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Abstract: The field of scene recognition, which lies at the crossroads of computer vision and artificial
intelligence, has experienced notable progress because of scholarly pursuits. This article introduces
a novel methodology for scene recognition by combining convolutional neural networks (CNNs)
with feature selection techniques based on mutual information (MI). The main goal of our study is to
address the limitations inherent in conventional unimodal methods, with the aim of improving the
precision and dependability of scene classification. The focus of our research is around the formulation
of a comprehensive approach for scene detection, utilizing multimodal deep learning methodologies
implemented on a solitary input image. Our work distinguishes itself by the innovative amalgamation
of CNN- and MI-based feature selection. This integration provides distinct advantages and enhanced
capabilities when compared to prevailing methodologies. In order to assess the effectiveness of our
methodology, we performed tests on two openly accessible datasets, namely, the scene categorization
dataset and the AID dataset. The results of these studies exhibited notable levels of precision, with
accuracies of 100% and 98.83% achieved for the corresponding datasets. These findings surpass the
performance of other established techniques. The primary objective of our end-to-end approach is
to reduce complexity and resource requirements, hence creating a robust framework for the task of
scene categorization. This work significantly advances the practical application of computer vision in
various real-world scenarios, leading to a large improvement in the accuracy of scene recognition
and interpretation.

Keywords: scene recognition; convolutional neural network (CNN); deep learning; mutual
information (MI); multimodel; AID

1. Introduction

Scene recognition, which is a crucial aspect of computer vision and artificial intelli-
gence, has been the subject of extensive research across multiple disciplines and has received
significant interest in recent decades [1]. This discipline centers on the advancement of
algorithms, models, and procedures that possess the ability to classify and comprehend
the content of photographs or videos by analyzing the scenes they portray automatically
and precisely [2]. Recognition of scenes is of great significance in various domains, en-
compassing autonomous navigation, retrieval of images and videos, robotics, surveillance,
and augmented reality, among other fields [3–7]. The main goal of scene recognition is to
provide machines with the capacity to understand the visual world in a manner similar to
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humans through the recognition and interpretation of intricate environmental scenarios [8].
This involves the identification of different components present in a given scene, including
objects, spatial arrangements, and contextual associations, followed by the deduction of
the scene’s overarching semantic significance. The attainment of this particular talent is a
multifaceted undertaking that involves various obstacles, such as comprehending scenes,
detecting and recognizing objects, modeling context, and segmenting images.

Traditionally, the field of scene recognition has predominantly employed a unimodal
methodology, wherein image or video input is analyzed using a solitary model [9]. Re-
cently, there has been a notable increase in research attention and progress in the field of
scene identification [10–20]. This rise can be attributed to the advancements made in deep
learning techniques, the widespread availability of extensive datasets with annotations, and
the accessibility of high-performance computer resources. CNNs and other deep learning
architectures have exhibited notable achievements in the domain of scene recognition
tasks, outperforming conventional computer vision techniques in both accuracy and effi-
ciency. The aforementioned technological advancements have facilitated the development
of novel applications, such as autonomous vehicles, intelligent surveillance systems, and
augmented reality encounters, which heavily depend on the comprehension and analysis
of visual scenes. In recent times, multimodal deep learning techniques have demonstrated
remarkable success in scene recognition tasks, surpassing the capabilities of traditional
unimodal approaches [21–23]. These advances have paved the way for innovative ap-
plications such as self-driving cars, smart surveillance systems, and augmented reality
experiences, all of which rely on scene understanding and interpretation. These method-
ologies make use of several sources of information, including text, audio, and depth data,
in order to improve the comprehension of scenes. This paper centers on the utilization of
multimodal deep learning techniques for scene recognition. The objective is to leverage the
advantages of different modalities in order to enhance the robustness and accuracy of the
findings obtained.

The core of our methodology revolves around the novel idea of integrating many
modalities into a single input for scene recognition. This approach deviates from tradi-
tional models that predominantly rely on processing data from a single modality. This
innovative methodology utilizes multimodal deep learning on the identical input image
data, facilitating the concurrent analysis of many forms of information, such as text, audio,
and depth data, all derived from the same image. In this particular framework, we effec-
tively incorporate many modalities into a unified model, leveraging their complementary
nature to attain a more thorough comprehension of the scenario. In order to enhance the
quality of the feature representations resulting from this fusion, we utilize the technique of
MI-based feature selection [24]. The utilization of this particular technique results in an
improvement in the overall quality, discriminative capability, and resilience of the features,
thereby providing substantial advantages for tasks related to scene identification. The
last stage of recognition is performed by the SoftMax layer within our integrated model.
This layer utilizes the information acquired from our innovative single-input multimodal
technique to assign scene labels. The methodology employed in our study capitalizes on
the advantageous effects of multimodal fusion when applied to identical input image data,
resulting in significantly enhanced accuracy and resilience in scene recognition. The novel
contributions of our research are outlined below:

• Our approach differs from previous models that primarily focused on single-modal
processing by introducing a multimodal fusion technique that works on the same input
visual data. The present methodology introduces a novel approach that allows for the
simultaneous processing of many types of information derived from a singular image.
This advancement facilitates a more thorough comprehension of the scene compared
to prior research that predominantly concentrated on single-modal techniques.

