to energy-limited DoS attacks, where the virtual sensor system determined
by a novel resilient event-triggered rule is developed to alleviate the heavy communication
burden generated by using traditional sampled-data schemes, see refs. [29–31] and the
references therein. For clarity, let es(t) = x(tk+1) − x(tk) represent the sampled error,
then we review a general event-triggered scheme mentioned in [38] as follows:

tk+1 = inf
{

t ∈ R>tk |e
T
s (t)Θaes(t) > σxT(t)Θbx(t)

}
, (3)

where σ ∈ (0, 1) is a given triggering parameter, Θa and Θb are the unknown weighting
matrices to be designed, and {tk}k∈N0 denotes the triggering sequence determined by (3).
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In this way, the control input applied to the control layer in the absence of DoS attacks can
be described as

u(t) = Kr(t)x(tk), t ∈ [tk, tk+1) (4)

where Kr(t) denotes the unknown control gain to be designed. Notice that the packets are
transmitted on the sensor–controller (S-C) and controller–actuator (C-A) channels over
the open and secure communication networks, respectively. This means that the S-C
channel is vulnerable to remote intrusion by malicious attackers. From the perspective of
system control performance, malicious intrusion on the S-C channel may cause information
mismatch between the S-C and C-A channels. That is, the actuator may maintain historical
control actions for a long time, which is enough to pose a serious threat to physical security.
In order to ensure safe operation in an unreliable network environment, we will redesign an
improved resilient event-triggered scheme and related security control protocol for MJCPSs
in the sequel.

 MJCPSs
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Event generator
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Figure 1. Control architecture of MJCPSs under DoS attacks.

2.2. Dual-Mode Security Control Scheme

In general, the purpose of designing event-based data update strategy is to improve
communication utilization. However, the malicious attackers always launch DoS attacks on
the S-C channel covertly to destroy information interaction. This will inevitably lead to the
accumulation of actual error between the historical update state and the current operation
state such that the event-triggered condition is violated for a long time because the state
error cannot be reset to zero. These facts motivates us to design a resilience margin for the
event-triggered condition (3), which aims to be more robust against DoS attacks. From this,
for any aperiodic interval [Tn, Tn+1), let Hn = {T on

n } ∪ [T on
n , Tn+1) be the nth DoS ac-

tive interval shown in Figure 2, where {T on
n }n∈N0 represents an injected DoS sequence.

Then, for any t ∈ [ta, tb], we define

D1(ta, tb) =
⋃

n∈N0

Hn
⋂

[ta, tb] (5)

and

D2(ta, tb) = [ta, tb]\D1(ta, tb) (6)

as the union and relative complement of DoS subintervals over interval [ta, tb], respectively.
Clearly, once the intermittent DoS attacks are successfully launched over a shared commu-
nication network, certain packets determined by the event-triggered rule (3) will be lost
during the transmission. This implies that these criteria for stability analysis and controller
synthesis presented in [24,25,27] may no longer be valid. Moreover, these packets that
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cannot be updated successfully are also considered redundant. In this case, we need to
develop an improved event-triggered rule with a resilience margin according to (3). Firstly,
the actual state error caused by DoS attacks can be defined as

ea(t) = x(t)− x(tk), t ∈
[
t`n, t`+1

n

)
(7)

where {t`n}`∈N0 ⊆ {tk}k∈N0 denotes a successful transmission sequence during the interval
[Tn, Tn+1). Note that ea(t) = es(t) holds if DoS attacks do not exist; otherwise, DoS attacks
cause an additional state error that can degrade security performance, i.e., ea(t) > es(t)
holds. Then, a novel event-triggered rule with a resilience margin can be designed as

T∗ = max
{

tk + ∆, inf
{

t ∈ R>tk ∧ t`n|eT
a (t)Θaea(t)

−σxT(tk)Θbx(tk)− (1− α(t))Jd > 0
}}

,
(8)

where T∗ represents the latest update instant when DoS attacks are no longer injected,
∆ ∈ R>0 denotes an unknown constant to be calculated, Jd ≤ Jmax is the performance
compensation for condition (3), and Jmax is the maximum resilience margin. Further-
more, α(t) ∈ {0, 1} is a Dirac measure used to describe DoS on/off properties, and its
mathematical expectation can be characterized as{

Prob{α(t) = 1} = E{α(t)} = α

Prob{α(t) = 0} = 1− α
(9)

where α ∈ [0, 1] is a positive scalar. In this way, we can design a novel dual-mode security
controller under the resilient event-triggered rule (8) as follows:

u(t) = α(t)Ka
r(t)x(tk) + (1− α(t))ξr(t)K

b
r(t)x(tk) (10)

where ξr(t) ∈ R>0 denotes a given regulated parameters, Ka
r(t) and Kb

r(t) represent the

unknown control gains without or with DoS attacks, respectively. Let τ(t) , t− t`n denote
the time delay, then the control protocol (10) can be further rewritten as

u(t) = α(t)Ka
r(t)(x(t− τ(t))− ea(t)) + (1− α(t))

× ξr(t)K
b
r(t)(x(t− τ(t))− ea(t)), t ∈

[
t`n, t`+1

n

) (11)

where τmin and τmax denote the minimum and maximum time delays, respectively.

  

  

  

  

 

 

 

 

DoS DoS DoS 

Threshold

Error function

Figure 2. Evolution of update data in the presence of DoS attacks.
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In view of the designed resilient event-triggered rule (8) and dual-mode security
control protocol (11), the resulting closed-loop systems can be described as

ẋ(t) = Ar(t)x(t) +
[
B̄u

r(t) + (α(t)− α)B̃u
r(t)
]
K̄r(t)

× (x(t− τ(t))− ea(t)) + Bω
r(t)ω(t)

z(t) = Cr(t)x(t) +
[
D̄u

r(t) + (α(t)− α)D̃u
r(t)
]
K̄r(t)

× (x(t− τ(t))− ea(t))

(12)

where ᾱ = 1− α, K̄r(t) = col
{

Ka
r(t), Kb

r(t)

}
, and

B̄u
r(t) =

[
α ᾱξr(t)

]
⊗ Bu

r(t), B̃u
r(t) =

[
1 −ξr(t)

]
⊗ Bu

r(t),

D̄u
r(t) =

[
α ᾱξr(t)

]
⊗ Du

r(t), D̃u
r(t) =

[
1 −ξr(t)

]
⊗ Du

r(t).

In general, malicious attackers can launch three different types of DoS attacks on
the CPS communication network, including periodic DoS attacks, stochastic DoS attacks,
and time-constrained DoS attacks as shown in Figure 3. From the perspective of attack con-
cealment, we consider time-constrained DoS attacks, whose properties can be characterized
by frequency and duration.

Figure 3. Typical DoS attack models.

Assumption 1 (DoS Frequency [12]). There exist scalars η ∈ R≥0 and τD ∈ R≥∆ such that

n(ts, t f ) ≤ η +
t f − ts

τD

for any 0 ≤ ts < t f .

Assumption 2 (DoS Duration [12]). There exist scalars ξ ∈ R≥0 and T ∈ R≥1 such that

|H(ts, t f )| ≤ ξ +
t f − ts

T

for any 0 ≤ ts < t f .

