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Abstract: This paper presents a comprehensive survey of deep learning-based image watermarking;
this technique entails the invisible embedding and extraction of watermarks within a cover image,
aiming for a seamless combination of robustness and adaptability. We navigate the complex landscape
of this interdisciplinary domain, linking historical foundations, current innovations, and prospective
developments. Unlike existing literature, our study concentrates exclusively on image watermarking
with deep learning, delivering an in-depth, yet brief analysis enriched by three fundamental contri-
butions. First, we introduce a refined categorization, segmenting the field into embedder–extractor,
deep networks for feature transformation, and hybrid methods. This taxonomy, inspired by the
varied roles of deep learning across studies, is designed to infuse clarity, offering readers technical
insights and directional guidance. Second, our exploration dives into representative methodologies,
encapsulating the diverse research directions and inherent challenges within each category to provide
a consolidated perspective. Lastly, we venture beyond established boundaries, outlining emerging
frontiers and providing detailed insights into prospective research avenues.

Keywords: survey; deep learning; image watermarking

1. Introduction

Each year, the internet serves as a conduit for the upload, transfer, and sharing of
billions of digital images [1]. The advent of sophisticated digital technologies has facilitated
the effortless editing, dissemination, and reproduction of images, precipitating a surge in
unauthorized usage and concomitant infringement of the intellectual property rights of
original creators. In this context, digital image protection emerges as a critical mechanism
to enforce the sanctity of the intellectual property of content creators. Digital images are
not merely visual content; they are significant assets for individuals, corporate entities, and
various organizations. The integrity of these assets is often threatened by unauthorized
utilization and replication, a scenario that could culminate in substantial financial deficits
and damage to reputation. Moreover, the illicit use of personal images can inflict emotional
distress, exacerbated when images or videos are circulated without the owner’s consent.

Digital image watermarking has emerged as a preeminent technique in the domain
of image protection, garnering widespread application and acclaim [2]. Central to this
technique is the covert embedding of informational elements, ranging from logos to copy-
right notices, directly into the visual content. This surreptitious integration ensures that
only individuals endowed with the appropriate authorization can extract the watermark,
maintaining the confidentiality and integrity of the embedded data [3]. Watermarks serve
a multifaceted purpose. They act as an indelible signature, affirming ownership and
bolstering copyright protection by dissuading unauthorized replication and distribution.
They stand as testaments to authenticity, facilitating the licensing and tracking of image
utilization. Moreover, they serve as conduits for covert communication, encapsulating
hidden messages that are seamlessly woven into the visual content. Lastly, they function as
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intrinsic detectors, revealing alterations and tampering, thereby upholding the integrity of
the original content. The versatility of digital watermarking extends its applicability across
a plethora of fields. It has become an instrumental tool in forensic analyses, enhancing the
traceability and verification of digital content. In the burgeoning spheres of 5G communi-
cation and the Internet of Things (IoT) [4], watermarking is pivotal in fortifying security
and enhancing data integrity. Smart cities, characterized by their intricate networks of
interconnected digital systems, leverage watermarking to safeguard data and ensure the
seamless, secure interchange of information [5].

Image watermarking and image steganography [6] are closely related fields, yet with
distinct technical and application-specific differences. Both areas explore the intricate
process of subtly embedding data within images, ensuring the modifications remain unno-
ticeable to the unaided eye. However, the differing goals they aim to accomplish lead to
distinct technical focuses. Image steganography primarily aims to provide a covert channel
for information transmission, avoiding detection by unauthorized parties. It hinges on
the principles of unpredictability and high payload capacity [7,8]. The former emphasizes
resistance against steganalysis techniques, while the latter denotes the ability to embed
a significant amount of data without affecting the perceptual quality of the cover image.
On the other hand, image watermarking seeks to protect the integrity of both the cover
image and the embedded watermark. The fundamental aspect of this field is robustness,
which refers to the enduring readability of the watermark amidst various potential attacks.
This characteristic is crucial, although there are situations where fragile watermarking is
preferable and necessary, especially in scenarios like medical imaging, where maintaining
the original quality of the image is vital [9].

Traditional image watermarking approaches are predominantly characterized by hand-
crafted embedding and extraction mechanisms. These processes often entail the intricate
utilization of prior knowledge and a substantial level of expertise in the domain of image
processing. The inherent dependency on prior information culminates in designs that are
tailored for specific cases and exhibit a marked lack of adaptability [6]. Such designs are
characterized by a uniform application of watermarking patterns across a myriad of images,
neglecting the unique content characteristics and quality attributes inherent to each individ-
ual image. In the realm of robustness, a significant limitation manifests. Each handcrafted
method accentuates a specific attribute or set of attributes, resulting in a fragmented and
isolated approach to enhancing watermark robustness. The absence of a comprehensive
strategy that encapsulates a broad spectrum of potential attacks is conspicuously evident.
For instance, the watermarking technique premised on quantization index modulation
is primarily tailored to counter JPEG compression artifacts [10]. Concurrently, methods
founded upon the principles of log-polar coordinates are intricately designed to mitigate
the impacts of rotational manipulations [11]. This scenario illuminates an overarching
challenge—the lack of a holistic, adaptive, and universally applicable watermarking strat-
egy. The juxtaposition of these isolated techniques against the dynamic and multifaceted
nature of digital media manipulation threats underscores a significant vulnerability. The
evolution of manipulative attacks, characterized by their increasing sophistication, de-
mands a parallel evolution in watermarking techniques that is anchored in adaptability,
comprehensive threat mitigation, and contextual applicability.

Deep learning [12] is characterized by algorithms inspired by the structure and func-
tion of the brain, known as artificial neural networks. These networks are adept at learning
from large volumes of data, enabling the extraction of complex patterns and representations.
Deep learning has catalyzed significant advancements in various fields, including image
and speech recognition, natural language processing, and autonomous systems. The depth
of the networks, characterized by multiple layers of interconnected nodes, contributes to
their capacity to perform intricate computations, offering superior performance and predic-
tive accuracy in diverse applications. Each layer transforms its input data into increasingly
abstract and complex representations, enabling nuanced decision-making and predictions.
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In the quest for enhanced robustness and adaptability in image watermarking, deep
learning emerges as a formidable ally. Unlike their traditional counterparts, deep learning-
based watermarking algorithms harbor the potential to learn and adapt [7]. They en-
capsulate the capacity to intuitively morph in response to the unique attributes of each
image and the evolving landscape of threats. This adaptability heralds a new epoch in
watermarking—one characterized by enhanced robustness, imperceptibility, and the nu-
anced balancing of these cardinal attributes. As we traverse this trajectory, the integration
of deep learning in watermarking is not just an incremental enhancement but a paradig-
matic shift. It propels watermarking from a static, isolated, and case-specific discipline
into a dynamic, adaptive, and holistic domain. This evolution is not only pivotal for the
enhanced protection of digital media assets but also instrumental in the nuanced balancing
of imperceptibility and robustness, ensuring that the integrity and aesthetic value of digital
media are meticulously preserved.