• To enhance feature quality and robustness, we employ MI-based feature selection. Our
approach incorporates MI not only for feature selection but also within the context
of multimodal fusion. We utilize MI to assess the interdependence between different



Appl. Sci. 2023, 13, 11829 3 of 19

data modalities and scene labels, enabling effective fusion strategies that are tailored
to each modality’s relationship with scene categories.

• The model incorporates an additional layer for integrating optimized features extracted
from the input image data, representing an innovative architectural element. This
feature integration step significantly enhances the quality of feature representations,
further contributing to the model’s superior performance compared to techniques that
do not incorporate such integration.

• Our method introduces the novel concept of an end-to-end model, eliminating the need
for complex multistage pipelines typically employed in traditional scene
recognition approaches.

Our multimodal fusion scene recognition method is presented in various key sec-
tions of the paper. After the Introduction, the literature review is discussed in Section 2.
The methodology describes our model’s essential components in Section 3. We then give
empirical results and explain their consequences in Section 4. Our succinct conclusion high-
lights our approach’s contributions and transformative possibilities in scene recognition in
Section 5.

2. Literature Review

Extensive investigation has been carried out in the field of scene recognition, encom-
passing several procedures and techniques with the objective of progressing the current
level of knowledge. This section examines the progression of scene recognition methodolo-
gies, the advent of deep learning architectures, and the advancements made by multimodal
fusion approaches. This section also offers significant contextual information for compre-
hending the existing body of research, emphasizing notable discoveries, obstacles, and the
progression of improvements in the subject.

Hua et al. [10] presented a prototype memory network to detect many scenes in one
image. This was conducted by using several well-annotated images of individual scenarios.
The network has three main components: a prototype learning module, an external memory
that can store prototypes, and a multihead attention memory retrieval module. They
obtained the best mean F1 score of 57.40% using the AID dataset. Petrovska et al. [11]
suggested fine-tuning pre-trained CNNs for end-to-end aerial scene classification using
transfer learning. Feature extraction from fine-tuned neural networks is followed by remote
sensing picture categorization with a Support Vector Machine (SVM) model with linear
and radial basis function (RBF) kernels. To reduce overfitting in pre-trained models, label
smoothing regularization is used. Inception-v3, Xception, Residual Network50 (ResNet50),
and DenseNet121, inception- and residual-based CNNs, are used for fine-tuning and
feature extraction. The method has a classification accuracy of up to 98%, outperforming
other methods. Wang et al. [12] developed a depth-wise separable convolution (CSDS)
network-based channel–spatial attention mechanism for aerial scene categorization. The
researchers first created DS-Conv and pyramid residual connection architectures. The
DS-Conv approach efficiently recovers and combines channel features, reducing processing
needs. Pyramid residual connections also link features from multiple layers, enabling
relationships. They use an upgraded cross-entropy loss function to reduce the influence
of comparable categories during backpropagation. They obtained an accuracy of 94.29%
using the AID dataset. Zhao et al. [13] used channel–spatial attention in a residual dense
network architecture to classify remote sensing images. Initially, leftover dense blocks
are used to fuse multilayer convolutional features. A channel–spatial attention module is
included for better feature representation. After data augmentation, the SoftMax classifier
classifies the scene. They obtained an overall accuracy of 94.15% using the AID dataset.
Bazi et al. [14] presented a method for remote sensing image classification using vision
transforms. They first split the images into smaller portions, which are flattened and
embedded sequentially. The resulting sequence is then sent into numerous multiheaded
attention layers to create the final representation. The initial token sequence is fed into a
SoftMax classification layer. The researchers study numerous data augmentation methods
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to generate more training data to improve classification performance. Researchers classified
the AID dataset with 95.86% accuracy. Wang and Yu [15] presented the extraction of two
informative feature categories from the raw RGB and saliency-coded network streams. The
authors propose a deep feature fusion model that combines these two sets of features for
classification. They obtained an accuracy of 93.70% using the AID dataset. Wu et al. [16]
presented S-MAT, a semantic-driven Masked Attention Transformer method for multilabel
aerial scene image categorization. S-MAT uses a Masked Attention Transformer (MAT) to
capture correlations in Semantic Disentanglement Module-generated label embeddings. In
the presented MAT, the masked attention method eliminates needless dependencies and
improves model resilience. Thus, the strategy presented in this work may directly and
properly capture label interdependence. Thus, the researchers’ method yields classification
F1 scores of 90.90% on the AID dataset.

These previous methods have made significant contributions to scene recognition.
However, some of these methods may struggle with more complex scenes due to their
reliance on individual prototypes, such as [10,12,15,16]. Also, authors in [10–13] used
fine-tuning approaches, which can be prone to overfitting, and the use of SVM models for
classification may not capture complex interdependencies. Several methods might still face
challenges in handling scene variations, such as [14,15]. For other methods, such as [14,16],
the performance might be affected by the effectiveness of data augmentation methods. Our
work seeks to address these limitations by introducing a novel single-input multimodal
fusion approach. This method leverages multiple modalities from the same image, enabling
it to handle complex scenes effectively. Moreover, we employ MI-based feature selection to
enhance feature quality and discriminative capabilities, further improving scene recognition
accuracy and robustness. Our approach offers a comprehensive solution that aims to
overcome the limitations encountered in prior studies, making it a promising avenue for
advancing scene recognition.