2.3. Control Objective

For MJCPSs under DoS attacks, the control objective of this article is to develop the
advanced resilient event-triggered rule and dual-mode security control protocol, which
aims to ensure the safe operation of physical system in an unreliable network environment.
Some useful definitions are given as follows.
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Definition 1 ([38]). For any initial condition (x(0), r(0)), MJCPSs (1) can be said to be stochasti-
cally stable if they have a positive parameterM(x(0), r(0)) such that

E
{∫ ∞

0
xT(t)x(t)dt | (x(0), r(0))

}
≤M(x(0), r(0)).

Definition 2 ([38]). Given a positive parameter γ ∈ R>0, MJCPSs (1) can be considered stochas-
tically stable and to have an H∞ disturbance attenuation level γ if this condition is met:

E
{∫ ∞

0
zT(t)z(t)dt

}
≤ γ2

∫ ∞

0
ωT(t)ω(t)dt.

Definition 3 ([13]). The transmission sequence {tk}k∈N0 is said to have a finite update rate if there
are two positive scalars ∆min and ∆max ∈ R>0 such that

∆min ≤ tk+1 − tk = ∆k ≤ ∆max,

where ∆min and ∆max are the minimum and maximum update rates, respectively.

Remark 1. Generally, DoS behaviors launched by malicious attackers have a certain concealment,
which makes it difficult for defenders to predict attack intentions. Under such an unreliable commu-
nication network, the packets to be updated determined by ETM may be lost during the transmission,
thereby reducing the security performance of the physical system. To defend against DoS attacks,
several popular resilient ETC strategies have been proposed, which can adjust the triggering pa-
rameters online or in advance according to changes in the system state, see [34,35,39–42] and the
references therein. However, the invisibility of DoS attacks makes it difficult to adjust triggering
parameters in real time, which leads to certain limitations of such methods. In contrast, setting a
certain resilience margin for ETM to cope with the transmission failures caused by DoS attacks can
break through the barriers of traditional control schemes. In addition, the triggering parameters do
not need to be adjusted depending on whether DoS attacks occur. Hence, the method of designing a
reasonable resilience margin for ETM in a unified framework may facilitate system analysis under
DoS attacks.

Remark 2. The control behavior in response to DoS attacks can be divided into two cases: one
is to force the control signal to zero as mentioned in [12,13], and the other is to maintain the
historical control input by using a zero-order holder (ZOH), see [34,38] and the references therein.
Obviously, the former is an extremely conservative way to defend against DoS attacks because the
controlled system may be in an open-loop unstable status for a long time. Conversely, the latter
allows the physical system to obtain relatively satisfactory security performance in a degraded
manner. That is, it can be concluded that the second way is more suitable as the core idea of the
intrusion tolerance control scheme. On this basis, we can design a DoS-based dual-mode security
controller by introducing a Dirac measure α(t) [43], which is independent of the system mode r(t).
The composite control scheme that includes two different control protocols is similar to hybrid control,
but both protocols cannot take effect simultaneously. It should be noted that the event-triggered
rules corresponding to the above control protocols are selected based on whether DoS attacks occur.

3. Stability Analysis under Resilient Event-Triggered Rule and DoS Attacks
3.1. Stability Criterion

Firstly, the primary goal of this subsection is to find the stability criteria for MJCPSs (1)
under resilient event-triggered rule (8) and DoS attack. Then, we perform a comprehensive
feasibility analysis on condition (8) to demonstrate the theoretical validity.

Theorem 1. Given positive scalars σ, α, τp, τq, and γ, ξi ∈ R>0, and the dual-mode security
controller gains Ka

i and Kb
i . Under the proposed resilient event-triggered rule (8), MJCPSs (1)

are stochastically stable in the presence of intermittent DoS attacks and have an H∞ disturbance
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attenuation level γ if there exist the positive definite matrices Pi > 0, Qa
i > 0, Qb

i > 0, Sa > 0,
Sb > 0, Ra > 0, Rb > 0, Θa > 0, Θb > 0, and the real matrix R̃b such that the following
conditions are satisfied:

Ω =

 Ωc Ω1 Ω2
∗ Ω3 0
∗ ∗ Ω4

, R =

[
Rb R̃b
∗ Rb

]
> 0, (13)

S

∑
j=1

πijQa
j < Sa,

S

∑
j=1

πijQb
j < Sb, (14)

where diag{Ω3, Ω4} = −diag{τ̄Ra, τ̃Rb, α̂τ̄Ra, α̂τ̃Rb, I, α̂I},

Ωc =



ϕ11 τ̄Ra ϕ13 0 ϕ15 ϕ16
∗ ϕ22 ϕ23 τ̃R̃b 0 0
∗ ∗ ϕ̃33 ϕ34 −σΘb 0
∗ ∗ ∗ ϕ44 0 0
∗ ∗ ∗ ∗ σΘb −Θa 0
∗ ∗ ∗ ∗ ∗ −γ2 I

,

Ω1 =



AT
i Ra AT

i Rb 0
0 0 0

K̄T
i B̄uT

i Ra K̄T
i B̄uT

i Rb K̄T
i B̃uT

i Ra
0 0 0

−K̄T
i B̄uT

i Ra −K̄T
i B̄uT

i Rb −K̄T
i B̃uT

i Ra
BωT

i Ra BωT
i Rb 0

,

Ω2 =



0 CT
i 0

0 0 0
K̄T

i B̃uT
i Rb K̄T

i D̄uT
i K̄T

i D̃uT
i

0 0 0
−K̄T

i B̃uT
i Rb −K̄T

i D̄uT
i −K̄T

i D̃uT
i

0 0 0

,

with

ϕ11 = Qa
i + τpSa + τ̂Sb + AT

i Pi + Pi Ai +
S

∑
j=1

πijPj

− τ̄Ra, ϕ̃33 = −2ϕ23 + σΘb, α̃ = α̂−1 = αᾱ,

ϕ13 = −ϕ15 = Pi B̄u
i K̄i, ϕ16 = PiBω

i , τ̂ = τq − τp,

ϕ22 = Qb
i −Qa

i − τ̄Ra − τ̃Rb, τ̃ = τ̂−1, τ̄ = τ−1
p ,

ϕ23 = ϕ34 = τ̃Rb − τ̃R̃b, ϕ44 = −Qb
i − τ̃Rb.

Proof. Firstly, consider a stochastic Lyapunov–Krasovskii functional as follows:

V(x(t), r(t)) = V1(x(t), r(t)) + V2(x(t), r(t))

+ V3(x(t), r(t)) + V4(x(t), r(t)),
(15)
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where
V1(x(t), r(t)) = xT(t)Pr(t)x(t),

V2(x(t), r(t)) =
∫ t

t−τp
xT(s)Qa

r(t)x(s)ds

+
∫ t−τp

t−τq
xT(s)Qb

r(t)x(s)ds,

V3(x(t), r(t)) =
∫ 0

−τp

∫ t

t+θ
xT(s)Sax(s)dsd`

+
∫ −τp

−τq

∫ t

t+θ
xT(s)Sbx(s)dsd`,

V4(x(t), r(t)) =
∫ 0

−τp

∫ t

t+θ
ẋT(s)Ra ẋ(s)dsd`

+
∫ −τp

−τq

∫ t

t+θ
ẋT(s)Rb ẋ(s)dsd`.

