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Abstract: Microservice architecture has been widely adopted by large-scale applications. Due to the
huge amount of data and complex microservice dependency, it also poses new challenges in ensuring
reliable performance and maintenance. Existing approaches still suffer from limitations of anomaly
data, over-simplification of metric relationships, and lack of diagnosing interpretability. To solve these
issues, this paper builds a hierarchy root cause diagnosis framework, named Hi-RCA. We propose a
global perspective to characterize different abnormal symptoms, which focuses on changes in metrics’
causation and correlation. We decompose the diagnosis task into two phases: anomalous microservice
location and anomalous reason diagnosis. In the first phase, we use Kalman filtering to quantify
microservice abnormality based on the estimation error. In the second phase, we use causation
analysis to identify anomalous metrics and generate anomaly knowledge graphs; by correlation
analysis, we construct an anomaly propagation graph and explain the anomaly symptoms via graph
comparison. Our experimental evaluation on an open dataset shows that Hi-RCA can effectively
locate root causes with 90% mean average precision, outperforming state-of-the-art methods.

Keywords: microservice architecture; intervention recognition; root cause location

1. Introduction

Microservice architecture (MSA) has been widely adopted in domains such as the
Internet of Things [1] and mobile and cloud [2] services for its scalability, flexibility, and re-
silience. MSA decomposes an application into small-scale and single-function microservices
which cooperate through lightweight intercommunication [3]. Hence, an MSA-based sys-
tem contains numerous components and processes, with complex structures and dynamic
interactions, where diagnosing anomalies is particularly important.

With the aid of monitoring tools and anomaly detection techniques, a large number of
system measurements, such as hardware resource consumption, can be observed. Based on
such measurements (i.e., metric data), several meaningful methods have been proposed to
pinpoint the anomaly culprit. A common method is to construct the relationship graph of
metrics, and pinpoint the root cause metric through the random walking algorithm on the
dependency graph [4–7].

However, automatic diagnosis of root causes from the observed data is difficult owing
to the following challenges.

• Limitation by anomaly data volume. Most of the existing research adopts causal inference
techniques to obtain the variables’ causality, which requires sufficient length of the
anomaly data. However, in real situations, the anomaly duration is an uncontrollable
variable. When anomaly data do not satisfy the requirements of causal inference
methods, untrusted pseudo-causality will arise, which limits, or even worsens, the
diagnosis performance.

• Over-simplification of metric relationships. Since the relationship between diverse mon-
itored metrics is complex, causation and correlation exist simultaneously. Existing
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research oversimplifies the metric relationship either as causation or correlation. In
fact, correlation does not imply causation.

• Lack of diagnosing interpretability. Under multiple anomaly types and anomaly cascad-
ing, anomaly symptoms are diverse; hence, interpretability for the diagnosis results
is important. Anomaly diagnosis requires not only locating the root cause, but also
explaining the logic behind anomaly symptoms. For example, a CPU hog occurs at
a microservice, causing both CPU metrics and memory metrics to increase. Without
the explanation of anomaly symptoms, i.e., the original CPU anomaly propagates to
memory, engineers may not trust the diagnosis results, because memory can also be a
possible cause.

To address the above challenges, we propose a hierarchy framework, named Hi-RCA.
Hi-RCA consists of two diagnosis phases. In the first phase, it pinpoints the anomalous
microservice, using the Kalman filtering approach to quantify the microservice abnormality
based on the self-contrastive evaluation. In the second phase, it designs a hierarchy-
diagnosing method that analyzes the metric causation and correlation separately. Firstly,
Hi-RCA transfers the anomaly detection into the causal inference, i.e., the intervention
recognition task. Secondly, it constructs the directed anomaly propagation graph based
on the metric correlation and anomaly propagation characteristics. The reason for the
anomaly is located based on the propagation graph comparison. Therefore, Hi-RCA not
only pinpoints the reason for the anomaly, but also infers a directed anomaly propagation
graph, to explain the anomaly symptoms. Experimental results show that Hi-RCA has high
diagnostic precision in 164 anomaly cases involving different anomaly types. For top three
precision, compared to the best baseline, its accuracy improvement ranges from 5%∼38%
in different datasets.

Our contribution can be summarized as follows.

• We propose a general anomaly evaluator using Kalman filtering, which requires no
expert knowledge and is general for various metrics with different characteristics.

• We use the intervention recognition task to identify anomalous metrics, to avoid
the causal inference performance being limited by anomaly data distribution, which
utilizes the causation change in metrics for accurate anomaly diagnosis.

• We analyze the causation and correlation separately. We characterize anomaly symp-
toms from the global perspective where all metrics are considered jointly. Based on
the correlation-based anomaly knowledge graph, diverse anomaly symptoms can
be explained.