3. Methodology and Materials

Our methodology centers on the innovative concept of single-input multimodal fusion
for scene recognition, departing from traditional single-modal approaches. Figure 1 shows
the block diagram of the proposed multi-deep model for scene recognition. As shown
in the figure, the input images are fed directly to the proposed multi-deep model. Then,
the features are extracted from the first fully connected layer and fused using an addition
technique. To optimize feature representations, we employ MI-based feature selection.
These refined features are then incorporated as an additional layer into the model, and
recognition is performed using the SoftMax layer. An additional layer in the model greatly
improves scene identification feature relevancy. Through a systematic evaluation of feature
significance and selection of the most relevant features, we can improve model accuracy and
efficiency by lowering feature space dimensionality. This approach harnesses synergistic
information from multiple modalities, improving feature quality and scene recognition
performance. All steps of the model are discussed in the following subsections.
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Figure 1. General block diagram of our multi-deep model.

3.1. Our Multimodal Deep Learning Structure

The presented deep learning structure for scene recognition showcases a comprehen-
sive architecture designed to extract and harness informative features from multimodal
data sources. The architecture is characterized by a series of convolutional and pooling
layers, which are crucial for feature extraction and dimensionality reduction, as shown in
Figure 2. The convolutional layers perform spatial filtering to capture relevant patterns in
the input data. Following each convolutional layer, max-pooling layers downsample the
feature maps, enhancing computational efficiency while preserving essential information.
Rectified Linear Unit (ReLU) layers introduce non-linearity, enabling the model to capture
complex relationships within the data. A summary of the layers and filter sizes of our
multimodal deep learning model is shown in Table 1.
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Table 1. Summary of our multimodal deep learning model.

Name Type Activation Learnables

1 Scene Images
200 × 200 × 3 Image Input 200 × 200 × 3 -

2 Conv_1
1283 × 3 × 3 with stride [1 1] and padding ‘same’ Convolution 200 × 200 × 128 Weights 3 × 3 × 3 × 128

Bias 1 × 1× 128

3 Maxpool_1
2 × 2 with padding ‘same’ Max Pooling 200 × 200 × 128 -

4 Relu_1
ReLU ReLU 200 × 200 × 128 -

5
Conv_3
643 × 3 × 128 with stride [1 1] and padding
‘same’

Convolution 200 × 200 × 64 Weights 3 × 3 × 128 × 64
Bias 1 × 1× 64

6 Maxpool_3
2 × 2 with padding ‘same’ Max Pooling 200 × 200 × 64 -

7 Relu_3
ReLU ReLU 200 × 200 × 64 -

8 Conv_5
323 × 3 × 64 with stride [1 1] and padding ‘same’ Convolution 200 × 200 × 32 Weights 3 × 3 × 64 × 32

Bias 1 × 1 × 32

9 Maxpool_5
2 × 2 with padding ‘same’ Max Pooling 200 × 200 × 32 -

10 Relu_5
ReLU ReLU 200 × 200 × 32 -

11 Fc_1
1024 Fully Connected 1 × 1 × 1024 Weights 1024 × 1,280,000

Bias 1024 × 1

12 Conv_2
1283 × 3×3 with stride [1 1] and padding ‘same’ Convolution 200 × 200 × 128 Weights 3 × 3 × 3 × 128

Bias 1 × 1 × 128

13 Maxpool_2
2 × 2 with padding ‘same’ Max Pooling 200 × 200 × 128 -

14 Relu_2
ReLU ReLU 200 × 200 × 128 -

15
Conv_4
643 × 3 × 128 with stride [1 1] and padding
‘same’

Convolution 200 × 200 × 64 Weights 3 × 3 × 128 × 64
Bias 1 × 1 × 64

16 Maxpool_4
2 × 2 with padding ‘same’ Max Pooling 200 × 200 × 64 -

17 Relu_4
ReLU ReLU 200 × 200 × 64 -

18 Conv_6
323 × 3 × 64 with stride [1 1] and padding ‘same’ Convolution 200 × 200 × 32 Weights 3 × 3 × 64 × 32

Bias 1 × 1 × 32

19 Maxpool_6
2 × 2 with padding ‘same’ Max Pooling 200 × 200 × 32 -

20 Relu_6
ReLU ReLU 200 × 200 × 32 -

21 Fc_2
1024 Fully Connected 1 × 1 × 1024 Weights 1024 × 1,280,000

Bias 1024 × 1

22 Addition
Eliminate-wise addition of 2 input Addition 1 × 1 × 1024 -
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Table 1. Cont.

