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Abstract: In the context of the rapid evolution of financial markets, the precise prediction of stock
prices has become increasingly complex and challenging, influenced by a myriad of factors including
macroeconomic indicators, company financial conditions, and market sentiment. A model integrating
modern machine learning techniques has been introduced in this study, aimed at enhancing the
accuracy of stock price prediction. To more effectively capture long-term dependencies in time series
data, a novel memory attention module has been innovatively integrated and a unique long-distance
loss function has been designed. Through a series of experimental validations, the effectiveness and
superiority of this model in the realm of stock price prediction have been demonstrated, especially
evident in the R2 evaluation metric, where an impressive score of 0.97 has been achieved. Furthermore,
the purpose, methodology, data sources, and key results of this research have been elaborately
detailed, aiming to provide fresh perspectives and tools for the field of stock price prediction and
lay a solid foundation for future related studies. Overall, this research has not only enhanced the
accuracy of stock price prediction but also made innovative contributions in terms of methodology
and practical applications, bringing new thoughts and possibilities to the domain of financial analysis
and prediction.

Keywords: financial forecast; memory attention; long-distance loss; stock price predictions

1. Introduction

In global financial markets, the prediction of stock prices has been consistently at the
forefront of research and commercial applications. Stock prices are influenced by a myriad
of intricate factors, including macroeconomic indicators, corporate financial reports, politi-
cal events, and market sentiment. An accurate and timely prediction of stock prices holds
significant importance for investors, fund managers, and financial institutions, as it aids in
formulating investment strategies, risk management, and maximizing investment returns.

Due to the uncertainty and complexity of stock markets, conventional prediction
methods, such as time series analysis and linear regression, might fall short in providing
highly accurate forecasts in certain scenarios. For instance, it was found by Liu et al. [1]
that the Fuzzy Time Series (FTS) prediction method, which relies solely on historical
features, fails to accurately forecast stock prices owing to the influence of public opinion
and supply chains. To address this, a feature extraction method based on the industry chain
network FTS was proposed for the time series prediction of multiple stocks. The outcomes
indicated an effective enhancement in accuracy using this method. Behera, Jyotirmayee
et al. [2] conducted a comparison using Random Forest, XGBoost, AdaBoost, Support Vector
Regression (SVR), K Nearest Neighbor (KNN), and other machine learning algorithms,
revealing that the performance of conventional predictive methods for stock regression
was subpar.
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With the advancement of big data and machine learning technologies in recent
years [3–6], an increasing number of researchers have embarked on exploiting these sophis-
ticated technologies for analyzing and forecasting the stock market [7–10]. For instance, a
deep transfer learning model with attention mechanism, called IDTLA, was introduced by
He et al. [11] to address the challenge deep learning models face when predicting compa-
nies newly launched in the stock market. The superiority of their model was demonstrated
on three datasets. A hybrid deep learning model named CEEMDAN-DAE-LSTM was
proposed by Lv et al. [12], which leveraged the LSTM network to predict the stock returns
of the next trading day. While the model showcased better performance for noisy stock
predictions, it was based on a rather singular dataset with limited feature diversity.

Deep learning, particularly the application of the Transformer [13–16] structure and
attention mechanisms, has showcased performance surpassing traditional techniques
across various tasks. In the financial domain, Wang et al. [17] harnessed the Transformer for
predicting stock market indices, outperforming other conventional deep learning models.
Zeng et al. [18] combined CNN with Transformer to establish a time series model (CTTS)
capturing both short-term patterns and long-term dependencies. Xu et al. [19] introduced a
novel Transformer model for financial time series prediction, simplifying the Transformer
and integrating the attention mechanism.

Nevertheless, the financial sector poses its unique challenges, distinct from other
domains. Financial data are typically characterized by high noise levels, non-linearity, and
non-stationarity. In this study, a high-precision stock price prediction method based on
the Transformer is presented. The self-attention mechanism of the Transformer is utilized
to capture long-distance dependencies in stock data. Moreover, a novel memory atten-
tion module has been incorporated to enhance the model’s memory capacity, facilitating
better handling of intricate patterns in financial data. A new loss function, termed the
long-distance loss, has also been designed to further enhance the predictive precision of
the model. This study aims to offer a novel, more accurate, and reliable tool for stock
price prediction.