The necessity of a survey focusing on deep learning-based image watermarking
emanates from the rapid advancements and complexities ingrained in this burgeoning
field. As the integration of deep learning in image watermarking has emerged as a pivotal
focus, there is a requisite for a comprehensive, synthesized, and analytical review of the
existing literature and methodologies. To this end, this paper presents a comprehensive
survey of cutting-edge deep learning-based image watermarking techniques, serving as a
reference for the state-of-the-art in deep learning-based image watermarking, summarizing
key research directions and envisioning future studies in the domain.

Objectives and Distinctiveness of This Survey

We illustrate the objectives and distinctiveness of our survey by summarizing an
overview of the topic concentrations of existing related survey papers in Table 1. Current
surveys predominantly orient toward deep learning model architectures, diversified ar-
tificial intelligence methodologies, data hiding techniques, and prominent proposals. It
should be noted that our review is intricately tailored to encapsulate the synopsis of works
germane to deep learning-based image watermarking. Consequently, extended domains,
including the watermarking of the deep learning models themselves [13], fall beyond the
scope of our discussion.

Table 1. Summary of existing related surveys.

Methods Concentration

Gupta and Kishore [14] Summarizing various convolutional neural network model archi-
tectures used in deep learning-based image watermarking

Amrit and Singh [5] Summarizing watermarking using artificial intelligence, machine
learning, and deep learning

Zhang et al. [15]
Reviewing deep learning-based data hiding, classifying based on
capacity, security, and robustness, and outlining three commonly
used architectures

Byrnes et al. [16]
Surveying deep learning techniques for data hiding in watermark-
ing and steganography, and categorizing them based on model
architectures and noise injection methods

Singh et al. [17]
Reviewing the popular deep-learning model-based digital water-
marking methods and summarizing/comparing contributions in
the literature

In contrast to existing work, our survey focuses on deep learning-based image wa-
termarking and provides a brief yet in-depth analysis, distinguished by three primary
advantages. (1) We systematically categorize deep learning-based image watermarking
into embedder–extractor, deep networks for feature transformation, and hybrid methods.
This categorization, grounded in the distinct roles deep learning assumes in various studies,
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aspires to offer technical insights and guidance. (2) We study representative methodologies
and encapsulate the directions and challenges of research within each specified category,
offering a coherent synopsis. (3) We extend our discussion to encompass a detailed explo-
ration of prospective research avenues, delineating emerging frontiers in the domain of
deep learning-based image watermarking.

Through the systematic analysis, critical research direction discussion, and prospec-
tive outlooks, one primary objective of our survey is to connect past research, present
innovations, and future prospects, potentially propelling the field toward refined method-
ologies, enhanced effectiveness, and broader applicative horizons. The rest of this paper
is structured as follows: Section 2 talks about the relevant preliminaries in conventional
image watermarking, Section 3 categorizes the techniques and provides a survey of image
watermarking based on deep learning, Section 4 explores potential research avenues for
the future, and Section 5 presents our conclusion.

2. Preliminaries
2.1. Traditional Image Watermarking Components

Image watermarking entails the incorporation of watermark data within an image.
This watermark, an encoded digital signal, is meticulously crafted to be inconspicuous
to human vision yet readily identifiable and extractable via computational algorithms.
As elaborated in Section 1, the application spectrum of image watermarking, delineated
by the nature of the watermark information, spans copyright protection, authenticity
verification, covert communication, and tampering detection, among others. Figure 1
succinctly encapsulates the components and steps inherent in the traditional paradigm of
image watermarking.

Figure 1. General components and steps of traditional image watermarking.

Embedding and extraction. In the embedding step, the watermark is integrated into
the cover image via a watermarking algorithm. The overarching objective is to ensure the
embedded watermark is robust and resistant to removal or alteration, whilst concurrently
maintaining the visual integrity of the cover image. Various techniques exist for the wa-
termark embedding, such as the modification of pixel values in the spatial domain [6],
and the manipulation of coefficients within the frequency domain representation [18].
Post-embedding, the watermarked image is disseminated to the designated audience, po-
tentially via online platforms. Authorized recipients are equipped to extract the embedded
watermark utilizing a specialized extraction algorithm.

Key. Numerous image watermarking methodologies incorporate a key, denoting
secret values instrumental in modulating the embedding and extraction processes of the
watermark. Typically, this key is conjointly generated and disseminated among the content
owner and authorized users. Its application within the watermarking procedure varies,
contingent on the algorithmic design, predominantly aiming to augment security and
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robustness. For instance, the key can be employed to govern the generation of a pseudo-
random sequence integrated into the image for watermark embedding [18], or to designate
the precise location of the embedded watermark within the image [6].

Watermark preprocessing. Watermark preprocessing can be instrumental in augment-
ing both security and robustness. One classic approach involves the encryption of the
watermark using cryptographic techniques, such as AES [19] or RSA [20]. In this process,
an encryption key is employed to convert the watermark into a ciphertext, enhancing the se-
curity of the embedded data. The decryption and, hence, the accessibility of the watermark,
is contingent upon the application of the corresponding cryptographic key, ensuring the
watermark remains impervious to unauthorized access and enhancing its applicability in
high-security contexts. In addition to security, the watermark can be encoded using method-
ologies, such as the error correction code [21], facilitating the rectification of errors within
the extracted watermark, and enhancing its robustness. The Reed–Solomon code [22] and
convolutional code [23] are classic exemplary methodologies that infuse redundancy into
the watermark. This inclusion of redundant data is strategically orchestrated to ameliorate
errors encountered during watermark extraction, bolstering the accuracy and reliability of
the extraction process, even amidst distortions.

2.2. Typical Metrics and Factors

Although there can be a large number of evaluation metrics and factors considered
in image watermarking based on different applications, certain metrics are ubiquitously
employed across both traditional and deep learning-based watermarking in the extant
literature. In this context, we briefly discuss the typical factors of imperceptibility and
robustness, which are integral to assessing the efficacy of watermarking techniques.