Name Type Activation Learnables

23 Relu_7
ReLU ReLU 1 × 1 × 1024 -

24 Feature Selection Layer
600 fully connected Fully Connected 1 × 1 × 600 Weights 600 × 1024

Bias 600 × 1

25 Relu_8
ReLU ReLU 1 × 1 × 600 -

26 Dropout
50% dropout Dropout 1 × 1 × 600 -

27 Fc_3
6 Fully Connected 1 × 1 × 6 Weights 6 × 600

Bias 6 × 1

28 Softmax Softmax 1 × 1 × 6 -

29
Classoutput
Crossentropyex with ‘Buildings’ and other 5
classes

Classification
output - -

One of the notable features of this architecture is the incorporation of two parallel
pathways for feature extraction. These pathways allow for the simultaneous processing
of multimodal data. By integrating features from diverse modalities at an early stage, the
model can effectively capture complementary information, enhancing its scene recognition
capabilities. The architecture employs an ‘additionLayer’ (‘addition’) to merge features
from both pathways, followed by an additional ReLU layer. This fusion step is pivotal
for effectively combining the extracted features from different modalities. Subsequently, a
‘Feature Selection Layer’ (‘Feature Selection Layer’) introduces a critical element of feature
selection. This layer, which follows the ReLU activation, uses a fully connected layer
with 600 units to select the most relevant features from the fused representation. Feature
selection is a crucial mechanism for enhancing the model’s interpretability and reducing
computational complexity. After feature selection, a dropout layer (‘dropout’) helps prevent
overfitting by randomly deactivating a portion of the selected features. Following this,
another fully connected layer is responsible for mapping the feature representation to the
output space, and a SoftMax layer (‘softmax’) produces probability distributions over scene
categories. Finally, the ‘classificationLayer’ (‘classoutput’) assigns scene labels based on the
probability distribution, facilitating scene recognition.

The architecture’s training is guided by specific options, including the choice of the
Adam optimizer, mini-batch size, maximum epochs, and learning rate scheduling. Training
progress is visualized using training plots, and the model’s performance is validated using
a separate validation dataset. All hyperparameters are listed in Table 2.

Table 2. Hyperparameters of our deep multimodal model.

Hyperparameter Value

Optimizer Adam

Mini-Batch Size 4

Kernel Size 3 × 3 for Convolution
2 × 2 for Max pooling

Number of kernels
Conv_1 and Conv_2 = 128
Conv_3 and Conv_4 = 64
Conv_5 and Conv_6 = 32

Number of Nodes in FC layers Fc_1 and Fc_2 = 1024
Fc_3 = 6
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Table 2. Cont.

Hyperparameter Value

Maximum Epochs 30

Initial Learning Rate 3.0000000 × 10−4

Learning Rate Schedule Piecewise

Learning Rate Drop Factor 0.5

Learning Rate Drop Period 5

Data Shuffling Every Epoch

Validation Frequency 87

3.2. MI for Feature Selection

MI is a fundamental concept in information theory that plays a pivotal role in various
fields, including scene recognition in computer vision. MI quantifies the dependency
between two random variables, providing a measure of the amount of information that
knowing one variable provides about the other. In the context of scene recognition, MI is a
valuable tool for assessing the relationship between different image features or modalities,
aiding in feature selection, fusion, and optimization processes.

Mathematically, MI between two discrete random variables X and Y is defined as [25]:

MI(X; Y) = ∑x∈X ∑y∈Y p(x, y)log
(

p(x, y)
p(x)p(y)

)
(1)

where MI(X;Y) represents the MI between X and Y. p(x,y) is the joint probability mass
function of X and Y. p(x) and p(y) are the marginal probability mass functions of X and
Y, respectively. In essence, MI quantifies how much knowing one variable reduces the
uncertainty about the other variable. If X and Y are independent, MI(X;Y) equals zero, as
the knowledge of one variable provides no information about the other. Conversely, when
X and Y are perfectly dependent, MI(X;Y) is maximized.

In the context of scene recognition, MI is utilized to assess the degree of dependency
or correlation between image features or modalities. This evaluation is pivotal in several
aspects of scene recognition:

(1) Feature Selection: MI helps identify and select the most informative features or
modalities for scene recognition. By calculating MI between each feature (F) and the
target scene label (L), less relevant or redundant features can be pruned, enhancing
computational efficiency and reducing the risk of overfitting. The formula for this
feature selection process is:

MI(F, L) = ∑( f ∈ F)∑(l ∈ L)p( f , l) ∗ log
[

p( f , l)
p( f ) ∗ p(l)

]
(2)

where

• MI(F,L) represents the MI between the feature F and the scene label L.
• p(f,l) is the joint probability mass function of the feature F and the scene label L.
• p(f) and p(l) are the marginal probability mass functions of the feature F and the

scene label L, respectively.

(2) Multimodal Fusion: In multimodal scene recognition, MI quantifies the interdepen-
dence between different data modalities (e.g., text, audio, depth) and the scene labels
(L). This assists in determining how to combine modalities effectively, such as weigh-
ing them based on their MI with the scene label. The weighted fusion formula can be
represented as:

Weighted Fusion = W1 ∗MI(M1, L) + W2 ∗MI(M2, L) + . . . (3)
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where

• Weighted Fusion represents the combined information from multiple modalities.
• MI(Mi,L) is the mutual information between each modality (Mi) and the scene

label L.
• w1, w2, etc., are weights assigned to each modality, which can be determined

based on their MI values.

(3) Optimization: MI can be employed in optimization processes to improve feature
representations. Genetic Algorithms, for example, can utilize MI as an objective
function, enhancing the discriminative power and robustness of features extracted
from the same input image data. The objective function for optimization can be
defined as:

Objective Function = MI(F1, L) + MI(F2, L) + . . . + MI(Fn, L) (4)

where

• MI(Fi,L) represents the mutual information between each feature (Fi) and the
scene label L.