For r(t) = i ∈ S, let L be the weak infinitesimal generator, which is computed along the
state trajectory of MJCPSs (1) as

LV1(x(t), r(t))

= 2xT(t)Pi
[
Aix(t) + Bω

i ω(t)− B̄u
i K̄iea(t)

+ B̄u
i K̄ix(t− τ(t))

]
+ xT(t)

S

∑
j=1

πijPjx(t),

(16)

LV2(x(t), r(t))

= xT(t)Qa
i x(t)− xT(t− τq)Qb

i x(t− τq)

+ xT(t− τp)(Qb
i −Qa

i )x(t− τp)

+
∫ t−τp

t−τq
xT(s)

S

∑
j=1

πijQb
j x(s)ds

+
∫ t

t−τp
xT(s)

S

∑
j=1

πijQa
j x(s)ds,

(17)

LV3(x(t), r(t))

= τpxT(t)Sax(t)−
∫ t

t−τp
xT(s)Sax(s)ds

+ τ̂xT(t)Sbx(t)−
∫ t−τp

t−τq
xT(s)Sbx(s)ds,

(18)

LV4(x(t), r(t))

= τpE{ẋT(t)Ra ẋ(t)} −
∫ t

t−τp
ẋT(s)Ra ẋ(s)ds

+ τ̂E{ẋT(t)Rb ẋ(t)} −
∫ t−τp

t−τq
ẋT(s)Rb ẋ(s)ds,

(19)

where τ̂ ∈ R>0 is defined in Theorem 1. For clarity, let η(t) := col{x(t), x(t− τp), x(t−
τ(t)), x(t− τq), ea(t), ω(t)} represent the augmented vector. Then, in view of the mathe-
matical nature of α(t), one can obtain that

E{ẋT(t)Rφ ẋ(t)}
= ηT(t)

[
ζT

1 Rφζ1 + α̃ζT
2 Rφζ2

]
η(t), φ ∈ {a, b}

(20)
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where α̃ ∈ R>0, ζ1=
[
Ai, 0, B̄u

i K̄i, 0,−B̄u
i K̄i, Bω

i
]
, and ζ2 =

[
0, 0, B̃u

i K̄i, 0,−B̃u
i K̄i, 0

]
. By virtue

of the Jessen’s inequality, the integral terms in (19) are calculated as

−
∫ t

t−τp
ẋT(s)Ra ẋ(s)ds

≤ −τ̄
[
x(t)− x(t− τp)]

T Ra[x(t)− x(t− τp)
]
,

(21)

−
∫ t−τp

t−τq
ẋT(s)Rb ẋ(s)ds

≤ −τ̃
[
x(t− τp)− x(t− τ(t))]T Rb[x(t− τp)

− x(t− τ(t))
]
− τ̃

[
x(t− τ(t))− x(t− τq)]

T

× Rb[x(t− τ(t))− x(t− τq)
]
− 2τ̃

[
x(t− τp)

− x(t− τ(t))
]T R̃b

[
x(t− τ(t))− x(t− τq)

]
,

(22)

where τ̄ and τ̃ ∈ R>0 are defined in Theorem 1, respectively.
Combining condition (14), it follows from (16)–(22) that

LV(x(t), r(t)) ≤ ηT(t)
[
Ωa + ζT

1 (τpRa + τ̂Rb)ζ1

+ ζT
2 (α̃τpRa + α̃τ̂Rb)ζ2

]
η(t),

(23)

where

Ωa =



ϕ11 τ̄Ra ϕ13 0 ϕ15 ϕ16
∗ ϕ22 ϕ23 τ̃R̃b 0 0
∗ ∗ ϕ33 ϕ34 0 0
∗ ∗ ∗ ϕ44 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0


with ϕ33 = −2ϕ23 = 2τ̃R̃b − 2τ̃Rb and other parameters, which are given in Theorem 1.

Then, we will show that MJCPSs (1) have an H∞ disturbance attenuation level γ for any
non-zero ω(t) ∈ L2[0,+∞). Define Λ(t) := LV(x(t), r(t)) +E{zT(t)z(t)− γ2ωT(t)ω(t)}.
Based on Definition 2, it can be derived that

Λ(t) ≤ ηT(t)
[
Ωb + ζT

1 (τpRa + τ̂Rb)ζ1 + ζT
3 ζ3

+ ζT
2 (α̃τpRa + α̃τ̂Rb)ζ2 + α̃ζT

4 ζ4
]
η(t),

(24)

where ζ3 =
[
Ci, 0, D̄u

i K̄i, 0,−D̄u
i K̄i, 0

]
, ζ4 =

[
0, 0, D̃u

i K̄i, 0, −D̃u
i K̄i, 0

]
, and

Ωb =



ϕ11 τ̄Ra ϕ13 0 ϕ15 ϕ16
∗ ϕ22 ϕ23 τ̃R̃b 0 0
∗ ∗ ϕ33 ϕ34 0 0
∗ ∗ ∗ ϕ44 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ −γ2 I

,

which implies that ζT
1 (τpRa + τ̂Rb)ζ1 + ζT

2 (α̃τpRa + α̃τ̂Rb)ζ2 +ζT
3 ζ3 + α̃ζT

4 ζ4 + Ωb < 0 is
established. In this way, we obtain that Λ(t) ≤ −‖η(t)‖2 < −λ‖x(t)‖2, where λ ∈ R>0.
From this, we can conclude that MJCPSs (1) are stochastically stable and have an H∞
disturbance attenuation level γ.

Finally, based on the developed resilient event-triggered rule (8), it follows from
condition (24) that
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Λ(t) ≤ Λ̃(t) + α(t)Jd

= ηT(t)
[
Ωc + ζT

1 (τpRa + τ̂Rb)ζ1 + ζT
2 (α̃τpRa

+ α̃τ̂Rb)ζ2 + ζT
3 ζ3 + α̃ζT

4 ζ4
]
η(t) + (1− α(t))Jd,

(25)

where Λ̃(t) = Λ(t) + σxT(tk)Θbx(tk) − eT
a (t)Θaea(t) and Ωc is given in condition (13).

By Schur’s complement lemma, it is concluded that the objective term Λ̃(t) in (25) is
equivalent to Ω in (13). Thus, it is derived that Λ̃(t) ≤ −λ̃‖x(t)‖2, where λ̃ ∈ R>0.
This implies that LV(x(t), r(t)) ≤ −λ̂V(x(t), r(t)) is established, where λ̂ = λ̃/λmax(Pi)
represents the decay rate and λmax(Pi) represents the maximum eigenvalue of Pi. From this,
we can obtain that

LV(x(t), r(t)) ≤ −λ̂V(x(t), r(t)) + (1− α(t`n))Jd, (26)

where t ∈ [t`n, t`+1
n ). Then, it follows from condition (26) that

E[V(x(t), r(t))] ≤ E[V(x(0), r(0))] +
(1− α(t`n))Jd

λ̂
, (27)

which implies that

E
{∫ ∞

0
xT(t)x(t)dt | (x(0), r(0))

}
≤ h̄E[V(x(0), r(0))] +

(1− α(t`n))h̄Jd

λ̂

=M(x(0), r(0)),

(28)

where h̄ = λ−1
min(Pi) and λmin(Pi) is the minimum eigenvalue of Pi. In this case, it can

be concluded that ‖x(t)‖2 is bounded byM(x(0), r(0)). Meanwhile, the maximum per-
formance loss induced by DoS attacks is calculated as Jmax = h̄λdJd, where λd = 1/λ̂.
This completes the proof.

3.2. Feasibility Criterion

In this subsection, the main objective is to find the minimum update rate, which aims
to avoid Zeno behavior with an unlimited number of transmission instants in a finite time
period. The maximum downtime of (8) under DoS attacks is calculated.