2. Literature Review
2.1. Attention Mechanism

The attention mechanism has emerged as a significant technique in the domain of deep
learning in recent years [13,20,21]. Its primary objective is to allocate different attention
weights to various portions of the input data, enabling models to focus more on information
that is vital for specific tasks. The crux of the attention mechanism lies in computing a
weight distribution, subsequently utilizing this distribution to conduct a weighted sum-
mation of the input data, culminating in a weighted representation. This representation
captures pivotal information in the input data pertinent to the current task.

Within the realm of computer vision, a quintessential application of the attention
mechanism is the Squeeze-and-Excitation Network (SENet) [20], as shown in Figure 1.

Figure 1. Illustration of the attention mechanism in SENet [20].

The SENet attains a global feature descriptor by globally pooling the feature map.
Following this, a transformation is conducted via two fully connected layers, resulting in
a weight distribution. This distribution is employed to modify the significance of each
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channel in the original feature map. Specifically, for a feature map X ∈ RH×W×C, the SENet
first calculates a channel descriptor:

z = GlobalPooling(X) (1)

Subsequently, a weight distribution is derived through two fully connected layers:

α = σ(W2ReLU(W1z)) (2)

Here, σ represents the sigmoid activation function, and W1 and W2 are the weights of
the fully connected layers. Lastly, the original feature map is weighted using the weight
distribution α:

X′ = α� X (3)

In this context, � signifies element-wise multiplication.
In tasks related to natural language processing, the attention mechanism was ini-

tially employed for sequence-to-sequence models in machine translation [13], as shown
in Figure 2. In such models, the encoder first encodes the source language sentence into a
fixed-length vector. The decoder then exploits this vector to generate the sentence in the
target language. The attention mechanism facilitates the decoder in focusing on diverse
portions of the source sentence during the generation of each word. Specifically, given the
encoder’s output H ∈ RL×d, where L denotes the length of the source sentence and d is the
feature dimension, the attention weight αt for the hidden state st of the decoder at time t is
computed as:

et = tanh(Wh HT + Wsst) (4)

αt = softmax(et) (5)

Figure 2. Illustration of the attention mechanism in Transformer [13].

Following this, the encoder’s output is weightedly summed using the attention weight
αt, resulting in a context vector ct:

ct = αt · H (6)

This context vector ct is then used in tandem with the decoder’s hidden state st for
output generation.
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For time series prediction tasks, such as stock price prediction, as discussed in this
work, the attention mechanism aids the model in emphasizing historical data that are most
pertinent to the current prediction timestamp. Specifically, given the features of the past n
timestamps X ∈ Rn×d, for the current hidden state s, an attention weight distribution can
be computed as:

e = tanh(WxXT + Wss) (7)

α = softmax(e) (8)

Subsequently, the past features are weightedly summed using the attention weight α,
deriving a context vector:

c = α · X (9)

This context vector c encapsulates information from past data most correlated with
the current prediction timestamp, thus bolstering the model’s predictive accuracy.

In summation, regardless of the task being related to computer vision, natural language
processing, or time series prediction, the attention mechanism equips models with a
potent means to emphasize information that is highly relevant to the current task, thereby
enhancing model performance.

2.2. Transformer-Based Method Application in Stock Price Prediction

The Transformer architecture, due to its remarkable performance in the domain of
natural language processing, has garnered widespread acclaim [13,14]. In recent years, it
has been incrementally applied to time series predictions, especially in financial contexts
such as stock price forecasting [22]. In this section, the principles of time series prediction
methods based on the Transformer will be elucidated, followed by a discussion of its appli-
cation and advantages in the context of stock price prediction. Central to the Transformer
is the self-attention mechanism, which allows the model to consider all positions in the
input sequence when generating outputs, thus capturing long-range dependencies. For
time series tasks such as stock price prediction, the ability to process these long-distance
dependencies is pivotal, given that market shifts may be influenced by events from a distant
past, as shown in Figure 3.

Figure 3. Application of Transformer used in series data.