Imperceptibility. The ability of the watermark to be embedded into the image data in
a way that is invisible to human vision is referred to as imperceptibility. The imperceptibility
helps ensure that the watermark does not interfere with the quality of the image. One most
frequently applied evaluation metric is the peak signal-to-noise ratio (PSNR):

PSNR = 10× log10(
max(c)2

1
RC ∑Ri=1 ∑Cj=1(cij −mij)2

), (1)

where max(c) is the largest possible pixel value for the cover image c, which is 255 if we
use 8 bits for each grayscale value, andR and C denote the height and width of images c
and m.

Notably, apart from the extensively utilized PSNR, the structural similarity index
measure (SSIM) [24] is also commonly employed to assess imperceptibility, incorporating
evaluations of luminance, contrast, and structural disparities. An essential augmentation to
visual imperceptibility is security [25]. This entails ensuring that the embedded watermark
is not only invisible to the human eye but also resistant to detection through computa-
tional analysis, a criterion of paramount importance in secure watermarking applications,
exemplified in domains like smart city planning and digital forensics.

Robustness. Robustness characterizes the watermark’s resilience, denoting its capac-
ity to be reliably extracted amidst attacks on the watermarked image, such as compression,
filtering, or cropping. The assessment of robustness involves calculating the disparity
between the extracted and original watermark post-attack. When the watermark is binary,
the bit error rate (BER) serves as a prevalent metric, computed by dividing the number of
erroneous bits by the total number of bits embedded. In instances where the watermark
takes the form of a two-dimensional matrix, its resilience is often assessed via the normal-
ized cross-correlation (NC), measuring the similarity between the original watermark w
and the extracted watermark w′:

NC =
∑Hi=1 ∑Lj=1(wij · w′ij)√

∑Hi=1 ∑Lj=1(wij)2
√

∑Hi=1 ∑Lj=1(w
′
ij)

2
, (2)



Appl. Sci. 2023, 13, 11852 6 of 21

whereH and L define the height and width of the watermark.
Blindness. Blind and semi-blind watermarking represent two prominent approaches

in the domain of image watermarking. Blind watermarking is characterized by its ability to
detect and extract watermarks without the necessity of referring to the original cover image
nor the original watermark (while a key may be required). On the other hand, semi-blind
watermarking, while also not requiring the original cover image for watermark extraction,
requires the original watermark (and the key) for extraction.

Capacity. Capacity denotes the upper limit of watermark data that can be embedded
into an image, giving rise to two primary types of image watermarking: (1) Zero-bit water-
marking, which focuses on detecting the presence of a watermark in an image rather than
extracting data, and (2) multi-bit watermarking, which involves embedding and extracting
a watermark comprised of multiple bits. Zero-bit watermarking serves as a signature for
authenticating image data, without the provision to incorporate additional embedded data.
This form of watermarking is effective for verification purposes, ensuring the integrity and
authenticity of the image content. On the other hand, multi-bit watermarking allows for
the embedding of additional information within the image, facilitating a broader spectrum
of applications including copyright protection, content annotation, and data tracking. How-
ever, the embedding of multiple bits may potentially impact the perceptual quality of the
image, necessitating a careful balance between data capacity and image fidelity.

A distinct concept is zero watermarking, where no watermark is directly embed-
ded [26,27]. Instead, a relationship is established and stored between the original content
and the watermark (a master share). In case of disputes or verification, this relationship
is used to demonstrate the presence of the watermark. This technique proffers advan-
tages, such as eliminating the need to alter the image, thus preserving its original quality.
Nonetheless, limitations exist, primarily due to its dependency on the uniqueness of image
data, rendering it less effective for images with homogeneous content.

3. Comprehensive Survey of Deep Learning-Based Image Watermarking

This section discusses the integration of deep neural networks in contemporary deep
learning-based image watermarking, explaining the adaptation of traditional watermarking
processes within this advanced framework. The modern deep learning-based image water-
marking approaches are architectured akin to their traditional counterparts, encompassing
transformation, watermark embedding, and extraction phases. For a structured analysis,
we classify current deep learning-based techniques into three distinct categories based on
the roles of deep learning in various papers: (1) embedder–extractor joint training, (2) deep
networks for feature transformation, and (3) hybrid methods. In order to provide a clear
and concise overview of each category, Table 2 acts as a navigational guide. Each category
is outlined, with its key features, requirements, and potential drawbacks listed.

Table 2. Overview of methods in each proposed category.

Methodology Key Features/Requirements/Potential Drawbacks

Embedder–extractor
Joint training

Key features: Automated watermarking schemes are learned
from designated data through joint optimization of watermark
embedding and extraction.
Requirements: A robust dataset for training and an astute
selection of noise levels in the noise layer to ensure robustness.
Potential drawbacks: Efficacy may wane with inadequate
training data or improper noise selection, emphasizing the
necessity for a robust dataset and prudent noise level selection.
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Table 2. Cont.

Methodology Key Features/Requirements/Potential Drawbacks

Deep network
as a feature
transformation

Key features: Employment of deep networks for feature
transformation, leveraging pre-trained models for adept
feature extraction.
Requirements: Pre-training of deep networks on tasks related
to robustness within the domain, alongside a separate design of
embedding and extraction in this feature space.
Potential drawbacks: Robustness may be compromised if the
feature transformation efficacy is subpar, and pre-trained
networks might not adequately prioritize robustness.

Hybrid Methods
Key features: Fusion of classical watermarking with deep
learning, harnessing strengths from both realms for
enhanced watermarking.
Requirements: Rigorous design and fine-tuning of both
traditional watermarking schemes and deep learning models to
ensure harmonious operation.
Potential drawbacks: Increased design complexity and
potential amplification of limitations inherited from both
classical and deep learning-based techniques, necessitating a
sagacious design strategy.

3.1. Embedder–Extractor Joint Training Methods

As depicted in Figure 2, methods within this category fundamentally involve the
training of two core components: an embedder network, responsible for watermark inte-
gration into a cover image, and an extractor network, tasked with retrieving the embedded
watermark from the marked image. Variations in design are present, with some iterations
incorporating separate feature extraction networks within the embedder for the preliminary
processing of the watermark and cover image. To enhance robustness, a noise module
is typically positioned subsequent to the marked image. This module is instrumental in
introducing and amalgamating noise into the marked image during training, equipping
the extractor network with an augmented capacity to counteract disturbances.

Figure 2. General process of the embedder–extraction joint training.

Typically, all components are jointly trained within a unified deep neural network
framework, employing gradient descent as the optimization technique. The objective is to
optimize a loss function, aiming to uphold imperceptibility while ensuring the effective
extraction of the embedded watermark. Mathematically, a representative loss function for
such joint training can be defined as follows:

l = f1(c, m) + f2(w, w′), (3)

where c, m, w, w′ represent the cover image, marked image, watermark, and extracted
watermark, respectively. The function f1 quantifies the visual disparity between c and m,
aligning with the traditional criterion of achieving a high PSNR. Concurrently, f2 assesses
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the variance between w and w′, fulfilling the conventional benchmarks of elevated BER
or NC.