Theorem 2. For the closed-loop MJCPSs (12) with resilient event-triggered rule (8) and dual-mode
security controller (10), Zeno behavior is strictly excluded if the inter-execution interval ∆k, k ∈ N0
is greater than or equal to

∆min = min
{

∆1
min, ∆2

min

}
, (29)

where

∆1
min =

1
ϑ1

ln
[

µ1

µ2
+ 1
]

, ∆2
min =

1
ϑ1

ln
[

µ3

µ4
+ 1
]

,

with µ1 = ϑ1 min{ς1, ς2}, µ2 = max{ϑ2(ς1 + 1), (ϑ2ς2 + ϑ3)}, µ3 = ϑ1 min{ς3, ς4, ς5, ς6},
µ4 = max{θ1(ς3 + 1), (θ1ς4 +ϑ3), (θ1ς5 +ϑ4), θ1ς6}, ς1 = (

√
2σ$2)/(2$1), ς2 = v/(

√
2$1),

ς3 = (
√

σ$2)/(2$1), ς4 = v/(2$1), ς5 = v̂/(2$1), ς6 = ṽ/(2$1), Θ̂2
a = Θa, Θ̂2

b = Θb,
$1 = λmax(Θ̂a), $2 = λmin(Θ̂b), Âi = Ai + Bu

i Ka
i , B̂u

i = ξi × Bu
i Kb

i , ϑ1 = maxi∈S{‖Ai‖},
ϑ2 = maxi∈S{‖Âi‖}, ϑ3 = maxi∈S{‖Bω

i ‖}, ϑ4 = maxi∈S{‖B̂u
i ‖}, and ξi, σ, v, v̂, and ṽ ∈

R>0 represent the given positive parameters. Moreover, the maximum downtime caused by DoS
attacks can be calculated as ∆max = ϑ−1

1 ln[(µ5Γ)/µ6 + 1] with µ5 = max{ς̃3, ς̃4, ς̃5, ς̃6}, µ6 =
min{ϑ1ς̂3, (ϑ1ς̃4 + ϑ3), (ϑ1ς̃5 + ϑ4), ϑ1ς̃6}, ς̃3 = (

√
σ$4)/$3, ς̃4 = v/$3, ς̃5 = v̂/$3, ς̃6 =

v̂/$3, ς̂3 = 1 + ς̃3, Γ = ϑ1[1 + ∑Ndos+1
n f =1 2n f−1ς̂3], Ndos = ∆−1

min(Tn+1 − T on
n ),

$3 = λmin(Θ̂a), and $4 = λmax(Θ̂b).
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Proof. See the Appendix A.

Remark 3. In view of the proposed resilient event-triggered rule (8), the purpose is to characterize
two possible data update policies generated by intermittent DoS attacks through random variable
α(t), where α(t) = 1 and α(t) = 0 represent dormant and active DoS attacks, respectively. Here,
the existence of Jd makes the triggering threshold when α(t) = 0 greater than that when α(t) = 1.
This implies that a higher triggering threshold may determine fewer packets to be transmitted. Note
that it is quite possible to transmit a large number of packets in a short period of time because of an
inappropriate event-triggered rule. Therefore, regardless of whether the triggering threshold is low or
high, Zeno behavior needs to be strictly avoided. Moreover, the exogenous disturbance can direct the
trajectory of ‖ea(t)‖ in the resilient event-triggered rule (8). In order to prevent the influence of the
disturbance signal on the estimation of ‖ea(t)‖, it is necessary to develop an improved triggering
inequality when discussing the feasibility of resilient event-triggered rule (8).

Remark 4. Note that the unreasonable event-triggered rules may also lead to singular trigger-
ing, which is another abnormal behavior that cannot transmit for a long time after a successful
transmission attempt. By solving the maximum inter-execution interval between two consecutive
transmissions, it is concluded that singular triggering can be avoided to guarantee the validity of
the developed event-triggered rules. Due to intermittent DoS attacks, a large number of packets
cannot be transmitted within the active DoS subintervals. Thus, it is necessary to characterize the
maximum downtime between two adjacent successful updates to estimate the impact of intermittent
DoS attacks on control performance. However, few results discuss this critical issue, and it is
difficult to obtain an explicit representation for the maximum downtime caused by DoS attacks.
Furthermore, similar to the procedures for avoiding Zeno behavior, we also study the potential
impact of disturbance signal on calculating the maximum downtime.

4. Design of Dual-Mode Security Controller under Resilient Event-Triggered Rule

In this section, inspired by the theoretical results of stability analysis under the resilient
event-triggered rule (8), we present a design procedure of the proposed dual-mode security
control protocol. The following results illustrate the stated objectives.

Theorem 3. Given positive scalars σ, α, τp, τq, γ, ξi ∈ R>0, there is a dual-mode security
controller (10) such that MJCPSs (1) are stochastically stable in the presence of intermittent DoS
signal and have an H∞ disturbance attenuation level γ, if there are positive definite matrices Xi > 0,
Q̃a

i > 0, Q̃b
i > 0, S̃a

i > 0, S̃b
i > 0, R̃a

i > 0, R̂b
i > 0, Θ̄a > 0, Θ̄b > 0, and real matrices R̄b

i , Ya
i ,

and Yb
i with appropriate dimensions such that the following conditions are satisfied:

Ω? =

[
Ω̄ Ξi
∗ Λ1

i

]
< 0, R? =

[
R̂b

i R̄b
i

∗ R̂b
i

]
> 0, (30)

[
Q1 Ξi
∗ Λ2

i

]
< 0,

[
Q2 Ξi
∗ Λ3

i

]
< 0, (31)

where Ω̄ = [Ω̃c, Ω̃1, Ω̃2; Ω̃T
1 , Ω̃3, 0; Ω̃T

2 , 0, Ω̃4], Ω̌ = [Ω̃1, Ω̃2],

Ω̌ =



XT
i AT

i XT
i AT

i 0 0 XT
i CT

i 0
0 0 0 0 0 0
ϕ̄1 ϕ̄1 ϕ̄2 ϕ̄2 ϕ̄3 ϕ̄4
0 0 0 0 0 0
−ϕ̄1 −ϕ̄1 −ϕ̄2 −ϕ̄2 −ϕ̄3 −ϕ̄4
BωT