The remainder of this paper is organized as follows. Related work is discussed in
Section 2. Section 3 gives the problem statement, an overview of Hi-RCA, and detailed
localization modules. Section 4 describes the experimental evaluation, ablation study,
and the discussion. Section 5 concludes the paper.

2. Related Work

Compared to logs and traces, metric data can manifest abnormality in the system
and require no instrumentation to the source code. Many approaches in the literature
employ observational metrics to infer the root causes of performance issues. We classify
the related work based on metric data into two types: non-causal methods and causality-
based approaches.

Non-causal methods can be classified into unsupervised models and supervised
machine learning-based approaches. For unsupervised methods, it is common to train a
baseline model based on normal data, and detect anomalies when KPIs diverge from the
baseline model [8–11]. To distinguish the normal fluctuations and anomalous situations,
CoFlux [12] determines whether two KPIs are correlated by fluctuations automatically,
considering the temporal order and fluctuating direction. Shang et al. [13] analyze time
series anomalies based on correlation analysis and the Hidden Markov Model (HMM [14])
which is used to find close relationships between abnormal KPIs. ε-diagnosis [15] infers
the possible root causes based on the similarity computation of monitored samples; KPIs
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are anomalous if the similarity is below a given tolerance threshold. Based on Robust
Principal Component Analysis (RPCA [16]), CloudDiag [17] identifies the services that
most contributed to the anomaly. Root causes are ranked based on the number of times
they appeared in anomalous categories. PAL [18] and FChain [19] exploit offline detection
of anomalous KPIs to generate a ranked list. To reduce false positives, they filter external
reasons by checking whether anomalies affected all application services. The earliest
anomalies are indeed considered the most probable root causes.

For supervised methods, labeled anomaly data are required. Nedelkoski et al. [20]
utilize a variational autoencoder [21] to model normal behavior and recognize anomalies
based on reconstruction error. They also train a convolutional neural network [22] on the
anomalous traces, to recognize which failures caused a performance anomaly in a service.
Seer [23] trained deep learning algorithms on massive amounts of data to identify root
causes, but its performance may degrade with system updates. Scheinert proposed Arvalus
and its improved algorithm D-Arvalus [24]. In the two algorithms, the system components
are regarded as microservices, and the dependencies between components are regarded as
connections, to identify the root cause in a graph. Sage [25] leverages unsupervised learning
to identify causes of performance degradation in complex microservice dependency graphs.
It examines the impact of microservices on end-to-end performance based on microservice
dependency graphs via graph variational autoencoders. GDN [26] detects anomalies based
on multivariate time series. It uses an implicit embedding feature construction to learn the
relationship between monitored objects, uses a graph attention-based method to predict the
metric values, and anomalies are detected based on the comparison of the results between
real values and the predicted values. UBL [27] leverages self-organizing maps to capture
emergent system behaviors and predict unknown anomalies for cloud infrastructures.

Machine learning-based models provide meaningful perspectives for root cause loca-
tion. However, the limitations come from two aspects. The first is labeled data limitation;
in the actual situation, it is hard to obtain sufficient anomaly cases for model training. The
second is interpretability, which is vital for the result of root cause location. Hence, engi-
neers need to understand the mechanism behind how the root cause is located; otherwise,
the outcome may not be trusted.

For causation-based analysis, one of the dominant methods for anomaly diagnosis is
to derive an automatic causality graph [5–7,28], then determine the root cause based on
the graph-based analysis. In these causality graphs, vertices are typically modeled as the
services, and oriented arcs indicate the microservices’ dependency. To capture the causality,
several causal inference methods are used. Refs. [5,6] exploit the PC algorithm [29] to build
a causality graph while considering the service availability and resource consumption.

Ref. [30] uses two causal inference models to derive a metric causality graph, where
the DirectLiNGAM method [31] is adopted to model the causality between resource metrics
and the Granger causality test [32] is used to infer the causality between resource and
service metrics. MicroCause [33] applies a variant of the PC algorithm to capture the time
order of metrics to metrics to construct the causality among metrics. Qiu et al. [34] propose
a root cause analysis method based on a knowledge graph and a causal search algorithm.
Furthermore, they describe how to construct a knowledge graph and improve the PC
algorithm. Nie et al. [35] propose an automatic diagnosis system based on a causality graph
and supervised learning, which require no expert knowledge and implementation details.