The elements within l present a trade-off: minimizing f1(c, m) to zero implies an exact
resemblance between the marked and cover images. However, this may constrain the
space available for watermark embedding, potentially leading to extraction inefficacy. To
orchestrate a network capable of harmonizing this trade-off, a prevalent approach involves
utilizing the gradients engendered by f2(w, w′) to refine the weights of all components,
effectuating back-propagation extending to both c and m. Conversely, gradients emanating
from f1(c, m) are exclusively employed to optimize the embedder network’s weights.
Subsequent sections will unfold the intricate designs and distinct characteristics embodied
by representative state-of-the-art methods within this joint training category.

The concept of joint training was first introduced in the HiDDeN (hiding data with
deep networks) paper by Zhu et al. [7]. The authors aimed to integrate the embedder–
extractor paradigm to streamline and unify the processes of image steganography and
watermarking. Several innovative and practical designs are incorporated in HiDDeN. The
embedder replicates the watermark, and its integration with the cover image occurs at the
embedder’s final layer to maintain the visual quality. Discriminator networks are deployed
to determine the presence of watermarks in images, thereby ensuring that the embedder
generates visually coherent marked images. Robustness is bolstered in HiDDeN through the
introduction of a noise layer that incorporates noise-inducing operations, including dropout,
Gaussian blur, and JPEG compression during the training phase. To navigate the challenges
posed by the non-differentiability of the original JPEG incorporated within the noise layer,
HiDDeN introduces a differentiable JPEG variant, ensuring the continuity of the gradient
flow. Beyond HiDDeN, Zhang et al. [28] introduced universal deep hiding (UDH), another
seminal work rooted in the joint embedder–extractor paradigm, applicable to both image
watermarking and steganography. UDH is distinguished as one of the pioneering works to
embed entire images as watermarks within embedder–decoder frameworks. It introduces
an approach to watermark encoding that facilitates disentanglement during the extraction
process. In this methodology, the encoded watermark is generated independently of the
cover image and subsequently integrated, ensuring a systematic and efficient extraction
process while preserving the integrity of the cover image.

A potential challenge associated with joint training for robust image watermarking
stems from the necessity of the noise layer being differentiable to facilitate gradient flow.
In addressing this issue, Liu et al. [29] proposed a two-stage training methodology. In
the initial phase, both the embedder and extractor are collaboratively trained without any
noise intervention, ensuring a seamless and undisturbed gradient flow. In the second
stage, the embedder’s parameters are fixed, rendering it non-adaptable to further training
iterations. The focus is then channeled exclusively toward the training of the extractor.
This bifurcated training approach allows the integration of non-differentiable noise layers
into the extractor’s training without compromising the effectiveness of the whole training
process. This paper has tested its robustness against a spectrum of prevalent attacks, such
as resizing, salt and pepper noise, dropout, crop-out, Gaussian blur, and JPEG compression.

Numerous endeavors aim to circumvent the challenge posed by the non-differentiable
nature of the JPEG operation within the noise layer. Chen et al. [30] proposed the employ-
ment of simulation networks to emulate JPEG lossy compression, accommodating various
quality factors. The model employs the max-pooling layer, convolution layer, and a noise
mask to, respectively, represent the sampling, DCT, and quantization processes inherent
in JPEG compression. In a related vein, Jia et al. [31] advocated for the incorporation
of batches that amalgamate both actual and simulated JPEG compressions. Within the
training’s noise layer, each batch is configured to randomly incorporate either an actual
JPEG compression layer, a differentiable simulation of a JPEG layer, or a layer without
noise. In scenarios employing momentum-based optimization strategies, there is no strict
requirement for the joint training of the embedder and extractor. However, the embedder
is still tailored to generate high-quality images robust to JPEG compression, while the
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extractor is engineered to retrieve features post-JPEG noise. Moreover, Zhang et al. [32]
introduced a pseudo-differentiable methodology, designed to accommodate JPEG com-
pression as a specialized noise variant. This approach features distinctive forward and
backward paths during the training process. Notably, the backpropagation is structured to
bypass the JPEG compression phase, thereby mitigating the impediments associated with
non-differentiability.

Certain studies incorporate specialized noise into the noise layer to address special
challenges in image watermarking. One intricate area involves extracting watermarks
from images that have undergone resampling via a camera, which introduces multifarious
noise types including JPEG artifacts, variations in lighting, and optical distortions. In
response to this, Fang et al. [33] and Gu et al. [34] advanced approaches that incorporate a
screen-shooting noise layer simulation. This adaptation enables the simulation of camera
resampling noises like geometric distortions, optical bends, and RGB ripples within the
training of deep learning-based image watermarking models, fostering a more robust
system capable of counteracting these specific noise introductions.

Existing joint training paradigms necessitate the explicit identification and enumera-
tion of training noise. Models tend to exhibit enhanced robustness to noises encountered
during training than those not included. However, in real-world scenarios, anticipating
and listing all potential noises can be impracticable. As such, a strand of research is dedi-
cated to forging robust deep learning-based image watermarking models without prior
noise knowledge. Zhong et al. [35] introduced an invariance layer designed to sieve out
extraneous information during the watermark extraction phase. Within the training ambit,
the Frobenius norm of the Jacobian matrix of the invariance layer’s outputs with regard to
its inputs is computed and employed as a regularization term. The dual objective of mini-
mizing this term, alongside ensuring watermarking requisites (pertaining to the marked
image’s quality and watermark extraction efficacy), ensures the output of the invariance
layer remains largely invariant to alterations in its input images, hence instilling robustness
sans explicit noise enumeration. Furthermore, the embedding network employs multi-scale
inception networks, facilitating an intricate fusion of the cover image and watermark.
Another strategy to achieve robustness without resorting to manual noise layer introduc-
tion entails the deployment of an adversarial network, serving as an automated assailant.
Luo et al. [36] illustrated this by amalgamating an adversarial network within their archi-
tecture, functioning as a noise module. During training, this adversarial entity, interfaced
with the extractor, evolves in proficiency, adept at hampering watermark extraction. In
counteraction, the extractor strives to mitigate the perturbations induced by the adversarial
entity. A nuanced calibration of the training process, accentuating the fortification of the
extractor against the adversarial network, culminates in a model characterized by enhanced
robustness and reliability.