i BωT
i 0 0 0 0

,
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Ω̃c =



ϕ̂11 τ̄R̃a
i ϕ̂13 0 ϕ̂15 ϕ̂16

∗ ϕ̂22 ϕ̂23 τ̃R̄b
i 0 0

∗ ∗ ϕ̂33 ϕ̂34 ϕ̂35 0
∗ ∗ ∗ ϕ̂44 0 0
∗ ∗ ∗ ∗ ϕ̂55 0
∗ ∗ ∗ ∗ ∗ −γ2 I

,

Ω̃3 = −diag[2τ̄Xi − τ̄R̃a
i , 2τ̃Xi − τ̃R̂b

i , 2α̂τ̄Xi − α̂τ̄R̃a
i ],

Ω̃4 = −diag[2α̂τ̃Xi − α̂τ̃R̂b
i , I, α̂I], Θ̄aΘ̄b = Θ−1

a Θ−1
b ,

Λ1
i = −diag[X1, . . . , Xi−1, Xi+1, . . . , XS], ϕ̂16 = Bω

i Xi,

Λ2
i = −diag[2X1 − Q̃a

1, . . . , 2Xi−1 − Q̃a
i−1, 2Xi+1

− Q̃a
i+1, . . . , 2XS − Q̃a

S], Q1 = πiiQ̃a
i − S̃a

i ,

Λ3
i = −diag[2X1 − Q̃b

1, . . . , 2Xi−1 − Q̃b
i−1, 2Xi+1

− Q̃b
i+1, . . . , 2XS − Q̃b

S], Q2 = πiiQ̃b
i − S̃b

i ,

Ξi =
[√

πi1XT
i , . . . ,

√
πi(i−1)X

T
i ,
√

πi(i+1)X
T
i , . . . ,

√
πiSXT

i
]
, ϕ̂22 = Q̃b

i − Q̃a
i − τ̄R̃a

i − τ̃R̂b
i ,

ϕ̄T
1 = αBu

i Ya
i + ᾱξiBu

i Yb
i , ϕ̄T

2 = Bu
i Ya

i − ξiBu
i Yb

i ,

ϕ̄T
3 = αDu

i Ya
i + ᾱξiDu

i Yb
i , ϕ̄T

4 = Du
i Ya

i − ξiDu
i Yb

i ,

ϕ̂11 = −τ̄R̃a
i + Q̃a

i + τpS̃a
i + τ̂S̃b

i + πiiXi + XT
i AT

i

+ AiXi, ϕ̂13 = −ϕ̂15 = αBu
i Ya

i + ᾱξiBu
i Yb

i ,

ϕ̂23 = ϕ̂34 = τ̃R̂b
i − τ̃R̄b

i , ϕ̂55 = 2σ̂Xi − σΘ̄a + Θ̄b,

ϕ̂33 = −2ϕ̂23 + ϕ̂35 = 2τ̃R̄b
i − 2τ̃R̂b

i − 2σXi + σΘ̄b,

ϕ̂35 = −2σXi + σΘ̄b, ϕ̂44 = −Q̃b
i − τ̃R̂b

i , σ̂ = σ− 1,

and the remaining parameters are defined in Theorem 1. Then, the gains of the dual-mode security
controller can be computed as

Ka
i = Ya

i X−1
i , Kb

i = Yb
i X−1

i , ∀i ∈ S (32)

Proof. Firstly, define the following new variables as Xi = P−1
i , Q̃a

i = XT
i Qa

i Xi, Q̃b
i =

XT
i Qb

i Xi, S̃a
i = XT

i SaXi, S̃b
i = XT

i SbXi, R̃a
i = XT

i RaXi, R̂b
i = XT

i RbXi, R̄b
i = XT

i R̃bXi,
Θ̃a

i = XT
i ΘaXi, and Θ̃b

i = XT
i ΘbXi. Then, based on the proof of Theorem 1, it can be seen

that only the parameters Ωc, Ω1, and Ω2 in (13) can affect the solution of security control
gains Ka

i and Kb
i . To characterize an explicit form of control gains, the left-hand inequality

in (13) can be transformed into

Ω =

 Ωc Ω̂1 Ω̂2
∗ Ω̂3 0
∗ ∗ Ω̂4

, (33)

where

Ω̂1 =



AT
i AT

i 0
0 0 0

K̄T
i B̄uT

i K̄T
i B̄uT

i K̄T
i B̃uT

i
0 0 0

−K̄T
i B̄uT

i −K̄T
i B̄uT

i −K̄T
i B̃uT

i
BωT

i BωT
i 0

,
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Ω̂2 =



0 CT
i 0

0 0 0
K̄T

i B̃uT
i K̄T

i D̄uT
i K̄T

i D̃uT
i

0 0 0
−K̄T

i B̃uT
i −K̄T

i D̄uT
i −K̄T

i D̃uT
i

0 0 0

,

and diag{Ω̂3, Ω̂4} = −diag{τpRa, τ̂Rb, α̃τpRa, α̃τ̂Rb, I, α̃I}−1.
Then, by post- and pre-multiplying both sides of (33) with diag{Xi, . . . , Xi︸ ︷︷ ︸

5

, I, . . . , I︸ ︷︷ ︸
7

}

and its transpose, we obtain

Ω̃ =


Ω̃c Ω̃1 Ω̃2 Ξi
∗ Ω̂3 0 0
∗ ∗ Ω̂4 0
∗ ∗ ∗ Λ1

i

 < 0, (34)

where Ω̃c, Ω̃1, Ω̃2, Ξi, and Λ1
i are defined in Theorem 3. Next, the nonlinear terms R−1

a and
R−1

b in condition (34) are further rewritten as −R−1
a = −Xi(XT

i RaXi)
−1XT

i ≤ −2Xi + R̃a
i

as −R−1
b = −Xi(XT

i RbXi)
−1XT

i ≤ −2Xi + R̂b
i , respectively. Substituting the resulting

inequalities into (34), it is concluded that the left-hand inequality in (30) is established.
In a similar way, by post-multiplying and pre-multiplying both sides of the right-

hand inequality in condition (13) with diag{Xi, Xi} and its transpose, then we obtain the
conclusion that the right-hand inequality in (30) is true. In addition, it follows from (14) that

XT
i

S

∑
j=1

πijQa
j Xi < S̃a

i , XT
i

S

∑
j=1

πijQb
j Xi < S̃b

i (35)

which can be equivalent to
Q1 + XT

i ∑
j 6=i

πijQa
j Xi < 0 (36)

and
Q2 + XT

i ∑
j 6=i

πijQb
j Xi < 0, (37)

where Q1 and Q2 are given in Theorem 3. According to the Schur complement lemma, it
can be deduced that [

Q1 Ξi
∗ Λ̄2

i

]
< 0,

[
Q2 Ξi
∗ Λ̄3

i

]
< 0, (38)

where
Λ̄2

i = −diag
[
Qa

1, . . . , Qa
i−1, Qa

i+1, . . . , Qa
S
]−1,

Λ̄3
i = −diag

[
Qb

1, . . . , Qb
i−1, Qb

i+1, . . . , Qb
S

]−1
.

As for the nonlinear terms −(Qa
i )
−1 and −(Qb

i )
−1, ∀j 6= i in Λ̄2

i and Λ̄3
i , it can be

further rewritten as
−(Qa

i )
−1 ≤ −2Xi + Q̃a

i , (39)

implying the same solution for −(Qb
i )
−1. Therefore, it can be concluded that (38) can be

guaranteed by condition (31). This completes the proof.

5. Simulation Example

In this section, a simulation example is given to demonstrate the effectiveness of the
event-based dual-mode security control strategy under DoS attacks.
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As shown in Figure 4, we consider a Pulse-Width Modulation (PWM)-driven boost
converter borrowed from [44], which can be captured by

Ėc(t) = −
1

RC
Ec(t) + (1− s(t))

1
C

I`(t)

İ`(t) = −(1− s(t))
1
L

Ec(t) + s(t)
1
L

Es(t)
(40)

where L, C and R denote the inductance, capacitance and load resistance, respectively. Ec(t)
and Es(t) represent the terminal voltage and source voltage of the capacitor, respectively.
I`(t) is the current through the inductance. s(t) is a switching signal controlled by a
PWM-driven boost converter. Here, as a typical circuit system, the role of using a PWM-
driven boost converter is to obtain higher voltage. Let x(t) = col{Ec(t), IL(t), 1} be the
system state, then the differential Equation (40) is further rewritten as ẋ(t) = Ar(t)x(t),
r(t) ∈ {1, 2}, where the system parameters are A1 = [−1/RC, 1/C, 0;−1/L, 0, 0; 0, 0, 0] and
A2 = [−1/RC, 0, 0; 0, 0, 1/L; 0, 0, 0]. Selecting L = 1H, C = 1F, and R = 1Ω, all parameters
can be listed as follows: Mode 1:

A1 =

 −1 1 0
−1 0 0
0 0 0

, Bω
1 =

 0.27 −0.19 −0.46
−0.21 −0.15 0.32
0.55 −0.43 0.17

,

C1 =

 −0.11 0.29 0.30
0.05 0.35 0.10
−0.10 0.48 0.20

, Du
1 =

 −0.19
0.15
0.23

.