Based on the causality graph, different root cause determination methods are pro-
posed, and one of the common methods is the random walking algorithm. Refs. [4–6]
perform a random walk to pinpoint the possible root cause. The random walk starts
from the application frontend and makes a fixed number of iterations. At each iteration,
the probability of visiting a service in the neighborhood is proportional to the correlation
of its KPIs with those of the application frontend. The root cause is located based on the
visiting time of services, under the assumption that most visited services constitute the
most probable root causes for the anomaly. MS-Rank [5] proposes a hybrid influence graph
construction algorithm and introduces a new metric concept, which uses multiple types of
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metrics to discover the causal relationship between microservices. FacGraph [28] searches
for anomaly propagation subgraphs in the obtained causality graphs, each subgraph having
a tree-like structure, and the tree root is the frontend. Subgraphs’ anomaly scores are based
on the appearance frequency in the causality graphs. With a threshold mechanism, root
causes are returned as a set of leave services of the kept subgraphs. ServiceRank [36] uses a
second-order random walk to identify the root causes. Loud [8] uses the causality graph of
KPI metrics from the anomaly detection system directly and locates the faulty components
using different graph centrality algorithms. CauseInfer [37] uses the depth-first search
method to traverse the metric causal dependency graph of each microservice to obtain the
cause of the failure.

In different causality formulations, some researchers build dependent graphs from
the correlation analysis. MonitorRank [38] uses the historical and current time series
metrics, considering internal and external factors. It proposes a pseudo-anomaly clustering
algorithm to classify external factors and identifies anomalous services with a random
walk algorithm. MicroHECL [39] analyzes possible anomaly propagation chains and ranks
candidate root causes. FluxInfer [40] constructs a weighted undirected dependency graph
to represent the dependency relationships of anomalous KPIs, then applies a weighted
PageRank algorithm to localize root cause-related KPIs.

However, since a microservice system consists of diverse microservices with a large
amount of monitoring metrics, it is hard to capture the accurate dependency based on the
microservices’ invocation relationship and deployment relationship. Furthermore, the de-
pendency graph is not equivalent to the anomaly propagation graph. Hence, under diverse
anomaly types with different propagation situations, it is challenging to pinpoint the root
cause based on a static graph. For causality models, sufficient anomaly data volume is
required, but unfortunately, due to the actual situation, it is hard to collect enough anomaly
data to satisfy the requirements. Some methods require independent tests for all gathered
metrics, which may cause a significant overhead.

3. Model
3.1. Problem Formulation

The data analyzed in this paper are the metric data of microservice systems. Suppose
there are M microservices; for each microservice, N indicators (metrics) have been moni-
tored. When an anomaly occurs, given metric data in a certain time window T, our goal is
to locate which microservice is anomalous and what is the reason for the anomaly, i.e., the
root cause microservice mrc and root cause metric erc.

3.2. System Framework

In this paper, we propose an anomaly diagnosis framework based on a hierarchy
inference mechanism, named Hi-RCA, characterizing anomaly symptoms from a global
perspective. As shown in Figure 1, Hi-RCA mainly consists of two modules: Anomalous
Microservice Locator and Anomalous Reason Diagnoser. In the first module, based on the mon-
itored metric data of MSA, Anomalous Microservice Locator assesses all of the microservices’
abnormality based on the estimation error of the evaluated microservice’s metrics. In the
second module, given the anomalous microservice mrc, Anomalous Reason Diagnoser locates
the root cause of the anomaly based on graph comparison. Firstly, we transfer the anomaly
detection into an intervention recognition task, which not only detects anomalous metric
type, but also generates the anomaly knowledge graph. We adopt a structured causal
model to formulate the causal relationship between four meta-metrics and recognize the
anomalous metric types based on regression-based hypothesis testing. Then, Anomalous
Reason Diagnoser constructs the correlation-based anomaly propagation graph (CPG) based
on the metric correlation analysis, which regards all anomalous metrics as a whole for
anomaly analysis.



Appl. Sci. 2023, 13, 12126 5 of 15

Metric data Kalman filter
Abnormality

Evaluator
Anomalous

Microservice

Anomalous Microservice Locator

Intervention
Recognition

CPG
Construction

Graph
Comparison

Anomaly Knowledge Graph

CPG Root 
cause

Anomalous Reason Diagnoser

Figure 1. Hi-RCA anomaly diagnosis procedures.

3.3. Anomalous Microservice Locator

Since a microservice system consists of several microservices with various monitored
metrics, we propose a step-by-step diagnosis strategy to decrease the computational bur-
den. In the first module, the Anomalous Microservice Locator needs to find the anomalous
microservice among all microservices in the system. However, valuable information is
submerged in numerous monitoring data. A microservice has many monitored metrics
with various magnitudes, periodicity, etc. Customizing an anomaly evaluator for diverse
metrics is unrealistic. In this paper, we design an Anomalous Microservice Locator, adopting
Kalman filtering [41] and calculating the estimation error to evaluate metrics’ abnormality.

Kalman filtering is used for the following reasons. (1) There exists system noise in
the data collection process, causing burrs and fluctuations in normal data, which can be
smoothed with Kalman filtering. (2) When the system is in a normal condition, system
noise can be regarded as white noise; when an anomaly occurs, anomaly data will exhibit a
significant difference from normal data. Therefore, the optimal estimation based on normal
data will not be able to fit abnormal points, so we use the estimation error to quantify the
metric abnormality.