• n is the number of features under consideration.

In our study, MI served as a crucial tool for feature selection in the context of scene
recognition. Feature selection is a pivotal step in enhancing the efficiency and accuracy of
scene recognition models. The primary aim of MI-based feature selection is to systematically
evaluate the relevance of individual features extracted from the proposed deep multimodal
architecture. These features originate from the first fully connected layer of both models,
each representing distinctive characteristics of the input images. MI, in this paper, quantifies
the degree of information shared between each feature and its correlation with scene
labels. The investigation of several techniques for selecting features is a significant area
of scholarly inquiry [26,27]. For instance, Liu et al. [26] tested three upgraded feature
selection algorithms on numerous Chinese text categories. This article discusses CHMI,
an improved version of the CHI square with MI method that includes word frequency
and term correction. TF–CHI adds phrase frequency to the weight calculation. Finally,
the extreme gradient boosting (XGBoost) technique is added to the TF–IDF algorithm to
improve word filtering. The empirical results in their work show that the feature selection
algorithms improve performance across varied news corpora. However, each corpus
type has different optimal feature selection strategies. In our work, the selection of MI as
the chosen method is justified based on its strong theoretical foundation, demonstrated
empirical efficacy, and its suitability for the specific demands of scene recognition. It is
crucial to acknowledge that the selection of MI was not made in isolation but rather through
a thorough evaluation of its advantages and its alignment with the research aims.

The input for MI-based feature selection in our model consists of the extracted feature
vector of the two models within the multimodal architecture. These features, derived
from distinct modalities, collectively capture rich information about the input images.
Additionally, the input includes scene labels that categorize these images into various
scene classes. The output of the MI-based feature selection process is a refined feature set.
This subset is composed of features with high MI scores, indicating a substantial mutual
dependency between these selected features and the scene labels. Notably, the MI-based
feature selection includes an added layer after the fusion of the two models, responsible
for selecting suitable features from both models and combining them into one vector. This
combined feature vector is then integrated into the deep model to complete the feature
selection process. To implement MI-based feature selection in our model, we adopt the
following algorithmic steps:

• As an initial step, we gather a dataset comprising feature vectors from the first fully
connected layer of both models in our multimodal architecture. This dataset also
includes the corresponding scene labels.
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• For each feature in the dataset, MI is calculated with respect to the scene labels,
following the MI formula. Importantly, this MI calculation takes place after the fusion
of the two models.

• Based on the computed MI scores, we rank the features in descending order. Higher
MI scores signify stronger MI content between selected features and scene labels.

• The top N features with the highest MI scores are chosen, considering factors such as
model complexity and computational efficiency. These features form a feature subset.

• An additional layer for MI feature selection is incorporated after the fusion of the two
models. This layer selects suitable features from both models and combines them into
a unified feature vector.

• The combined feature vector is integrated into the deep model, enhancing its feature
representation for scene recognition tasks.

By following this MI-based feature selection algorithm, our model systematically
identifies and integrates the most informative features from the first fully connected layer
of the two models, effectively enhancing the discriminative power and accuracy of the
feature set for precise and efficient scene recognition.

3.3. Dataset Used

In the pursuit of advancing scene recognition capabilities within the scope of our
research, we employed two significant datasets to facilitate comprehensive model training
and evaluation. We discussed the two datasets as follows.

3.3.1. Scene Classification Dataset

In our quest to advance scene recognition capabilities within our research, we lever-
aged the ‘Scene Classification’ dataset [28], an invaluable resource that significantly con-
tributed to the diverse and comprehensive training and evaluation of our scene recognition
model. This dataset is notable for its vast collection of approximately 25,000 images, which
span a broad spectrum of natural scenes from various locations around the world. The
primary objective of this dataset is to address the scene classification task, which involves
the categorization of images into specific scene types based on their visual characteristics.
In our specific study, the task involved a six-class classification problem, where each image
was expected to be categorized into one of the following scene classes: Buildings, Forests,
Mountains, Glacier, Street, or Sea.

To establish a consistent and standardized approach to dataset preparation, we metic-
ulously selected and worked with 500 images from each of the six scene classes, resulting
in a total of 3000 images for our study. These images were strategically partitioned into two
essential subsets: training and testing. Approximately 80% of the images were dedicated
to the training subset, allowing our model to learn and extract vital scene features. The
remaining 20% of the images constituted the testing subset, serving as a critical benchmark
to rigorously evaluate the model’s scene recognition proficiency and generalization capa-
bilities. In alignment with best practices for image dataset management, all images within
the ‘Scene Classification’ dataset were uniformly resized to a resolution of 200 × 200 pixels.
This resizing procedure not only facilitated computational efficiency but also ensured
consistent image dimensions across the dataset, promoting a fair and equitable evaluation
of the model’s performance. The ground truth labeling of images in this dataset, which
entails accurately associating each image with its respective scene class, was undertaken
with utmost precision. This process ensured the reliability and trustworthiness of the scene
labels, a critical factor underpinning the success of our scene recognition model. Figure 3
shows examples from this dataset.
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Figure 3. Samples of images from scene classification dataset [28].