The joint embedder–extractor paradigm is as a notably effective approach within
the existing body of literature. Enhanced performance has been a focal point, with inno-
vations in architectural design and training methodologies spearheading advancements.
Ahmadi et al. [37] enriched their noise layer with a variety of disturbances including Gaus-
sian, white noise, random cropping, smoothing, and JPEG compression. Each training
iteration involves a stochastic selection of one specific noise type, ensuring that each assault
singularly influences the training loss. In another development, Plata et al. [38] unveiled
a pre-processor termed a ’propagator’, engineered to disseminate the watermark across
the image’s spatial domain. The researchers stratified assorted attacks and corroborated
that integrating specific distortions during training augments robustness against an entire
category of distortions. Echoing the two-stage training approach of Liu et al. [29] and
mirroring the noise influences highlighted in HiDDeN [7], Zhang et al. [39] introduced a
scheme accentuated by a multi-class discriminator connected to the noise-infused marked
image. This innovation not only targets robustness but also amplifies the watermark’s
security within the marked image. Hao et al. [40], while aligning with the visual quality
scrutiny embedded in HiDDeN [7], proposed the integration of a high-pass filter at the dis-



Appl. Sci. 2023, 13, 11852 10 of 21

criminator’s inception. This strategy nudges the watermark into the image’s mid-frequency
region, safeguarding visual quality given the amendable nature of high-frequency compo-
nents. The loss computation accords amplified significance to the central region, resonating
with the human visual system’s focal inclination. For noise layer augmentation, additions
encompass crop, crop-out, Gaussian blur, directional flips, and JPEG compression, painting
a comprehensive spectrum of distortions. Xu et al. [41] employed a reversible neural
network functioning dually as the embedder and extractor, a strategy that is consistent
with the traditional, reversible nature of watermarking transformations. In a deviation,
Mahapatra et al. [42] advocated for the computation and integration of the difference be-
tween the marked and cover images into the extractor to augment extraction quality, a
technique that transitions away from the blind scheme archetype. Zhao et al. [43] intro-
duced a factor into the embedder, modulating the watermark’s intensity on the cover image,
and employed a trained spatial attention feature map to optimize watermark positioning.
Ying et al. [44] targeted an enhancement of embedding capacity, accommodating one to
three watermark color images and employing a decoupling and revealing network tandem
in the extraction phase. Their noise layer is fortified with cropping, scaling, Gaussian
noise, JPEG, and Gaussian blur to simulate realistic distortions. In a novel structural ap-
proach, Fang et al. [45] introduced an extractor–embedder–extractor training architecture
to bolster extractor efficiency. Their extractor transforms an image into a binary watermark
sequence while the embedder crafts an image residual from both the original and decoded
watermark, enhancing marked image creation and extraction efficacy. This methodology
underscores decoder training, prioritizing extraction quality. Incorporating reinforcement
learning, Mun et al. [46] enhanced the robustness of the embedder–extractor framework.
They amalgamated convolutional neural networks (CNNs) [47] for embedding and extrac-
tion and a reinforcement learning actor for noise module operations. The actor, pivotal in
selecting and integrating noise types and intensities into marked images, complements the
embedder–extractor, which functions as an evaluative environment, assessing the actor’s
actions and training the extractor to counteract the induced noise efficaciously.

Multimedia has also emerged as a significant focus in the field of deep learning-
based image watermarking. Das and Zhong [48], for instance, developed a novel method
to embed audio watermarks into cover images, accompanied by a network specifically
engineered to determine the fidelity of the extracted audio watermark to its original form. In
the domain of document images, Ge et al. [49] proposed a technique enriched with multiple
skip connections within the embedder, ensuring the preservation of intricate details in
both watermark and cover images. The robustness of the watermarked document images
is fortified through the integration of Dropout, crop-out, Gaussian blur, Gaussian noise,
resizing, and JPEG techniques in the noise layer. Liao et al. [50] expanded the embedder–
extractor watermarking horizon to GIF animations. Their approach entails the employment
of three-dimensional deep neural networks, transforming a single watermark into a three-
dimensional feature for integration with GIFs. Discriminator networks are employed to
evaluate the watermarking efficacy, focusing on maintaining the imperceptibility of the
watermarked GIFs, and ensuring visual quality while securing embedded data.

Since the introduction of the embedder–extractor joint training concept (a natural
extension of a traditional watermarking paradigm) with HiDDeN [7], a burgeoning body
of literature has meticulously expanded upon this initial idea, giving rise to a diverse
array of methodologies. As researchers have delved deeper into this domain, an intricate
landscape of challenges and corresponding solutions has emerged, each contributing a
unique perspective to the overarching narrative of deep learning-based image watermark-
ing. These contributions, marked by their innovative approaches to overcoming specific
hurdles, underscore the dynamic and evolving nature of this field. We have cataloged these
varied challenges and solutions, presenting a comprehensive summary in Table 3.
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Table 3. Summary of the challenges and representative solutions in the embedder–extractor im-
age watermarking.

Challenges Representative Solutions

The noise layer needs to
be differentiable Performing a two-stage training scheme

The non-differentiable nature and
low-performance issues of JPEG

Including differentiable JPEG simulations in the
noise layer

Special challenging noises such as
the camera resampling

Including simulated camera distortions in the
noise layer

Models have more robustness to
trained noises than those not
included in the noise layer

Developing strategies that do not require noise
lists during the training, e.g., an invariance layer
that sieves out extraneous information, or an
adversarial network to automatically attack
the extractor

Aiming at enhanced and improved
overall model performance

Introducing innovative architectures and
training paradigms aligns with the nuanced
processes of embedding, extraction, and feature
transformation, mirroring the strategic design
inherent in conventional watermarking

Including multimedia for cover
images while maintaining
high performance

Designing special neural networks to process the
multi-modal features and robustness

3.2. Methods Using Deep Networks for Feature Transformation

As illustrated in Figure 3, watermarking procedures within this category predomi-
nantly utilize deep neural networks for feature transformations. Both cover and marked
images undergo transformations facilitated by these networks, leading to the creation of
distinct feature spaces. Subsequent watermark embedding and extraction are executed
within these defined spaces. A common expectation is the robustness of the transformed do-
mains, implying that even minor alterations to the marked images should yield consistent
or nearly identical feature values.

Figure 3. General process of the deep networks for feature transformation.