Kalman filtering [41]. Kalman filtering is an optimal state estimation process applied
to a dynamic linear system that involves random perturbations, and it has been widely
used in many areas of industrial, even complicated real-time applications.

Consider a linear system with a state space description

xk = Axk−1 + Buk−1 + ωk−1 (1)

Zk = Hxk + vk (2)

where A and B are known constant matrices. xk is the system state, i.e., the estimation
variable. ωk and vk are, respectively, unknown system and observation noise sequences. Zk
is the observed sequence. H is the state observation matrix. Then, the a priori estimation
x̂k− can be derived as

x̂k− = Ax̂k−1− + Buk−1 (3)

Pk− = APk−1 AT + Q (4)

The optimal estimation (i.e., a posteriori state estimation) of x is x̂k:

x̂k = x̂k− + Kk(zk − Hx̂k−) (5)

Pk = (I − Kk H)Pk− (6)

Kk =
Pk−HT

HPk−HT + R
(7)

where Pk is the estimate (error) covariance matrix, Kk is the Kalman gain, and it represents
the ratio of model predicted error and measurement error in the optimal estimation process.

Estimation error-based anomaly evaluation. Given the time window T, for a mi-
croservice i, the metric data of its jth metric (i.e., KPI) is a time series, XT

i,j.
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At time t, the monitored (observed) value is xt
i,j. At each time t, we compute the

optimal estimation x̂t
i,j. The anomaly severity of xt

i,j is computed as the estimation error
between the observed value xt

i,j and the estimated value x̂t
i,j:

st
i,j = |

xt
i,j − x̂t

i,j

x̂t
i,j

| (8)

For a microservice i, its anomaly severity of xt
i is denoted as the summarization of all

its KPIs:
st

i = ∑
j

st
i,j (9)

Then, based on the anomaly score, root cause microservice mrc is pinpointed as the
microservice with the highest anomaly score:

mrc = arg max
i

(st
i) (10)

3.4. Anomalous Reason Diagnoser

Given the anomalous microservice mrc, the target of the Anomalous Reason Diagnoser
is to diagnose the real reason for the anomaly (i.e., erc) among several anomalous metrics
caused by the anomaly propagation. Under multiple anomalous metrics, checking each
metric’s variation in isolation is insufficient, because the metric with the highest degree
of anomaly may not be the root cause, but one of the affected indicators. In Hi-RCA, we
focus on complex associations among various metrics, including causation and correlation.
To fully utilize their relationships, we propose a hierarchy approach to diagnose the root
cause gradually.

In the first phase, the Anomalous Reason Diagnoser identifies anomaly metric type based
on the metric causality analysis, which adopts the structural causal model to formulate the
causality relationship and recognizes anomalous metrics by the intervention recognition.
Furthermore, based on the recognition results, anomaly knowledge graphs are generated.
In the second phase, based on the correlation analysis, the Anomalous Reason Diagnoser
pinpoints the root cause metric and explains anomaly symptoms. Specifically, based on
the anomalous type of intervention recognition, we classify one type of metric into the
utilization group and the failure group, and compute the anomaly propagation graph
among different groups. Finally, the root cause is located based on the graph similarity
between CPG and the anomaly knowledge graph.

Intervention recognition. The invention recognition problem using Judea Pearl’s
“Ladder of Causation” [42]. The first layer of the causal ladder encodes the observation
knowledge L1(X) = P(X), where P(X) is the joint probability distribution. The second
layer encodes the interventional knowledge L2(m) = Pm, where Pm(X) = P(X|do(m))
and M ⊆ X. The do-operator do(m) means fixing variable M to the given values m, which
is defined as an intervention [43]. P(X|do(m)) denotes the probability distribution over X
under the intervention to M.

If we want to answer the question layer i, we need knowledge at layer i or higher.
We model the causal relations among meta-metrics using the structural causal model

(SCM) [43]. An SCM model consists of a set of structural equations

xk = fk(pa(Xk), uk) (11)

where xk ∈ X and pa(Xk) ∈ X, uk denotes unobserved variables Uk, Ui ∩ X = ∅. We
define the graph encoded by the SCM as G = (V , E), where E = {Xj → Xk|Xv ∈ pa(Xk)}
is the set of directed causal edges. Ch(Xk) = {Xv|Xk ∈ pa(Xv)} is the children of Xk.

In this paper, the root cause analysis problem is mapping to the intervention recogni-
tion problem. Normal data obey the observation distribution. The anomaly occurring in the
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microservice system is mapped into an unexpected intervention. Data with anomalies come
from the intervention distribution. Hence, the intervention recognition task is formulated
as [44].

Definition 1. (Intervention Recognition, IR). For a given SCM M, let L1 be the observational
distribution of M and Pm = P(X|do(m)) be the interventional distribution of a certain intervention
do(m). Intervention recognition is to find m based on L1 and Pm.