3.3.2. The AID Dataset

The second dataset employed in our study is the AID dataset [29], a valuable resource
that significantly contributes to the diversification of scene recognition tasks. The AID
dataset is characterized by its expansive collection, encompassing 30 distinct scene classes,
each encapsulating the unique characteristics of various aerial landscapes. Within each
of these scene classes, the dataset includes a substantial number of samples, ranging
from 200 to 400 images, all uniformly sized at 600 × 600 pixels. To ensure methodical
experimentation and robust model development, we strategically worked with a subset of
200 images from each of the 30 scene classes within the AID dataset. This subset facilitated
both model training and evaluation processes, with an 80% allocation for training and a
20% allocation for testing, adhering to best practices in dataset partitioning.

What sets the AID dataset apart is its origin—comprising sample images meticulously
collected from Google Earth imagery. While these images undergo post-processing through
RGB renderings derived from the original optical aerial images, it has been extensively
validated that there is no significant disparity between Google Earth images and gen-
uine optical aerial images. This validation extends even to pixel-level land use and cover
mapping, emphasizing the suitability of Google Earth imagery for evaluating scene classifi-
cation algorithms. The AID dataset encompasses an extensive array of aerial scene types,
including but not limited to airports, bridges, forests, meadows, schools, stadiums, and
more. Notably, each image within the dataset has been expertly annotated by specialists in
the field of remote sensing image interpretation, ensuring the precision and reliability of
scene labels. These labels play a crucial role in training and evaluating scene recognition
models, contributing to the dataset’s overall utility.

One of the dataset’s distinguishing features is its multisource nature, as it amalgamates
images from various remote imaging sensors present in Google Earth. This characteristic
presents additional challenges for scene classification compared to datasets containing
single-source images. Moreover, the AID dataset’s inclusivity extends across different
countries and regions globally, with a diverse collection of images extracted under varying
timeframes, seasons, and imaging conditions. This diversity enhances the dataset’s intrinsic
intra-class variations, further enriching the data’s representativeness and applicability in
scene recognition research. Figure 4 shows samples of images from this dataset.
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3.4. Scene Recognition

The recognition stage in scene recognition is the culmination of the entire process,
where the model employs the extracted and refined features to make informed decisions
about the category or label of a given scene or image. This stage plays a pivotal role in the
overall success of a scene recognition system, and its effectiveness directly hinges on the
quality of the features obtained through prior processing, including feature selection and
fusion. After feature selection, the recognition stage begins by taking the optimized feature
representation as the input. These features are intended to capture the most discriminative
and relevant aspects of the scene, having undergone a rigorous selection process to eliminate
noise and redundancy. The choice of features is critical, as it greatly influences the model’s
ability to discern subtle differences between scenes.

Typically, the recognition stage is characterized by the presence of a SoftMax layer,
which is the final layer of our deep model. The SoftMax layer transforms the output of
the previous layers into probability distributions over the possible scene categories. Each
output neuron corresponds to a specific scene class, and the SoftMax function ensures that
the class probabilities sum up to one. Consequently, the class with the highest probability
is assigned as the predicted label for the input scene.

To train the recognition model, a suitable loss function is employed, such as categorical
cross-entropy, which quantifies the dissimilarity between predicted and ground truth labels.
During training, the model learns to adjust its parameters (weights and biases) to minimize
this loss, improving its ability to make accurate predictions. The model’s performance
is rigorously evaluated during the recognition stage using a separate validation or test
dataset. Metrics such as accuracy, precision, recall, and F1 score are commonly used to
assess the model’s ability to correctly classify scenes into their respective categories.

4. Results and Analysis

In this section, we present the results and in-depth analysis of our proposed method
for scene recognition. The experiments were conducted using MATLAB R2019b with the
deep learning toolbox on a machine equipped with an Intel Core i5 CPU operating at
2.4 GHz, 24 MB RAM, and an NVIDIA GeForce GTX 1650 GPU with 16 MB memory. Our
method involved novel approaches such as multimodal deep learning, feature selection,
and fusion. We employed two distinct datasets: the scene classification dataset [28] and the
AID dataset [29]. Each dataset’s image dimensions are matched to its characteristics and
needs. To balance accuracy and efficiency, a lower resolution is suitable for datasets with
fewer classes and complexity. A greater resolution helps the model catch scene features in
datasets with more different classes.

4.1. Experimental Setup

For each dataset, we divided the images into training and testing sets, adhering to the
80–20 partitioning scheme. This division enabled us to train our model on a substantial
portion of the data while reserving a separate set for rigorous evaluation. Our deep learning
model leveraged a carefully crafted architecture, as discussed earlier, involving convolu-
tional layers, feature selection, and fusion mechanisms. The model was trained using the
Adam optimizer with specific hyperparameters. We employed standard evaluation metrics,
including accuracy, precision, recall, and F1 score, to quantitatively assess the performance
of our method. These metrics offer valuable insights into the model’s capacity to accurately
categorize situations and its overall efficacy. The metrics can be calculated as follows [30]:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP (true positives) is the number of samples correctly classified as positive (belonging
to the target class). TN (true negatives): The number of samples correctly classified as
negative (not belonging to the target class). FP (false positives): The number of samples
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incorrectly classified as positive. FN (false negatives): The number of samples incorrectly
classified as negative.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− Score = 2× Precision× Recall
Precision + Recall

(8)