Mode 2:

A2 =

 −1 0 0
0 0 1
0 0 0

, Bω
2 =

 0.36 −0.16 −0.25
−0.10 0.35 −0.46
0.32 0.21 −0.19

,

C2 =

 −0.20 −0.25 0.32
−0.10 0.20 0.34
−0.20 0.20 0.35

, Du
2 =

 0.17
−0.21
0.39

,

and Bu
1 = Bu

2 =
[
−0.1 0.4 0.5

]T . Without loss of generality, the transition rate matrix
is given as

Π =

[
−1.2 1.2
0.5 −0.5

]
,

and the exogenous disturbance signal is assumed to be ω(t) = 0.1 sin(x(t)). According
to Theorem 3, the given constants are selected as τp = 0.1, τq = 0.2, ξ1 = 0.2, ξ2 = 0.5,
α = 0.46, σ = 0.012, and γ = 3. Then, the security controller gains and weighting matrices
can be calculated as

Ka
1 =

[
0.3616 −0.9208 −0.7812

]
,

Ka
2 =

[
0.1194 −0.7287 −1.3834

]
,

Kb
1 =

[
1.8081 −4.6038 −3.9062

]
,

Kb
2 =

[
0.2387 −1.4573 −2.7667

]
,

Θa =

 0.1133 0.0031 0.0025
0.0031 0.1059 −0.0144
0.0025 −0.0144 0.0904

,

Θb =

 1.2865 −0.3221 −0.3076
−0.3221 2.2103 1.7366
−0.3076 1.7366 4.2373

.
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Figure 4. PWM-driven boost converter.

Under the initial state x(0) =
[
−0.25 0.15 0.24

]T , Figure 5 presents the state tra-
jectories by using the proposed dual-mode security controller (10) when DoS attacks are not
injected over the shared communication network. The time evolution of the regulated out-
put z(t) and actual state error ea(t) without DoS attacks are shown in Figure 6 and Figure 7,
respectively. Obviously, by using the developed dual-mode security controller (10),
the closed-loop MJCPSs (12) achieve stochastic stability and have good robustness.
In Figure 8, we show the event-triggered instants determined by the resilient event-triggered
condition (8) in the absence of DoS attacks, in which the number of successful transmis-
sions is 67. From this, the average transmission period is calculated as 0.7463 s. Note that
the proposed resilient event-triggered rule (8) is equivalent to the static event-triggered
rule when DoS attacks do not occur. Once malicious attackers inject DoS attacks into the
communication network, Figure 9 provides schematic diagrams of DoS attacks and system
modes, where α(t) = 0 and α(t) = 1 represent the active and dormant DoS intervals,
respectively. Then, based on the different values of Jd, DoS attacks can be divided into two
types, namely low-intensity and high-intensity DoS attacks. Assume that the upper bound
of performance loss caused by low-intensity DoS attacks is Jd = 1.0× 10−4. In this case,
Figure 10 shows the state response under the proposed dual-mode event-triggered security
controller (10). Figure 11 presents the event-triggered instants determined by the resilient
event-triggered condition (8) under low-intensity DoS attacks, where the number of the
successful transmissions is 21. From this, the average transmission period is calculated
as 2.3810 s. Compared with the situation without DoS attacks, the system state can only
converge to a bounded range when the time approaches infinity, indicating that DoS attacks
caused a serious negative impact on the system performance. Although the event triggering
interval does not exceed the maximum inter-execution interval ∆max calculated in Theorem
2, the controller remains in an unreleased state for a long time. On the other hand, assume
that the upper bound of performance loss caused by low-intensity DoS attacks is Jd = 0.1.
In this case, Figure 12 shows the state response under the proposed dual-mode event-
triggered security controller (10). Compared with the above two situations, it can be seen
that the system state cannot converge to zero when the time tends to infinity. This means
that high-intensity DoS attacks can cause irreversible damage to the control performance
of the system. Figure 13 shows the triggering instant and transmission sequence under
high-intensity DoS attacks, where the number of the successful transmissions is 13 and
the average transmission period is calculated as 3.8462 s. From this, it can be seen that
once the event-triggering interval exceeds the maximum allowable inter-execution interval
∆max, the system will completely lose control performance due to the controller not being
updated for a long time. This means that the proposed event dual-mode event-triggered
security controller (10) can ensure the safe and stable operation of the system under a
specific DoS attack intensity.
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Figure 5. State responses without DoS attacks.
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Figure 6. Evolution of the regulated output without DoS attacks.
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Figure 7. Evolution of the actual state error without DoS attacks.
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Figure 8. Update instants without DoS attacks.
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Figure 9. Top: (a) DoS signal. Bottom: (b) Switching signal.
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Figure 10. State responses under DoS attacks with Jd = 10−4.
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Figure 11. Update instants under DoS attacks with Jd = 10−4.
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Figure 12. State responses under DoS attacks with Jd = 0.1.
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Figure 13. Update instants under DoS attacks with Jd = 0.1.
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On the other hand, in order to further demonstrate the effectiveness of the proposed
control strategy, we consider a DC motor-driven inverted pendulum systems, which is
modeled in [45]. The system parameters are as follows:

A1 =

 −0.1397 −0.0256 0
0.5121 −0.0373 0
−20 −4 −1

, B1 =

 0
0
1


A2 =

 −0.0113 −0.0037 0
0.1470 −0.0181 0
−20 −4 −5

, B2 =

 0
0
1


and the other parameters remain unchanged. Then, the security controller gains and
weighting matrices can be calculated as

Ka
1 =

[
0.1465 −0.9058 −1.5451

]
,

Ka
2 =

[
0.1605 −0.7635 −1.6873

]
,

Kb
1 =

[
0.1321 −0.6166 −1.6526

]
,

Kb
2 =

[
0.1646 −0.4531 −1.7936

]
,

Θa =

 0.7879 −1.6667 −2.8783
−1.6667 7.7217 14.9392
−2.8783 14.9392 31.7294

,

Θb =

 0.9435 −1.4992 −3.2100
−1.4992 3.9094 9.2297
−3.2100 9.2297 25.6459

.

Under the initial state x(0) =
[
−0.25 0.15 0.24

]T , Figure 14 presents the state trajecto-
ries by using the proposed dual-mode security controller (10) when DoS attacks are not
injected over the shared communication network. Similarly, assume that the upper bound
of performance loss caused by low-intensity DoS attacks is Jd = 1.0× 10−4. In this case,
Figure 15 shows the state response under the proposed dual-mode event-triggered security
controller (10), while Figure 16 shows the state response by using a general one. Therefore,
it can prove the effectiveness of the dual-mode security controller proposed in this paper.

Figure 14. State responses without DoS attacks.
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Figure 15. State responses under DoS attacks with Jd = 10−4 by using security controller.

Figure 16. State responses under DoS attacks with Jd = 10−4 by using general controller.