Theorem 1. (Intervention Recognition Criterion) Let G be a CBN and pa(Xk) be the parents
of Xk in G. Under the Faithfulness assumption, Xk is intervened iff Xk no longer follows the
distribution defined by pa(Xk), i.e., Xk ∈ M ⇔ Pm(xk|pa(xk)) 6= L1(xk|pa(xk)).

Intervention recognition-based anomaly detection. Since the observation data and
the intervention data come from two different distributions, instead of comparing two
distributions directly, the intervention recognition criterion is reformulated as hypothesis
testing, because it is difficult to obtain the complete distribution of the anomaly data.

Similar to [44], we use regression-based hypothesis testing to recognize the abnormal
metrics. Those metrics that no longer obey the normal distribution are identified as
anomalous metrics, i.e., xt

k � L1(xt
i |pa(t)(xk)). The regression model is used to calculate

the expected distribution L1(xt
i |pa(t)(xk)). We train a regression model for each variable

using the normal data, as the proxy fitting of the structural equation. We calculate the
residual of the regression value and observed value xt

k. We assume the residual follows
the normal distribution N(µε,k, σε,k). Metric xk is abnormal if its residual is out of the
normal distribution.

In order to perform efficient dependency construction from complex relationships,
Hi-RCA selects four meta-metrics to model and monitor dependent changes in causality
between metrics: workload, CPU utilization, memory utilization, and file system (fs)
utilization. The procedures of intervention are presented in Figure 2. As shown in Figure 2a,
we model the causal relationship between four meta-metrics; directed arrows denote the
causal relationships, and the dotted line indicates potential causation. In Figure 2b, we
present an example where the CPU node is intervened, then its causation changes, i.e., it
does not obey the distribution given its parent (workload) and generates new causations to
the fs node and memory node. Then, the CPU node is recognized as the intervened node,
i.e., anomalous node. Based on the intervened nodes, we construct the anomaly knowledge
graph for root cause localization.

(a) Causal graph

CPU

fs memory

workloadworkload CPU

fs memory

Intervent

(b) Intervention recognition (c) Skeleton

CPU

fs memory

CPU

memoryfs

(d) Anomaly knowledge graph

Figure 2. The processes of intervention recognition and anomaly knowledge graph construction.
(a,b) show the process of intervention recognition. (c,d) present the construction of an anomaly
knowledge graph.

Construction of anomaly knowledge graph (AKG). Based on the intervention recog-
nition task, we expand the causal graph G into the anomaly knowledge graph (AKG).
Assume the anomalous set O is recognized as the intervened nodes. For each node o,
the graph skeleton H is the intervened results, as shown in Figure 2c. Then, we expand
H into an AKG based on two rules. (1) For the same metric type, anomaly propagates
from the utilization group into the failure group. (2) For different metric types, anomaly
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propagates from the parent node’s failure group into the child node’s utilization group.
Figure 2d presents an example of AKG.

CPG-based anomaly diagnosis. Since there exist various anomalies with different
anomaly symptoms, we diagnose the root cause based on CPG, not the causality graph
owing to the following reasons. (1) The anomaly period is uncertain; under a short anomaly
period, it is unable to obtain the anomaly distribution, or use the existing causal inference
techniques to discover the metric causation. (2) Correlation is another type of metric
association that can characterize diverse anomaly symptoms.

Specifically, we divide one type of metric into two groups: resource utilization and the
failure group. For example, CPU-related metrics are divided into CPU usage groups and
CPU failure groups. Based on the anomalous data, we generate CPG, and the correlation
between groups is denoted as the maximum average correlation. In two different groups
GU and GV , for xu ∈ GU , xv ∈ GV , we compute the maximum correlation of different
groups, which represent the anomaly propagation direction, and the directed edges in CPG
demonstrate the probable process of anomaly propagation between metrics:

CU,V = maxu(
∑v Pearson(xu, xv)

|GV |
) (12)

Here, we choose a threshold-based method; edges with correlation CU,V higher than
the threshold α are selected. Then, we generate the correlation-based propagation graph,
which denotes the anomaly propagation among different metric groups. Based on CPG, we
compute the graph similarity between the CPG and anomaly knowledge graphs.

Finally, we compute the graph similarity between the real-time CPG and AKG to
pinpoint the root cause. The graph similarity of two graphs Gi and Gj is defined as

SimGi ,Gj = |
EGi ∩ EGj

EGj

| (13)

where EGi denotes the edge set of graph Gi. The root cause erc is pinpointed as the metric
that has the highest similarity score of its anomaly knowledge graph and CPG.