Assuming there is a time series of stock price data X = (x1, x2, . . . , xt), where xi
denotes the stock features on the ith day, the aim is to predict the stock price on day t + 1.
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Within the Transformer, the self-attention mechanism initially computes a query vector qi,
a key vector ki, and a value vector vi for every position in this sequence:

qi = Wqxi (10)

ki = Wkxi (11)

vi = Wvxi (12)

Here, Wq, Wk, and Wv are weight matrices to be learned. Subsequently, for the query
vector qi at each position, dot products are performed with all key vectors k j, which are
then converted to weights via the softmax function:

αij = softmax

(
qi · kT

j√
dk

)
(13)

In this equation, dk represents the dimension of the key vector. These weights, αij,
dictate the attention allocated to the jth day input when generating the output for the ith

day. Through these weights, a context vector ci, which is a weighted representation of the
entire input sequence, is derived:

ci = ∑
j

αijvj (14)

This context vector ci provides a weighted representation concerning the entire input
sequence, which is subsequently used for the prediction of the stock price on day t + 1.
In stock price prediction applications, the self-attention structure of the Transformer of-
fers several principal advantages. Primarily, it captures the long-distance dependencies
inherent in stock price data, a feat challenging for traditional architectures such as RNNs
or LSTMs. Additionally, unlike RNNs, which process sequentially, the Transformer can
handle the entire sequence in parallel, vastly enhancing computational efficiency. Moreover,
the multi-head attention mechanism permits the model to discern patterns in the data
from multiple perspectives, thereby bolstering its representational power. In conclusion,
Transformer-based time series prediction methods present a potent and efficient tool for
stock price forecasting. Through the self-attention mechanism, it adeptly captures intri-
cate patterns and long-distance relationships within stock price data, culminating in more
accurate predictions.

3. Data and Method
3.1. Data

This section elaborates on the methods employed for the collection and preprocessing
of the S&P 500 tech stocks data over the past 30 years, along with the mathematical
principles involved and the significance of preprocessing.

3.1.1. Data Retrieval

The stock data of the S&P 500 tech stocks primarily originate from multiple publicly
accessible financial data websites and application programming interfaces [23], such as
Yahoo Finance and Google Finance. Owing to the comprehensive and continuously updated
stock trading data these platforms provide, they were chosen as the primary sources for data
extraction. Utilizing Python web scraping libraries such as ‘requests’ and ‘BeautifulSoup’,
the required stock data can be periodically retrieved from these websites.

Initially, hypertext transfer protocol requests are dispatched to the target websites us-
ing the ‘requests’ library, obtaining the page content. Subsequently, the retrieved hyperText
markup language content is parsed using the ‘BeautifulSoup’ library to extract relevant
stock trading data, including opening price, closing price, highest price, lowest price, and
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trading volume. Following this method, stock data for the S&P 500 tech stocks spanning
nearly 30 years were consistently gathered.

3.1.2. Data Preprocessing

Preprocessing is a crucial step in machine learning and deep learning projects. In the
context of stock data, raw data might exhibit missing values, noise, or other inconsistencies
due to various factors. Consequently, preprocessing proves to be vital for the stock price
prediction task. Addressing missing values ensures data integrity and continuity, offering
the model a more stable input. Furthermore, data normalization and smoothing can elimi-
nate noise and short-term fluctuations in the data, allowing the model to more effectively
capture long-term trends. Additionally, normalized data stabilize gradient descent during
model training, accelerating model convergence.

1. Missing Value Handling: Firstly, the presence of missing values in the data is exam-
ined. In the case of stock data, some trading days might be missing due to various
reasons. Multiple strategies are available for addressing these missing values, such as
deleting rows with missing values, filling gaps using the average value of preceding
and succeeding days, or employing time series prediction models for estimation. In
this study, gaps are filled using the average value of the previous and next days since
this method maintains data continuity and is relatively straightforward.

2. Data Normalization: Considering the potential for a vast range of values in stock data,
with trading volumes possibly reaching several millions while prices might range
from tens to hundreds, it is customary to normalize data prior to model input, com-
pressing all data between 0 and 1. This can be achieved using Min-Max normalization,
expressed mathematically as:

xnorm =
x− xmin

xmax − xmin
(15)

where x denotes the raw data and xmin and xmax represent the minimum and maxi-
mum values of the data, respectively.

3. Data Smoothing: Stock data might exhibit short-term fluctuations. To counteract
these effects and better discern long-term trends, the moving average method can be
employed for data smoothing. A window size, for instance, five days, is determined.
Subsequently, the average stock data value within this window is computed to rep-
resent the value for the day. This method effectively smoothes the data, minimizing
short-term fluctuations that might otherwise interfere with the model.