Numerous methods have adopted the concept of deep networks for feature trans-
formation in the context of deep learning-based zero watermarking. Fierro et al. [26]
employed CNNs to extract features from cover images, which were then integrated with a
permuted binary watermark sequence via an exclusive or XOR operation to create a master
share. The same CNN processes a test image to extract features, which are subsequently
XORed with the master share to extract the watermark. An appropriate key can ensure
the identification of the watermark. He et al. [51] extended this foundational approach by
adding fully connected layers to draw shallow features from various convolutional layers,
enhancing the master share creation process. Their introduction of a shrinkage module
facilitates the automatic learning of soft thresholding for each feature channel, enhancing
feature extraction precision. To optimize the feature space, they focused on eliminating
redundancy by learning inter and intra-feature weights and incorporated a noise layer
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during feature training to increase robustness. Han et al. [52] enhanced this methodology
by introducing a chaotic encryption algorithm to encrypt the watermark before the XOR
operation, enhancing security. They also adopted the Swin Transformer [53] to generate
features for master share creation, achieving a feature space that is invariant to geometric
distortions and enhances the robustness of the watermarking process.

Another research direction in this category involves employing pre-trained deep
neural networks, wherein the training of input data is performed to yield the intended
marked images. In this scenario, the pre-trained weights remain static, and the alterations
in the input are driven toward achieving specific objectives. The resultant marked image
is visually analogous to the original cover image, yet reveals the embedded watermark
upon undergoing feature extraction by the deep network. Vukotic et al. [54] illustrated
this by implementing pre-trained CNN and adaptively modifying the input cover image
through gradient descent. The dual-faceted loss function encompasses a term that mini-
mizes the perceptual discrepancy between the cover and marked images and another that
ensures watermark detectability via a dot product operation, expressed as ϕ(m)T · k. Here,
ϕ(m) denotes the marked image’s feature extraction through the deep network and k is a
predetermined key, facilitating the detection of watermark presence. Expanding on this,
Fernandez et al. [55] introduced the capability of multi-bit extraction by assigning distinct
keys to each bit of the binary watermark sequence. Contrary to the utilization of convolu-
tional networks pre-trained for classification, they employed networks that had undergone
self-supervised learning. This strategic adoption confers a distinct advantage, as the feature
spaces derived from self-supervised learning are characterized by augmented robustness,
thereby enhancing the effectiveness and reliability of the watermark extraction process.

The utilization of deep networks for feature transformation represents a nascent
avenue in the domain of image watermarking. This approach deviates from the more
intuitive embedder–extractor joint training model, which seamlessly aligns with tradi-
tional image watermarking paradigms by encapsulating both embedding and extraction
processes. Consequently, the academic literature on this innovative method is relatively
sparse. Nonetheless, this emerging methodology paves the way for captivating research
trajectories, offering fresh perspectives and approaches in the field. To provide a consoli-
dated overview, we have collated the prevailing challenges and representative solutions in
Table 4.

Table 4. Summary of the challenges and representative solutions in the image watermarking using
deep networks for feature transformation.

Challenges Representative Solutions

How to utilize the fitting ability of deep
learning to extract the cover image feature
(the master share) in zero watermarking

Applying off-the-shelf CNNs or
Transformers and designing extended
branches of these architectures

How to choose appropriate deep learning
models for image watermarking given
their different feature extraction abilities
and purposes

Adopting pre-trained CNNs or the models
in self-supervised learning

How to design separate embedding and
extraction schemes, given a deep learning
feature extractor

To obtain a marked image, fix the
pre-trained model, and update the input
image with the gradient (produced by a
loss ensuring the imperceptibility and
extraction integrity)

3.3. Hybrid Methods

Methods encompassed in this category exhibit a fusion of deep learning techniques and
traditional calculations associated with image watermarking. Such an integration implies a
symbiotic relationship where the strengths of one approach compensate for the weaknesses
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of the other, resulting in enhanced efficiency and effectiveness. The design paradigms
and operational frameworks of these methods can be diverse, exhibiting a wide range of
structural and functional variations. In these hybrid systems, deep learning typically plays
a pivotal role in watermark extraction. The complex and intricate architectures of deep
learning models offer enhanced capacity for fitting complex functions, and these models
are adept at uncovering intricate patterns and correlations within the watermarked images,
thereby facilitating the efficient and accurate extraction of embedded watermarks. The
conventional image watermarking calculations, on the other hand, lend stability, reliability,
and a degree of interpretability to the process. They serve as a solid foundation upon which
the deep learning models can build.

Kandi et al. [56] employed two convolutional autoencoders to reconstruct a cover
image individually. The distinctions between the autoencoder-reconstructed images and
the original cover image are integral to their approach. The first autoencoder’s reconstruc-
tion denotes bit zeros in a binary watermark, while the second represents bit ones. In a
different context, Ferdowsi et al. [57] tailored a technique specifically for Internet of Things
(IoT) applications, utilizing classic spread spectrum for watermark embedding, wherein a
key pseudo-noise sequence augments the original signal. The innovation lies in mapping
features like spectral flatness, mean, variance, skewness, and kurtosis of the cover image to
bit streams, serving as the watermark, enhancing security against eavesdropping attacks by
eschewing predefined bit streams. Li et al. [58] introduced a method where pre-processed
grayscale watermark images are integrated into the DCT blocks of cover images. The extrac-
tion of these embedded watermarks is facilitated by training CNN, establishing a bridge
between conventional and neural approaches. Mellimi et al. [59] advocated for embedding
watermarks into the lifting wavelet domain [60] of cover images. They introduced noise
into the marked image and deployed a deep neural network as an extractor, exemplifying
the robustness of the infused noise. Zhu et al. [61] innovated a technique amalgamating
key point detection with deep learning-based image watermarking. Utilizing SURF [62],
they delineated scale-invariant embedding regions, placing normalized binary watermarks
at their centers in the Y color channels. This aggregated data are routed through an embed-
ding network, yielding the marked Y channel. An extractor network, fine-tuned through
training, facilitates watermark retrieval. Robustness is amplified by the incorporation of
perturbations during the training phase, underscoring an enhanced resilience to various
forms of distortions and manipulations. Chack et al. [63] introduced a hybrid methodology
that intertwines traditional watermarking, CNN, and evolutionary optimization. This
multifaceted approach embeds an Arnold-transformed watermark into the DCT domain,
employs Harris Hawks optimization to fine-tune the embedding strength, and relies on a
CNN to uncover the embedded watermark. In a separate study, Fang et al. [64] presented
a deep template-based image watermarking mechanism. The embedding process in their
approach encodes the watermark using established techniques, employs an auxiliary locat-
ing template to manipulate a pseudo-random Gaussian noise pattern, and integrates the
watermark into the red and blue color channels of a cover image. Extraction is facilitated by
two deep neural networks; the initial network extracts and accentuates features, while the
subsequent network classifies the watermark bit patterns. Kim et al. [65] presented another
nuanced technique utilizing templates for watermarking images. Their strategy involves
segmenting a cover image into distinct patches, earmarking specific patches for watermark
embedding, and others for housing a predefined template. Watermark insertion is executed
in the curvelet domain via quantization index modulation, while the template undergoes
processing by a dedicated generation network before integration into the cover image.
The marked image is derived by assembling the various embedded patches. Extraction is
facilitated by a template extraction network that unveils the embedded template, which
is subsequently juxtaposed against the original via a template-matching network. This
comparison process facilitates the identification of potential geometric distortions inflicted
upon the marked image. Chen et al. [66] prioritized the development of a mechanism for
authenticating watermark systems via deep learning. Specifically, their framework is adept
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at discerning the accuracy of watermark extractions from medical images. Their innovative
approach involves simulating a variety of watermark distortions and compiling a labeled
dataset. This dataset then undergoes training on a neural network designed to validate
the integrity of extractions derived from potentially marked images, thus bridging the gap
between watermark verification and deep learning methodologies.