4. Experiment
4.1. Experiment Setup

Dataset Description. In this paper, we focus on resource-type failures, such as CPU
hog, memory leak, etc. We used three datasets A, B, and C, published by the AIOps
Challenge 2022 [45], containing 164 resource failures in total. Dataset A contains 59 failures,
dataset B contains 50 failures, and dataset C contains 55 failures. The main difference
between these datasets is their deployment relationship. All of the datasets are collected
from a widely used open microservice system, Hipster-Shop [46], a web-based e-commerce
app that consists of 10 microservices.

Evaluation Metrics. To quantify the performance of each system, we use the following
performance metric. Precision at top k denotes the probability that the top k results given
by a system include the real root cause, denoted as PR@k. A higher PR@k score, especially
for small values of k, represents that the system correctly identifies the root cause. Let R[i]
be the rank of each cause and erc be the set of root causes. More formally, PR@k is defined
on a set of given anomalies A as

PR@k =
1
|A| ∑

a∈A

∑i<k(R[i] ∈ erc)

(min(k, |erc|))
(14)

4.2. Evaluation of Anomalous Microservice Locator

In this subsection, we discuss the effectiveness of Anomaly Microservice Locator. In
Figure 3, we present the performance of Hi-RCA in anomalous microservice location in
different datasets. It shows that Hi-RCA can achieve almost 90% in terms of PR@1, it can
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effectively locate all root causes in the top three anomaly services, and its performance
achieves almost 100% in terms of PR@3.

Figure 3. Precision of anomaly microservice location in different datasets.

Since the anomalous microservice location is the middle process in Hi-RCA, we com-
pare its performance with other baseline methods to illustrate its effectiveness. We choose
three different anomaly detectors; for each microservice, its abnormality is quantified as the
amount of its anomalous metrics. The root cause microservice is defined as the microservice
with the highest abnormality severity.

Baseline anomaly detectors.

• Quantile anomaly detector [47] compares each time series value with historical quantiles.
In our experiment, we detect anomalies if their value is above 99% or below 1%.

• Level-shift anomaly detector [47] detects a shift of value level by tracking the difference
between median values at two sliding time windows next to each other.

• Cauchy detector [48] detects an anomaly by comparing the current value and the
history-smoothed value in a sliding window.

As presented in Table 1, it can be observed that our Anomaly Microservice Locator
designed based on Kalman filtering achieves the best accuracy. The reason is that a
single anomaly detector can only obtain one type of anomaly and fails to capture various
anomalies with different symptoms. Without the consideration of noise in data collection,
the detection precision is more vulnerable to false alarms.

Table 1. Effectiveness of Kalman filtering with ablation experiments.

Method
Dataset A Dataset B Dataset C

PR@1 PR@2 PR@3 PR@1 PR@2 PR@3 PR@1 PR@2 PR@3

Quantile 0.25 0.29 0.37 0.26 0.42 0.48 0.27 0.31 0.35
Level-shift 0.66 0.76 0.78 0.82 0.84 0.90 0.71 0.80 0.85

Cauchy 0.73 0.86 0.90 0.84 0.96 0.96 0.82 0.87 0.89
Kalman filtering 0.88 0.95 0.98 0.96 0.98 1.0 0.93 0.96 0.98

4.3. Evaluation of Hi-RCA

In this subsection, we evaluate the effectiveness of our method by comparing it with
five baseline methods (RS, Loud, Cauchy, MicroDiag, MicroDiag-V1) and ablation experi-
ments.

Baseline methods.

• MicroDiag [30]: MicroDiag locates the culprit metric based on the metric’s causality
graph. It identifies the potential propagation among components first, considers differ-
ent methods of anomaly propagation, and uses two types of causal inference methods
to construct the propagation graph among different components and metrics. The root
cause metric is localized based on the PageRank algorithm of the causality graph.
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• MicroDiag-V1: Since MicroDiag directly locates the root cause metric from diverse
components, to eliminate the distractions of diverse microservices, we implement it in
a simplified scenario where the anomalous microservice has been located, to compare
the effectiveness of MicroDiag.

• Loud [8]: Loud localizes the culprit metrics based on a propagation graph of anomalous
metrics. The graph is constructed by the Granger causality test of metrics. To im-
plement Loud, the anomalous metrics are chosen by the Cauchy Detector [48], the
propagation graph is built using the Granger test, and the root cause is located based
on the PageRank result of the propagated graph with weighted edges.

• Cauchy [48]: An anomaly detector that can quantify the time series abnormality and
detects an anomaly by comparing the current value and the history-smoothed value
in a sliding window. We compute all metrics’ Cauchy anomaly scores and locate
the metric with the highest anomaly score as the root cause. Cauchy is chosen as a
baseline to show the result where metrics are observed in isolation, regardless of the
association between them.

• Random Selection (RS): Random selection is a method engineers use when lacking
domain-specific knowledge of the system. Every time, they randomly select an
unchecked metric to investigate until the root cause is found.