4.2. Results on Scene Classification Dataset

In our experimentation, we employed a dataset comprising a total of 3000 images,
with 2400 images designated for training purposes and the remaining 600 images reserved
for testing. To comprehensively assess the performance of our scene recognition model, we
conducted several analyses and evaluations. Figure 5 shows the accuracy and loss curves,
which provide critical insights into the training and validation performance of our scene
recognition model. These curves, which illustrate the model’s progress over epochs, serve
as valuable tools for assessing its convergence, stability, and generalization capabilities.
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In the figure, the accuracy curves for both training and validation showcase the
model’s ability to correctly classify scenes across various categories. From the outset, at
iteration 0, both training and validation accuracies were observed at approximately 20%.
As training progressed, these accuracies demonstrated steady and consistent improvement.
By epoch 10, the accuracy curves had reached remarkable stability, with the validation
accuracy peaking at 100%. This high level of validation accuracy signifies the model’s
robustness and proficiency in recognizing scenes. Notably, the curves remained stable
through epoch 14, with no substantial changes observed. This stability prompted manual
termination of the curve analysis at epoch 14, as no further significant improvements
were anticipated.

The loss curves, indicative of the model’s optimization progress, revealed a similar
trend. At the inception of training, both training and validation losses began at approx-
imately 3%. Subsequently, these losses gradually decreased, indicative of the model’s
capacity to minimize errors and enhance its scene recognition capabilities. By epoch 8,
the loss curves had reached a state of stability, with both training and validation losses
converging to 0%. This remarkable achievement underscores the model’s effective learning
and convergence capabilities, with minimal discrepancies between training and validation
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losses. It is worth noting that this remarkable training and validation performance was
achieved efficiently. The training process, from start to finish, required a total elapsed
time of 21 min and 40 s. This efficiency in achieving high accuracy with minimal loss
underscores the effectiveness and computational efficiency of our scene recognition model.

The confusion matrix presented in Figure 6 provides a detailed breakdown of the
classification performance of our scene recognition model on the test sets across six distinct
scene categories: Building, Forests, Glacier, Mountains, Sea, and Street. From the figure,
the model achieved perfect classification, with all 101 samples correctly identified as such
for the Building class. Similarly, the Forests class also yielded perfect classification, with
all 103 samples correctly identified. The Glacier class exhibited impeccable performance,
with all 124 samples correctly classified. For the Mountains class, the model achieved a
high level of accuracy, with 83 out of 83 samples correctly classified. The Sea class was
also accurately recognized, with all 102 samples correctly classified. In the Street class, the
model displayed strong performance, with 87 out of 87 samples correctly classified.
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4.3. Results on AID Dataset

In our experimentation, we employed a dataset comprising a total of 6000 images,
with 4800 images designated for training purposes and the remaining 1200 images reserved
for testing. Figure 7 shows the accuracy and loss curves for training and validation data
from the AID dataset. The accuracy curves for both training and validation commenced at
a modest 10% accuracy at the start of training, indicating a baseline level of recognition.
As the training process unfolded, both curves exhibited a gradual yet consistent increase
in accuracy. By the time epoch 11 was reached, the accuracy curves stabilized, with the
validation accuracy reaching an impressive 98.02%. This high validation accuracy signifies
the model’s strong ability to accurately classify scenes across diverse categories. The
stability observed in the curves persisted through epoch 13, with no significant fluctuations
or improvements noted. Consequently, the decision was made to manually terminate the
curve analysis at epoch 13 due to the sustained stability.

Parallel to the accuracy curves, the loss curves, which illustrate the model’s optimiza-
tion progress, displayed a similar pattern. At the outset, both training and validation losses
began at approximately 3%, reflecting a starting point for error. Subsequently, these losses
gradually decreased as the model refined its recognition capabilities. By the time epoch
7 was reached, both training and validation losses had converted to a minimal value of
0%. This convergence underscores the model’s effective learning process and its ability to
minimize errors effectively. It is noteworthy that the remarkable training and validation
performance was achieved efficiently, with the entire training process taking 149 min and
48 s. This efficiency further underscores the practical feasibility of our scene recognition
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model for real-world applications, as it combines both high accuracy and minimal loss in a
relatively short time frame.
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Figure 8 shows the confusion matrix of the proposed method on the test sets of
the second database. From the figure, we can observe that the Airport and Beach classes
displayed a relatively high level of misclassification, with 27 out of 28 images for the Airport
class and 13 out of 14 images correctly identified from the Beach class. However, one sample
was incorrectly classified as Beach for the Airport class and was incorrectly classified as
BaseballField for the Beach class. Further investigation may be required to address this
misclassification. The Center class exhibited accurate classification for most samples, with
26 out of 28 samples correctly identified. Nevertheless, one sample was misclassified as
BareLand and one sample was incorrectly classified as Beach. In the Church class, the
model demonstrated strong performance, with 52 out of 54 samples correctly classified.
Two samples, however, were misclassified as Desert and FarmLand. The Commercial class
achieved excellent results, with 62 out of 64 samples correctly identified. Two samples were
incorrectly classified as Meadow. Also, the Forest class achieved a good result with only
two samples being incorrectly identified as Mountain. In the Parking and River classes,
most samples, 61 out of 62 for Parking and 19 out of 20 for River, were correctly classified.
One sample, however, was misclassified as Storage Tanks in both classes. The remaining
classes were all classified correctly without any misclassifications.
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5. Discussion