3.2. Proposed Method

A time series prediction model based on the Transformer structure was designed in this
study, and two core innovations were introduced: the integration of the memory Attention
mechanism to enhance the model’s ability to recall trends within a specific interval and the
implementation of the long-distance loss function to further strengthen the model’s grasp
of long-term trends.

Initially, a time series prediction model was developed based on the Transformer
structure. The inherent self-attention mechanism of the Transformer allows the model,
when generating outputs, to consider all positions within the input sequence, thereby
capturing long-distance dependencies. This provides a potent tool for time series data,
especially for stock price prediction. The model’s input consists of stock features from
historical periods, such as opening price, closing price, highest price, lowest price, and
trading volume. In contrast, the output predicts stock prices for a future time frame.
Furthermore, although the Transformer’s self-attention mechanism already possesses
the capability to handle long-distance dependencies, for actual stock prediction tasks,
there is a need for the model to have a more robust memory capacity for past trends.
Consequently, the memory Attention mechanism was proposed. The central premise
behind this mechanism is introducing a memory unit to the model, allowing it to store and
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recall vital past information. During the self-attention computation process, in addition
to the current query, key, and value, information from the memory unit is also taken into
account. This ensures that when the model determines attention weights, it considers not
just the current input but also pivotal past information, thereby enhancing its recall ability
for trends within a specific interval. Finally, to further strengthen the model’s grasp of long-
term trends, a long-distance loss function was designed. Traditional loss functions, such
as the mean squared error, primarily focus on the model’s prediction error for each time
point but overlook the relationships between different time points. In contrast, the long-
distance loss function recognizes this relationship, particularly concerning long-term trends.
Specifically, this loss function not only takes into account the model’s prediction error for
each time point but also incorporates a penalty term for trend relationships between distant
time points. This ensures that the model, during the training process, places greater
emphasis on long-term trends rather than just focusing on short-term prediction accuracy.

By integrating the aforementioned innovations, a comprehensive stock price predic-
tion model was designed. At the model’s input end, historical stock feature data are
incorporated, as shown in Figure 4. After processing through the Transformer structure,
data are encoded into an intermediate representation. This representation captures short-
term information, and due to the memory Attention mechanism and the long-distance
loss function, it also seizes long-term trends. Ultimately, the model’s output end provides
a prediction for stock prices over a future period. Theoretically, the memory Attention
mechanism grants the model the ability to recall long-term trends, while the long-distance
loss function ensures these trends are captured during training. These two innovations
complement each other, allowing the model to excel in the stock price prediction task.

Figure 4. Illustration of the whole method proposed in this paper.

3.2.1. Memory-Transformer

With the rapid advancements in deep learning techniques, the Transformer model has
demonstrated superior performance across various domains, particularly in the realm of
natural language processing. However, for time series data, especially in the context of
stock price prediction, relying solely on the Transformer might be insufficient. In response
to this challenge, this research introduces the Memory-Transformer model. Distinct from
the conventional Transformer, the pivotal innovation of the Memory-Transformer is the
incorporation of a memory unit. The primary intention behind this memory unit is to
facilitate the model’s capability to retain and recall historical data over extended periods.
In the financial market, prolonged historical data often encapsulate invaluable insights,
which are crucial for predicting future stock trends, as illustrated in Figure 5.
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Figure 5. Illustration of the Memory-Transformer architecture.

Mathematically, we utilize a time series of stock data X = (x1, x2, . . . , xt), where xi
denotes the stock features of the i-th day. In the standard Transformer model, for every time
point, a query vector qi, a key vector ki, and a value vector vi are computed. In contrast,
the Memory-Transformer introduces an additional memory vector mi derived from the
memory unit:

mi = f (M, xi) (16)

Here, M represents the entire memory unit and f is a function designed to extract
memory associated with the current time point xi. When computing self-attention weights,
the Memory-Transformer considers not only the query, key, and value information from the
current input but also integrates the memory vector mi. Specifically, the attention weight
computation is given by:

αij = softmax

(
qi · (k j + mj)

T
√

dk

)
(17)

Noticeably, the key vector k j is augmented here, amalgamated with the memory vector
mj. This ensures that when determining attention weights, the model not only contemplates
the current input but also prior pivotal information. This design is profoundly significant.
In the stock market, current prices are often influenced by pivotal past events. Such events
might not only pertain to recent occurrences but could date back significantly. By integrating
the memory unit, the Memory-Transformer captures these long-standing historical trends,
leading to more accurate predictions. Furthermore, introducing the memory unit not only
amplifies the model’s long-term memory capacity but also expedites its convergence rate.
The model no longer necessitates learning all historical information from scratch, instead
leveraging information already retained in the memory unit.