We apply Hi-RCA and five baseline methods to all anomaly cases and obtain their
performance in terms of PR@1, PR@2, and PR@3, as shown in Table 2. We can see that none
of these methods can pinpoint the culprit metric in the top one of the ranked list. However,
compared to the best baseline method MicroDiag-V1, our Hi-RCA achieves 48%∼64%
precision improvement in PR@1.

Table 2. Performance of Hi-RCA with baseline and ablation experiments.

Method
Dataset A Dataset B Dataset C

PR@1 PR@2 PR@3 PR@1 PR@2 PR@3 PR@1 PR@2 PR@3

RS 0.03 0.08 0.19 0.14 0.14 0.18 0.05 0.15 0.18
Loud 0.29 0.34 0.39 0.18 0.34 0.38 0.31 0.36 0.38

Cauchy 0.15 0.2 0.24 0.14 0.16 0.18 0.11 0.16 0.24
MicroDiag 0.22 0.46 0.64 0.24 0.48 0.66 0.22 0.53 0.76

MicroDiag-V1 0.27 0.54 0.71 0.22 0.38 0.6 0.22 0.45 0.84
Hi-RCA 0.75 0.85 0.88 0.86 0.89 0.98 0.76 0.8 0.89

Hi-RCA-w/o-1 0.75 0.75 0.85 0.82 0.90 0.92 0.73 0.78 0.82
Hi-RCA-w/o-2 0.07 0.25 0.32 0.2 0.32 0.38 0.11 0.25 0.29

Comparisons. Results of MicroDiag show the challenge of root cause localization.
Different from Hi-RCA, which pinpoints the anomalous microservice first, MicroDiag
directly finds the root cause metric from diverse components. It is difficult to construct
complete and accurate causal relationships from the original time series data, owing to the
following reasons. (1) Metric data are collected with the background noise. (2) The anomaly
not only propagates to related metrics, but also dependent components, and hence, it is
challenging to construct an accurate propagation graph under the interference both from
affected microservices and metrics. Even given the anomalous microservice, MicroDiag-V1
cannot accurately pinpoint the root cause metric. The reason is that the relationships among
metrics are complex, and consist of causal relationships and correlation relationships. If the
length of anomaly data is a short window, such as 5 min, causal inference techniques are
unable to construct an accurate metric causality graph for effective root cause localization.

Results of Loud show inefficiencies in locating anomalies, because Loud constructs
the metric graph among all metrics, but given various monitored metrics with complex
relationships, only focusing on the causal relationship is insufficient, since there may not
be causality between some metrics, but only correlation. The Granger causality test model
used in Loud only analyzes the causal relationship between two metrics, ignoring the
complete causal structure. Loud only constructs the metric-propagated graph by relying on
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the Granger test result, which may add spurious causal relations among metrics, reducing
its efficiency in root cause localization.

Results of Cauchy show that directly pinpointing the root cause metric based on
the metric value variation is ineffective, because Cauchy only detects the metrics’ value
variation, ignoring the metrics’ inter-relationship. Owing to the dependent nature of
microservices, the anomaly from the root cause metric will propagate to related metrics
and dependent microservices, causing many anomalous metrics and microservices. One of
the challenges of root cause localization is that there exist different symptoms for different
anomaly types; hence, only depending on the metric value variation is one-sided, as it
cannot pinpoint the root cause from diverse anomaly symptoms.

Ablation Study. We study the main modules of Hi-RCA by removing each of them or
using a variant version. We compare Hi-RCA with its two ablation experiments as follows.

• Hi-RCA-w/o-1: Hi-RCA algorithm without the causal inference, i.e., the anomaly
knowledge graph is constructed as a static knowledge graph manually, not from the
intervention recognition task used in Hi-RCA. Then, the reason for the anomaly is
inferred based on the graph comparison between CPG and the static knowledge graph.

• Hi-RCA-w/o-2: Hi-RCA algorithm with a variant version of the Anomalous Reason
Diagnoser, instead of the graph comparison method. The root cause is located based
on the PageRank algorithm [49] in the CPG where nodes are the anomaly metrics and
edges denote their dependencies.

The performance of the ablation study, in terms of PR@1, PR@2, and PR@3, is pre-
sented in Table 2. From the performance comparison between Hi-RCA and Hi-RCA-w/o-1,
it is observed that the causal inference that recognizes anomalous metrics is better than
the isolated anomaly evaluation methods, such as the 3-sigma method. The performance
degradation of the Hi-RCA-w/o-2 demonstrates the efficacy of CPG, which demonstrates
the necessity for characterizing the anomaly from a multiple-metric perspective. The
root cause metric based on the PageRank algorithm cannot pinpoint the real reason accu-
rately, because the anomaly propagates to dependent metrics, causing several anomalous
metrics. Without anomaly analysis from a global view, it is hard to diagnose the reason
for anomalies.