The results of our scene recognition model demonstrate its remarkable performance in
accurately classifying scenes across multiple diverse categories. The core of our methodol-
ogy revolves around the innovative concept of integrating multiple modalities into a single
input for scene recognition. This approach significantly deviates from traditional models
that predominantly rely on processing data from a single modality. To further optimize the
feature representations resulting from the multimodal fusion, we introduced the technique
of MI-based feature selection. This novel approach improves the quality, discriminative
capability, and resilience of the features, thus providing significant advantages for scene
identification tasks. This innovation is a key contribution to our model, as it enhances the
effectiveness of feature representations. In the first experiment conducted on the Scene
Classification dataset, which consists of six scene classes (Buildings, Forests, Glacier, Moun-
tains, Sea, and Street), our model achieved outstanding results. In the second experiment
conducted on the AID dataset, which consists of 30 different scene classes, our model
also achieved good results compared to other methods using the same dataset. Table 3
shows a summary of the total performance of our method on the two datasets. These
results illustrate the model’s capacity to adapt and effectively handle a diverse array of
scenario categories.

Table 3. Overall performance of our method on the two datasets.

Database Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Scene Classification [28] 100 100 100 100

AID [29] 98.83 98.83 98.83 98.83

From Figures 5 and 7, the accuracy and loss curves depict the successful training
and validation of our scene recognition model. The stability achieved in both accuracy
and loss, along with the rapid convergence to high accuracy and minimal loss values,
highlights the effectiveness of our approach in accurately classifying scenes. Moreover, the
efficient training process underscores the practical feasibility of our model for real-world
applications. From Figures 6 and 8, the confusion matrices underscore the exceptional
classification performance of our scene recognition model. The absence of misclassifications
within the matrix highlights the model’s precision and effectiveness in identifying diverse
scenes, making it a robust and reliable tool for scene recognition tasks.

In comparison to previous studies in the field of scene recognition, our model stands
out due to its multimodal approach and the innovative feature selection technique shown
in Table 4. Traditional unimodal methods have been surpassed by our approach, which
leverages the power of multimodal fusion directly on the same input image data. This ad-
vancement is crucial for applications such as autonomous vehicles, intelligent surveillance
systems, and augmented reality, all of which rely on comprehensive scene understanding
and interpretation.

From the table, we can observe that our approach demonstrates superior performance
compared with other previous methods for scene recognition. Compared with the method
presented by Zhao et al. [13], our accuracy is slightly lower at 98.83%, but it is still competi-
tive, considering the exceptional performance of their approach. Moreover, our method
may offer advantages in terms of complexity and resource requirements. Finally, our ap-
proach’s ability to combine CNN with MI contributes to its superior performance, making it
a promising solution for scene recognition tasks. We aim to highlight that the extraordinary
performance of our model may be attributed to our creative approach, rigorous methodol-
ogy, and the integration of feature selection based on MI. Our model has been meticulously
crafted to possess both robustness and efficacy in the classification of situations over a wide
range of categories.
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Table 4. Comparison of our model with other previous models.

Ref./Author Methods Dataset Performance

Hua et al. [10] Multi-scene
recognition network AID

Precision = 64.03%
Recall = 52.30%

F1 Score = 52.39%

Petrovska et al. [11] Pre-trained deep
models + SVM AID Overall accuracy = 93.58%

Wang et al. [12] CSDS model AID Overall accuracy = 94.29%

Zhao et al. [13] Residual dense
network AID Accuracy = 99%

Bazi et al. [14] Vision Transformers AID Best Accuracy = 95.51%

Wang and Yu [15] Deep learning AID Mean Accuracy = 93.70%

Wu et al. [16] SDM + MAT AID Accuracy = 90.90%

Lima and Marfurt [17] CNN AID Accuracy = 94.10%

Our CNN + MI AID

Accuracy = 98.83%
Precision = 98.83%

Recall = 98.83%
F1 Score = 98.83%

While our model has demonstrated remarkable performance, it is essential to acknowl-
edge its limitations. Future research could focus on further enhancing the model’s ability
to handle more extensive datasets and complex scenes. Additionally, efforts can be di-
rected towards increasing the model’s efficiency and reducing computational requirements,
making it more accessible for real-time applications.

6. Conclusions

Our proposed scene recognition model integrates a CNN with MI-based feature
selection, representing a significant advancement in scene recognition. By leveraging the
power of multimodal deep learning and incorporating novel feature selection techniques,
our method achieves impressive accuracies of 100% and 98.83% on the scene classification
dataset and AID dataset, respectively. This surpasses the performance of several existing
methods and demonstrates our model’s robustness and precision in classifying scenes
accurately. Moreover, our approach offers the advantage of reducing complexity and
resource requirements compared to some high-performing alternatives. By combining the
strengths of CNN- and MI-based feature selection, our method not only enhances scene
recognition accuracy but also provides a foundation for further advancements in scene
understanding and interpretation. This work contributes to the growing body of research
aimed at enabling machines to comprehend and navigate complex visual environments,
with potential applications in autonomous vehicles, surveillance systems, augmented
reality, and more.
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