The integration of deep learning and traditional image watermarking has given rise to
a plethora of methodologies, each characterized by its distinct approach and underlying
principles. Despite the diversity inherent in these hybrid methods, it is noteworthy that they
tend to encounter a set of common challenges and have consequently adopted prevailing
solutions to mitigate these issues effectively. These challenges largely stem from the
complex interplay between the adaptive, data-driven nature of deep learning and the
algorithmic, rule-based structure of traditional watermarking. Addressing these issues
necessitates a nuanced approach that is sensitive to the strengths and limitations inherent
in both paradigms. In Table 5, we have compiled a summary of typical challenges and their
corresponding solutions.

Table 5. Summary of the challenges and representative solutions in hybrid methods.

Challenges Representative Solutions

Determining the optimal role of deep
learning in hybrid
watermarking frameworks

Employing deep learning to enhance
watermark extraction processes

The integration of deep learning and
traditional watermarking techniques often
results in augmented complexity

Crafting modular and scalable
architectures facilitate seamless
integration and interoperability between
both methodologies

Refining the synergy between embedding
and extraction processes is essential, given
the distinct strengths and weaknesses
inherent to each approach

Utilizing deep learning for its adaptability
and learning prowess, complemented by
leveraging the proven properties of
traditional algorithms

4. Discussion of Potential Future Directions

The proliferation of proposals concerning deep learning-based image watermarking
has instigated our comprehensive survey aimed at bridging historical, contemporary, and
prospective research. Figure 4 encapsulates the prevailing trends delineated in Section 3 and
extrapolates future investigative trajectories. The contemporary focus gravitates toward
the intricacies of noise layer differentiation, diversity in noise types, enhancements in
architecture and training paradigms, and the strategic integration of deep learning within
image watermarking. This survey underscores a spectrum of untapped research avenues
that transcend traditional frameworks. These emergent perspectives are poised to foster
considerable innovations in this domain, skillfully navigating the complex interplay of
robustness, imperceptibility, capacity, and security requisite in the dynamic realm of digital
media and communications. The remainder of this section discusses our proposals for
potential research directions for the future.

Robustness toward unforeseen noise. Deep learning-based image watermarking
models exhibit distinct robustness to various types of noise, a characteristic intricately
linked to the specific noise types they are trained on. This variance in robustness is
prominently observed when contrasting the model’s performance against trained and
untrained noise types. Trained noise types refer to those the model has been explicitly
exposed to during the training phase, allowing it to develop specialized mechanisms to
counteract their effects. Consequently, the model’s efficacy in watermark extraction remains
largely stable when encountered with these familiar noise types. Conversely, untrained
noise types introduce an element of unpredictability. Since the model lacks prior exposure
and adaptive development against these noise types, its performance can potentially be
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compromised. This differential in robustness underscores the critical importance of a
comprehensive training regimen that encompasses a diverse array of noise types to bolster
the model’s generalization capabilities. Future research could focus on enhancing model
adaptability and robustness against untrained noise types, perhaps through the integration
of online learning methods [67], or meta-learning [68] strategies that equip the model to
swiftly acclimatize to unfamiliar noise environments.

Figure 4. Summarizing and envisioning research directions in deep learning-based image watermarking.

Content-aware watermark embedding. A predominant focus of deep learning-based
image watermarking has been accorded to static images. This static orientation poten-
tially undermines the watermark’s efficacy, given that optimal embedding strategies can
significantly vary across different content types and dynamic scenarios. A transition to-
ward content-aware watermark embedding techniques has the potential to redress this
imbalance. This approach, conceptualized to be inherently adaptive, is envisaged to utilize
sophisticated algorithms capable of analysis and adaptation to the unique attributes of
each image or media sequence. For instance, CNNs or similar deep learning architectures
could be trained to discern intricate patterns and variances in visual content, enabling the
model to adapt watermark placement and intensity based on different image regions. This
would ensure that the watermark is not only imperceptible but also robust against various
attacks, establishing a harmonious balance between visibility and security, and marking a
significant stride in the advancement of image watermarking technologies.

Novel fusion methods. Investigating innovative algorithms and techniques for the
fusion of watermarks within cover images is crucial. A meticulous investigation into
innovative embedding strategies is pivotal to determine a harmonious blend that ensures
both the visual integrity of the cover image and the resilience of the watermark. Current
methods mainly apply additive fusion and concatenation. Additive fusion integrates the
watermark into the cover image by additive amalgamation, and concatenation involves
the direct attachment of watermark features to the cover image. Future works can focus
on embedding algorithms to ensure that watermarks are intricately woven into the cover
images, balancing perceptual transparency and robustness against removal or attacks. One
prospective method can be cross-attention [69], which can leverage the attention mechanism
to selectively focus on specific features of the cover image during the embedding process,
ensuring a dynamic and adaptive incorporation of the watermark.

Enhanced security protocols. The imperatives of security, privacy, and integrity are
being redefined by the sophistication of adversarial attacks. Consequently, the integration
of innovative security protocols is not just desirable, but essential. A compelling research
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trajectory could involve the synthesis of cutting-edge cryptographic algorithms with deep
learning, an amalgamation promising enhanced watermark protection. The incorporation
of blockchain technology presents another frontier, offering decentralized, immutable,
and transparent platforms for watermarking data transactions and validations. These
multifaceted, integrative approaches are predicated on a nuanced understanding of both
deep learning intricacies and the dynamics of contemporary cryptographic paradigms.
As we forge ahead, the synthesis of these technologies could engender a new epoch of
resilience, privacy, and security in deep learning-based image watermarking.