4.4. Discussion

In this subsection, we first discuss the performance impact of experiment parameters
in Hi-RCA, and then analyze the overhead and limitations of Hi-RCA.

Parameters. In Hi-RCA, there are two main parameters: time window length l of
Kalman filtering in the Anomalous Microservice Locator and anomaly threshold α in the CPG
construction process. For time window length l, which denotes the data length used in
Kalman filtering, we observe the PR@1, PR@2, and PR@3 precision of all datasets with
increasing l from 10 min to 60 min. As shown in Figure 4, the longer the data length we use,
the lower the precision of the root cause microservice localization. The reason is that with
the data length increasing, Kalman filtering tends to fit the data distribution on long-time
data, which may contain bigger noise, which decreases the diagnosis performance. In Hi-
RCA, we set l as 10, i.e., data length of 10 min, which is easy to realize in practical systems.

For the threshold of anomaly propagation, i.e., α, we observe the PR@1, PR@2, and
PR@3 precision of all datasets with increasing α from 0.5 to 0.98. As shown in Figure 5a,
we present location performance with α ranging from 0.5 to 0.9. It can be observed that
the precision of diagnosis does not increase with the threshold increasing, because a small
threshold will select many normal relations as the anomaly propagation, which decreases
the location performance. As shown in Figure 5b, we present location performance with
α ranging from 0.9 to 0.98. It can be observed that the precision of diagnosis decreases as
the threshold increases, because a larger threshold denotes a stricter definition of anomaly
propagation, which may miss the true anomaly propagation. In Hi-RCA, we set α as 0.9,
which may not be suitable for other microservice systems. In other systems, the threshold
can be set as the maximum score obtained from normal data.
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minute

Figure 4. Precision variation with different length of time window in Anomaly Microservice Location.

(a) (b)
Figure 5. Precision variation with different value of anomaly propagation threshold α. (a) Perfor-
mance with α ranges from 0.5 to 0.9; (b) performance with α ranges from 0.9 to 0.98.

Overhead. Since the Anomalous Microservice Locator processes all of the metric data,
while the Anomalous Reason Diagnoser only analyzes anomalous metrics of the root cause
microservice, the overhead of Hi-RCA is mostly caused by Kalman filtering, which is
the main algorithm in the Anomalous Microservice Locator. From [50], the complexity of a
single application of Kalman filtering is denoted as O(p2.4 + q2), where p is the dimen-
sion of observation, which is 10 in Hi-RCA; q is the number of states, which is 1 in the
one-dimensional time series. The factor 2.4 comes from matrix inversion. In the Anomalous
Microservice Locator, all of the microservices’ monitored metrics are processed. Therefore,
the total complexity is M ∗ N ∗O(p2.4 + q2), where M is the number of microservices in the
system, and N is the number of monitored metrics. For large-scale systems, Hi-RCA can
be implemented with other anomaly detection methods to narrow the anomaly scope and
shorten the evaluation time.

Limitations. In the Anomalous Microservice Locator, we adopt a Kalman filtering to
quantify microservice anomaly, based on two assumptions. (1) Metrics come from a linear
system and (2) data noise obeys the Gaussian distribution. Although these are not strong
assumptions, there may exist other systems that do not satisfy the above assumptions.
In the Anomalous Reason Diagnoser, we transfer the anomaly metric classification as the
intervention recognition task; owing to the complex relationship of metrics, we only choose
four meta-metrics, and we consider expanding the causal graph in our future work.

5. Conclusions

In this paper, we propose a hierarchical anomaly diagnosis method, Hi-RCA. In
Hi-RCA, the anomaly symptoms are analyzed based on a global perspective where the
metric relationships are sufficiently utilized. In the first phase, we design a self-contrastive
anomaly quantification method requiring no expert knowledge or handcraft parameters.
Based on Kalman filtering, Hi-RCA locates the anomalous microservice based on the
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estimation error of all its metrics. In the second phase, we focus on the change of inter-
dependence of metrics by analyzing the causation and correlation. Firstly, we focus on
the causality change to infer the anomalous nodes based on the intervention recognition.
Secondly, we construct two types of graphs: (1) the anomaly knowledge graph based on
the intervened nodes and (2) the anomaly propagation graph based on the correlation
analysis. Finally, the root cause is located based on the comparison of two types of graphs,
and the anomaly propagation graph is able to explain how the anomaly propagates in
related metrics. Experimental evaluations in open datasets demonstrate that Hi-RCA can
accurately localize root causes without labeled data or human intervention.

The indicator data analyzed by Hi-RCA are time series data, a common type of
monitoring data. Therefore, Hi-RCA can be migrated to other similar systems, such as the
Internet of Things and cloud-based systems. In future works, we will research the causal
inference mechanism, and extend the causal graph to more types of metrics, to improve the
anomaly diagnosis performance.
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