6. Conclusions

This paper addressed the problem of dual-mode event-triggered control for MJCPSs
under DoS attacks. A novel random event-triggering rule determined by DoS signal
was developed to select appropriate control strategies as needed based on the current
network service quality. Then, the relationship between triggering signals and system
modes under DoS attacks was analyzed. By calculating the minimum and maximum inter-
execution intervals, Zeno behavior and singular triggering can be avoided. On this basis,
a mode-dependent event-triggered security was designed to ensure the stable operation
of the system under DoS attacks. Finally, a new security control strategy was proposed
to tolerate the packet loss caused by DoS attacks as much as possible. In our future work,
we will focus on the problem of attack detection and resilient control of unmanned aerial
vehicle systems under connectivity-preserved and connectivity-broken DoS attacks from a
switching perspective.
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Appendix A

Proof of the Theorem 2. For any transmission interval [tk, tk+1) determined by the general
event-triggered rule (3), the following two cases are divided to explain the relationship
between the jump signal r(t) and the triggering sequence {tk}k∈N0 , where t ∈ {tk̃}k̃∈N0
represents the jump instant sequence.

Case I: No jump occurs during the interval [tk, tk+1), that is, tk̃ < tk < tk+1 < tk̃+1 is
assumed to be established. Then, it follows from (7) that

d‖ea(t)‖
dt

=
1
2

[
eT

a (t)ea(t)
]− 1

2
[
2ėT

a (t)ea(t)
]

≤
∥∥∥Ar(tk̃)

x(t) + Bu
r(tk̃)

u(t) + Bω
r(tk̃)

ω(t)
∥∥∥.

(A1)

As can be seen from the dual-mode security control protocol u(t) in (A1), due to
the intermittent DoS attacks, two additional crucial points need to be considered in the
following analysis.

• DoS attacks are not activated by malicious attackers. This indicates that α(t) = 1 and
x(tk) = x(t`n).

By virtue of (10), it can be derived from (A1) that

d‖ea(t)‖
dt

≤
∥∥∥Ar(tk̃)

ea(t) + Âr(tk̃)
x(tk) + Bω

r(tk̃)
ω(t)

∥∥∥
≤ ϑ1‖ea(t)‖+ ϑ2‖x(tk)‖+ ϑ3‖ω(t)‖,

(A2)

where Âr(tk̃)
= Ar(tk̃)

+ Bu
r(tk̃)

Ka
r(tk̃)

, ϑ1, ϑ2, and ϑ3 are given in Theorem 2. Then, a virtual

auxiliary variable f (t) satisfying ḟ (t) = ϑ1 f (t) + ϑ2‖x(tk)‖+ ϑ3‖ω(t)‖ needs to be intro-
duced, aiming to constrain the change of ‖ea(t)‖. Thus, the analytical solution of f (t) can
be governed by

f (t) =
[ϑ2‖x(tk)‖+ ϑ3‖ω(t)‖]

ϑ1

(
eϑ1(t−tk) − 1

)
. (A3)

Combined with the actual state error ea(t) mentioned in (7), one can yield that

‖ea(t)‖ ≤ ϑ−1
1 [ϑ2(‖ea(t)‖+ ‖x(t)‖) + ϑ3‖ω(t)‖]

×
(

eϑ1(t−tk) − 1
)

.
(A4)

Based on the resilient event-triggered rule (8), it is concluded that eT
a (t)Θaea(t) ≤

$2
1‖ea(t)‖2 and xT(t)Θbx(t) ≥$2

2‖x(t)‖2 are established without DoS attacks, where $1 and
$2 are given in Theorem 2. Then, we obtain eT

a (t)Θaea(t) ≤ σxT(t)Θbx(t) + v2‖ω(t)‖2,
which is guaranteed by $2

1‖ea(t)‖2 ≤ σ$2
2‖x(t)‖2 + v2‖ω(t)‖2, where v ∈ R>0 is a given

constant. To calculate the minimum inter-execution interval ∆1
min, we need to discuss

the inherent relationship between ‖ea(t)‖, ‖x(t)‖, and ‖ω(t)‖. With the help of Young’s
inequality, it can be further guaranteed by ‖ea(t)‖ ≤ ς1‖x(t)‖+ ς2‖ω(t)‖, where the forms
of ς1 and ς2 consist of the parameters $1, $2, and v. Combined with inequality (A4), one
can yield
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1
ϑ1

ln
[

ϑ1ς1‖x(t)‖+ ϑ1ς2‖ω(t)‖
ϑ2(ς1 + 1)‖x(t)‖+ (ϑ2ς2 + ϑ3)‖ω(t)‖ + 1

]
≤ ∆k, (A5)

which is greater than or equal to ∆1
min in condition (29).

• DoS attacks are injected remotely by malicious attackers. This means that α(t) = 0
and x(tk) 6= x(t`n).

Due to DoS attacks, condition (A2) needs to be rewritten as

d‖ea(t)‖
dt

≤
∥∥∥Ar(tk̃)

ea(t) + Ar(tk̃)
x(tk)

+ Bω
r(tk̃)

ω(t) + B̂u
r(tk̃)

x(t`n)
∥∥∥,

(A6)

where B̂u
r(tk̃)

= ξr(tk̃)
Bu

r(tk̃)
Kb

r(tk̃)
. Then, it follows from (A6) that d‖ea(t)‖

dt ≤ ϑ1(‖ea(t)‖ +
‖x(tk)‖) + ϑ3‖ω(t)‖ + ϑ4‖x(t`n)‖, where ϑ4 is given in Theorem 2. Similarly, we define
a virtual intermediate variable g(t) satisfying ġ(t) = ϑ1(g(t) + ‖x(tk)‖) + ϑ3‖ω(t)‖ +
ϑ4‖x(t`n)‖, whose solution can be calculated as

g(t) =

[
ϑ1‖x(tk)‖+ ϑ3‖ω(t)‖+ ϑ4‖x(t`n)‖

]
ϑ1

×
(

eϑ1(t−tk) − 1
)

.

(A7)

Substituting ‖x(tk)‖≤ ‖ea(t)‖+ ‖x(t)‖ into (A7), we obtain ‖ea(t)‖ ≤ ϑ−1
1 [ϑ1‖ea(t)‖+

ϑ1‖x(t)‖ + ϑ3‖ω(t)‖ + ϑ4‖x(t`n)‖] × (eϑ1(t−tk) − 1). Meanwhile, it can be known from
the resilient event-triggered rule (8) that $2

1‖ea(t)‖2 ≤ σ$2
2‖x(t)‖2 + ṽ2Jd + v2‖ω(t)‖2 +

v̂2‖x(t`n)‖2 is established when there are DoS attacks, where v̂ and ṽ ∈ R>0 are given
scalars. Subsequently, we need to focus on the relationship between ‖ea(t)‖, ‖x(t`n)‖,
‖x(t)‖, ‖ω(t)‖, and Jd. Based on Young’s inequality, it can be concluded that ‖ea(t)‖ ≤
ς3‖x(t)‖+ ς4‖ω(t)‖+ ς5‖x(t`n)‖+ ς6J̃d, where J̃d =

√
Jd, ς3, ς4, ς5, and ς6 ∈ R>0 are

defined in Theorem 2. From this, one can yield

1
ϑ1

ln

[
Υ1(x(t), ω(t), x(t`n), J̃d)

Υ2(x(t), ω(t), x(t`n), J̃d)
+ 1

]
≤ ∆k, (A8)

where Υ1(x(t), ω(t), x(t`n), J̃d) = ϑ1ς3‖x(t)‖ + ϑ1ς4‖ω(t)‖ + ϑ1ς5‖x(t`n)‖ + ϑ1ς6J̃d and
Υ2(x(t), ω(t), x(t`n), J̃d) = ϑ1(ς3 + 1)‖x(t)‖+ (ϑ1ς4 + ϑ3)‖ω(t)‖+ (ϑ1ς5 + ϑ4)‖x(t`n)‖+
ϑ1ς6J̃d. This implies that the inter-execution interval ∆k is greater than or equal to ∆2

min
defined in condition (29).