Efficiency and computational optimization. The dynamic landscape of deep learning-
based image watermarking is increasingly underscored by the imperative to balance com-
putational efficiency and processing power, especially for real-time applications. There lies
a complex interplay between ensuring robust watermarking and the computational load,
where an optimal middle ground is sought to ensure efficiency without compromising
performance. In this context, the conceptualization and development of lightweight archi-
tectures and algorithms embody a critical focal point of future research trajectories. One
promising avenue involves the integration of quantization and pruning techniques [70]
within the deep image watermarking models, aiming to reduce the model size while pre-
serving the watermarking efficacy. Furthermore, the exploration of knowledge distillation
could facilitate the training of compact models that inherit the performance characteristics
of larger, more complex models, thereby ensuring efficiency and efficacy in tandem.

Cross-modal watermarking. In the evolving sphere of deep learning-based image wa-
termarking, cross-modal watermarking emerges as a frontier that offers unprecedented op-
portunities and challenges. It signifies the confluence of diverse media types, extending the
watermarking paradigm beyond its traditional confines, and fostering a multi-dimensional
approach to content protection and authentication. Embedding watermarks in images that
can be subsequently extracted from audio or video entails a complex interplay of algo-
rithms and technologies, necessitating innovation and adaptability. One methodological
prospect could involve the integration of transformer-based models, renowned for their
capability to handle varied data types and complexities. Such models can be designed to
embed intricate watermark patterns in images, with complementary algorithms tailored for
the extraction of these patterns from audio or video formats. A synchronization protocol,
ensuring the congruence of embedding and extraction processes across different media,
would be integral to this approach.

Self-repair mechanisms for watermarks. The integration of self-repair mechanisms
in deep learning-based image watermarking presents an avant-garde approach to enhance
the robustness and sustainability of watermarks amidst distortions or attacks. A water-
mark endowed with self-repair capabilities can significantly augment the reliability of
information authentication and integrity verification processes. This concept aligns with
the notion of regenerative embedding patterns that maintain their integrity even when
subjected to complex distortions or malicious interventions. Algorithmically, this could
be achieved through the incorporation of redundant encoding schemes, where the critical
information is dispersed within the watermark in a manner that allows for reconstruction
from partial data. Error correction codes [21] and machine learning models adept in pattern
recognition and restoration [71] can be synergized to enhance the watermark’s robustness.
By employing neural networks trained to identify and rectify distortions, the watermark’s
intrinsic characteristics can be preserved.

Deep learning to extract invariant features. Current advancements in deep learning-
based watermarking leverage pre-trained neural networks, specifically honed through
self-supervised learning, to bolster robustness against noise within the transformed domain.
Such advancements are anchored on the premise that various self-supervised networks,
especially those that employ joint feature-embedding and contrastive learning methodolo-
gies [72,73], are effective in mitigating the effects of various types of noise. These networks
ensure that multiple augmentations of a single image yield identical feature representa-
tions. Nevertheless, contemporary contrastive learning is predominantly oriented toward
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evaluating the representational efficacy of the learned space [74]. The metric for assessing
this efficacy hinges on the network’s performance in tasks encompassing classification,
segmentation, and low-shot learning. Invariant feature training is an ancillary aspect, not
the central focus of these learning paradigms [75]. Given this context, the direct application
of pre-trained self-supervised neural networks to image watermarking can be imprac-
tical, primarily because these networks often neglect to consider ubiquitous distortions
for image watermarking like perspective transformations. Consequently, there exists a
notable research void warranting exploration—formulating specialized self-supervised
neural networks expressly tailored for image watermarking applications. These networks
would be instrumental in confronting geometric distortions, including but not limited to,
rotations and perspective alterations, underscoring a pivotal frontier for ensuing inquiries.

Cover more traditional functionalities. For deep learning-based image watermark-
ing, a pronounced gap exists in adequately addressing traditional imperatives such as
tamper detection. Contemporary methodologies predominantly concentrate on robustness,
imperceptibility, and capacity, often sidelining the quintessential aspect of detecting alter-
ations or manipulations in the watermarked images. Classical watermarking techniques
have showcased efficacy in this domain, enabling the identification of unauthorized modi-
fications with reasonable accuracy. Incorporating advanced deep learning architectures
could potentially elevate the precision and reliability of tamper detection. One plausible
approach involves the integration of CNNs trained to discern subtle alterations in the wa-
termarked images, leveraging their capacity for feature extraction and pattern recognition.
Another avenue could be the exploration of recurrent neural networks (RNNs) to analyze
sequences of image data for temporal alterations, offering insights into the progression of
tampering efforts.

The primary focus of this paper resides in a comprehensive examination of image
watermarking with deep learning, yet it is acknowledged that there exists a spectrum of
compelling research areas that, albeit unexplored in this treatise, hold significant relevance
and intrigue. Instances of such topics include the embedding of watermarks within deep
learning models to bolster their protection, as highlighted by Uchida et al. [76] and Guo and
Potkonjak [77]. Another noteworthy area is the study of watermarking neural networks
with watermarked images as input, explored in the work of Wu et al. [78]. Additionally,
the fascinating area of deploying attacks on neural networks using watermarked images is
explored in the studies conducted by Jiang et al. [79], and Apostolidis and Papakostas [80].
Each of these areas presents a rich vein of inquiry that complements the broader landscape
of image watermarking research.

5. Conclusions

In this paper, we delved into the nuanced realm of image watermarking, a technique
characterized by the subtle integration and retrieval of watermarks within a cover image.
The motivation for this investigation is spurred by the growing synergy between image
watermarking and deep learning—a field renowned for its adeptness at unraveling intricate
patterns and representations. This study stands as a comprehensive exploration, not merely
retracing the trajectories of extant methodologies but exploring the historical context,
current innovations, and future prospects of deep learning in image watermarking.

Distinctive in its approach, this survey illuminates the landscape of deep learning-
based image watermarking, marked by its precision and depth of analysis. It offers three
primary contributions to the scholarly discourse. First, we introduce a systematic classifi-
cation that segments deep learning-based image watermarking into three core categories:
embedder–extractor, deep networks for feature transformation, and hybrid methods. This
refined categorization is premised on the diverse roles that deep learning occupies in
related studies and is crafted to infuse clarity and direction into ongoing research. Secondly,
we examine emblematic methodologies and encapsulate the multifaceted directions and
challenges that each category embodies. This aims to provide readers with a consolidated,
insightful overview, distilled from a plethora of diverse yet interconnected research. Finally,
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our analysis expands to unravel prospective research trajectories, mapping out uncharted
territories and emergent themes in the field of deep learning-based image watermarking.
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