Case II: Some jumps occur during the interval [tk, tk+1). This means that tk̃ ≤ tk <
tk̃+1 < · · · < tk̃+l≤ tk+1 with l ∈ S.

Once there are some jumps during the interval [tk, tk+1), we need to divide it into a
group of subintervals based on the jump instants. Furthermore, it can be seen from the
above derivation that conditions (A2) and (A6) are satisfied regardless of whether DoS
attacks are dormant or active. Since the jump signal r(tk̃), k̃ ∈ N0 obeys a right-continuous
Markov process, this indicates that either ‖ea(t−k̃+1

)‖ ≤ f (t−
k̃+1

) or ‖ea(t−k̃+1
)‖ ≤ g(t−

k̃+1
)

can be satisfied for the first subinterval [tk̃, tk̃+1). Notice that x(tk) is maintained within
the transmission interval [tk, tk+1) due to the effect of ZOH. In this case, no matter the
subinterval, we can obtain ‖ea(t−k̃+h

)‖ = ‖ea(tk̃+h)‖ ≤ f (tk̃+h) = f (t−
k̃+h

) and ‖ea(t−k̃+h
)‖ =

‖ea(tk̃+h)‖ ≤ g(tk̃+h) = g(t−
k̃+h

). Thus, the same conclusion can be drawn as in Case I.
That is, conditions (A2) and (A6) always hold, where there exist some jumps during the
transmission interval [tk, tk+1). In summary, the parameter ∆min determined by (A2) and
(A6) is regarded as the minimum execution interval, implying that Zeno behavior can
be avoided.



Appl. Sci. 2023, 13, 11815 24 of 26

On the other hand, DoS attacks can cause a severe mismatch of information be-
tween S-C and C-A sides. Therefore, we need to calculate the maximum downtime,
which is reflected by the maximum update interval between two successful transmis-
sion attempts subject to the resilient event-triggered rule (8). Firstly, before embark-
ing on this study, it can be concluded from Case I and Case II that the presence or ab-
sence of jumps during each transmission interval has no effect on estimating ‖ea(t)‖.
Next, if −eT

a (t)Θaea(t) + σxT(t)Θbx(t) + v2‖ω(t)‖2 + v̂2‖x(t`n)‖2 + ṽ2Jd > 0 is satisfied,
then we can derive ‖ea(t)‖ ≤ ς̃3‖x(t)‖+ ς̃4‖ω(t)‖+ ς̃5‖x(t`n)‖+ ς̃6J̃d, where J̃d is given
in (A8) and the parameters ς̃3, ς̃4, ς̃5, ς̃6 are defined in Theorem 2. In view of the accu-
mulation of sampling errors caused by DoS attacks, a large number of packets from S-C
side cannot be transmitted normally. Therefore, it is necessary to re-estimate ‖ea(t)‖ over
time period [Tn, Tn+1), n ∈ N0. Intuitively, we need to discuss the internal relationship
between the latest transmission instant and DoS initiation instant. From this, the estimation
of ‖ea(t)‖ during [Tn, Tn+1) can be divided into the following three steps.

Step I: The latest transmission attempt occurs at T on
n , that is, tk := T on

n , where tk
and T on

n denote the latest transmission and DoS initiation instants, respectively. Then, we
obtain that

‖ea(t)‖ ≤ ς̃3‖x(t)‖+ ς̃3(1 + ς̃3)‖x(t)‖+ ς̃4(2 + ς̃3)

× ‖ω(t)‖+ ς̃5(2 + ς̃3)‖x(t`n)‖+ ς̃6(2 + ς̃3)J̃d,
(A9)

where t ∈ [t`n, t`+1
n ). Since there may be some abnormal event-triggered packets during

[T on
n , Tn+1), it follows from (A9) that

‖ea(t)‖ ≤ ς̃3[1 + ς̂3 + 2ς̂3 + · · ·+ 2Ndos ς̂3]‖x(t)‖
+ ς̃4[1 + ς̂3 + 2ς̂3 + · · ·+ 2Ndos ς̂3]‖ω(t)‖
+ ς̃5[1 + ς̂3 + 2ς̂3 + · · ·+ 2Ndos ς̂3]‖x(t`n)‖
+ ς̃6[1 + ς̂3 + 2ς̂3 + · · ·+ 2Ndos ς̂3]J̃d

=
[
ς̃3‖x(t)‖+ ς̃4‖ω(t)‖+ ς̃5‖x(t`n)‖+ ς̃6J̃d

]
×

1 +
Ndos+1

∑
n f =1

2n f−1ς̂3

,

(A10)

where ς̂3 = ς̃3 + 1, and Ndos is the maximum number of packet losses caused by DoS
attacks during [T on

n , Tn+1).
Step II: The latest transmission attempt occurs before T on

n , that is, tk < T on
n is estab-

lished. For [T on
n , tk+1), we can obtain

‖ea(t)‖ ≤ ς̃3‖x(t)‖+ ς̃4‖ω(t)‖+ ς̃6J̃d. (A11)

In a similar way, for the nth DoS active subinterval, ‖ea(t)‖ can be further calculated as

‖ea(t)‖ ≤
[
ς̃3‖x(t)‖+ ς̃4‖ω(t)‖+ ς̃5‖x(t`n)‖+ ς̃6J̃d

]
×

1 +
Ndos

∑
n f =1

2n f−1ς̂3

.
(A12)

Step III: Calculate the maximum update interval between two successful transmission
attempts.

By comparing the magnitude of conditions (A10) and (A12), it can be found that the
supermum of ‖ea(t)‖ is characterized by condition (A10). Substituting the fact ‖ea(t)‖ ≤
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ϑ−1
1 [ϑ1‖x(tk)‖ + ϑ3‖ω(t)‖ + ϑ4‖x(t`n)‖] × (eϑ1(t−tk) − 1) into condition (A10), it can be

deduced that

∆k ≤
1
ϑ1

ln

[
Υ̃1(x(t), ω(t), x(t`n), J̃d)

Υ̃2(x(t), ω(t), x(t`n), J̃d)
× Γ + 1

]
, (A13)

where

Γ = ϑ1

1 +
Ndos+1

∑
n f =1

2n f−1ς̂3

,

Υ̃1(x(t), ω(t), x(t`n), J̃d) = ς̃3‖x(t)‖ + ς̃4‖ω(t)‖ + ς̃5‖x(t`n)‖ + ς̃6J̃d, Υ̃2(x(t), ω(t), x(t`n),
J̃d) = ϑ1(ς̃3 + 1)‖x(t)‖+ (ϑ1ς̃4 + ϑ3)‖ω(t)‖+ (ϑ1ς̃5 + ϑ4)‖x(t`n)‖+ ϑ1ς̃6J̃d, and Ndos =
(Tn+1 − T on

n )/∆min. Therefore, in order to ensure the safe operation under DoS attacks, the
maximum downtime must be less than or equal to ∆max defined in Theorem 2. The proof
is complete.
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