For tasks such as stock price prediction, the Memory-Transformer exhibits distinct
advantages over the standard Transformer. Primarily, it excels at capturing long-term
historical trends, an aspect where conventional RNNs or LSTM structures might falter.
Additionally, by processing the entire sequence in parallel, it retains the computational
efficiency intrinsic to the Transformer. Lastly, in conjunction with the memory unit and
long-distance loss function, it places enhanced focus on long-term trends during training,
aiming for precise predictions. In summary, the Memory-Transformer, with its memory unit
incorporation, not only amplifies the model’s long-term memory prowess but also upholds
the Transformer’s computational efficiency and representational strengths, positioning it as
an ideal choice for stock price prediction tasks.
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3.2.2. Memory Attention Module

The Memory Attention module stands as a pivotal component within the Memory-
Transformer model. This module was innovatively conceived to facilitate the model’s
capability to capture and retain long-term dependencies inherent in time series data. To
achieve this end, a distinctive memory unit has been introduced. When integrated with the
conventional self-attention mechanism, as shown in Figure 6, they collectively enable the
capture of enduring trends.

Figure 6. Illustration of the Memory Attention module.

Diving deeper into the architecture, the memory unit is conceptualized as a matrix
M ∈ Rd×n, where d represents the dimensionality of each memory item and n indicates the
total number of memory items the unit can store. Every memory item, denoted by mi ∈ Rd,
corresponds to data information at a specific time point ti. At each time step, an update
to the memory unit is executed. Specifically, given the current input xt and its associated
hidden state ht (originating from the Transformer’s encoder), the memory unit’s update
can be expressed as:

Mnew = Update(M, ht, xt) (18)

In the above, Update serves as a function tasked with selectively updating certain
memory items in the memory unit based on the current input and hidden state. Such a
design ensures that the model retains pivotal information beneficial for prediction while
discarding inconsequential or redundant data. Moving forward, the process of leveraging
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this memory unit within the self-attention mechanism is elaborated. Contrasting with the
traditional self-attention mechanism, the primary distinction of the Memory Attention
mechanism is its consideration of the memory unit’s information when calculating attention
weights. Specifically, for every query vector qi, dot-product operations are conducted not
just with all key vectors k j of the current time step but also with all memory items within
the memory unit. Hence, the formula for the attention weight computation is:

αij = softmax

(
qi · (k j + Mj)

T
√

dk

)
(19)

Here, Mj designates the j-th memory item within the memory unit. By adopting such
an approach, the model, when determining attention weights, takes into account not only
the current input information but also incorporates pivotal information from the past.

The mathematical rationale behind this design is its empowerment of the model to
effectively capture long-term dependencies. As the model processes data at a specific time
point, it integrates both current information and crucial details from previous instances.
This integration aids the model in comprehending the contextual backdrop of the current
data, leading to enhanced predictive accuracy. Moreover, from an application perspective,
this design showcases significant advantages in the domain of stock price prediction. In the
realm of stock markets, current prices are often influenced by critical past events, which
could be scattered across an extended timeline. By introducing a memory unit, the Memory
Attention module aids the model in pinpointing these dispersed pivotal events, thereby
offering a more comprehensive understanding of the current market scenario and yielding
more accurate predictions.

3.2.3. Long-Distance Loss

In deep learning models, the loss function plays a pivotal role, serving as an optimiza-
tion target and influencing the learning process of the model. For time series prediction
tasks, such as stock price forecasting, capturing long-term trends and dependencies is
crucial. However, the loss function utilized in standard Transformer models, such as Mean
Squared Error (MSE), predominantly focuses on the prediction error at each time point and
might not adequately capture long-term trend information. To address this challenge, this
study introduces a novel loss function termed “Long-Distance Loss”. This loss function
not only considers the prediction error at each time point but also integrates long-term
trend information, thereby effectively capturing long-term dependencies in time series data.
Specifically, assuming the model’s predicted value at time point t is ŷt and the actual value
is yt, the loss based on MSE is computed as:

LMSE(t) = (ŷt − yt)
2 (20)

In the Long-Distance Loss, an error term associated with long-term trends is further
incorporated. To compute this error term, a time window w is first defined. Then, for each
time point t, the discrepancies between predicted and actual values from t− w to t are
considered to compute their cumulative error:

Et =
t

∑
i=t−w

(ŷi − yi) (21)

Based on the aforementioned cumulative error Et, the loss for the long-term trend is
defined as:

LLD(t) = λ× E2
t (22)
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Here, λ is a hyperparameter for balancing the MSE loss and long-term trend loss.
Consequently, the final Long-Distance Loss is defined as:

L(t) = LMSE(t) + LLD(t) (23)

Such design holds profound mathematical and practical significance. Mathematically,
by incorporating the long-term trend loss, the model is encouraged to focus not just
on individual time point predictions but also on overall trends. This aids the model in
better capturing long-term dependencies in the data, subsequently enhancing prediction
accuracy. Practically, stock market prices often reflect long-term trends. For instance, a
significant economic event might influence the stock market for several months or even
years. Employing Long-Distance Loss allows the model to more effectively capture these
long-lasting impacts, leading to more accurate predictions. Compared to the original
loss function of the Transformer, Long-Distance Loss offers distinct advantages. Firstly,
it amalgamates both short-term and long-term error information, presenting the model
with a more comprehensive optimization objective. Secondly, by introducing the long-term
trend loss, the model tends to place greater emphasis on long-term data dependencies
during training, enhancing prediction accuracy. Lastly, this loss function also affords greater
training stability for the model, as it reduces sensitivity to short-term noise. In summary,
Long-Distance Loss, by combining short-term and long-term error information, offers
the model a more comprehensive and stable optimization target, resulting in improved
prediction accuracy in stock price forecasting tasks.

3.3. Experimental Settings
3.3.1. Experiment Design

To validate the effectiveness of the proposed model, a series of experiments were de-
signed. The following provides a detailed description of the experimental design, including
dataset division, baseline model selection, optimizer choice, hyperparameter settings, and
ablation studies.

The division of the dataset is of paramount importance, as proper partitioning ensures
the model’s generalizability and effectiveness in real-world applications. The entire dataset
was divided chronologically into training, validation, and test sets. Specifically, 70% of
the dataset was chosen as the training set, followed by 15% as the validation set, and the
remaining 15% as the test set. This method of division ensures the model’s predictive
capability in real-world scenarios and prevents potential data leakage.

In all experiments, the Adam optimizer was employed for model optimization. The
Adam optimizer, merging the advantages of Adagrad and RMSprop, can adaptively adjust
the learning rate and has been demonstrated to perform well in deep learning models.
Hyperparameter choices were based on performance on the validation set. The learning
rate was initially set to 0.001 and reduced by 10% every 5 epochs based on validation loss.
The batch size was set to 32. For Transformer models, an 8-head self-attention mechanism
was implemented, with the hidden layer size set to 512. To prevent overfitting, a dropout
rate of 0.1 was incorporated into the model.

Ablation studies were designed to further validate the effectiveness of various compo-
nents of the proposed model. Specifically, the memory attention module and long-distance
loss function were removed separately to observe how these modifications impact model
performance. Such experiments offer insights into the contributions of different model
components to the final performance, providing guidance for future improvements. In
summary, through meticulously designed experiments, this research aims to comprehen-
sively and deeply evaluate the performance of the proposed model. These experiments
reveal the model’s performance in real-world scenarios and its comparison with current
mainstream techniques.



Appl. Sci. 2023, 13, 12160 12 of 19

3.3.2. Testbed

For a fair assessment of the proposed model, several models of varying types were
chosen as baseline models for comparison. These include the following. Random For-
est [24]: an ensemble learning method that combines the outputs of multiple decision trees,
offering high accuracy and robustness. Support Vector Machine (SVM) [25]: the Support
Vector Machine is a powerful model widely used for classification and regression problems.
Time-series Neural Network [26]: a Transformer-based time series analysis model that
employs the self-attention mechanism to capture long-term dependencies. Temporal Trans-
former [27]: designed specifically for time series data, this Transformer model integrates
traditional time series analysis techniques. Seq2Seq Transformer [28]: a model utilizing the
Transformer architecture for sequence-to-sequence prediction.

These baseline models were selected for comparison because they represent the current
mainstream techniques in time series prediction. Random Forest and SVM stand as classical
machine learning models, while the Transformer-based models represent the latest deep
learning methods. Such a selection ensures the fairness and comprehensiveness of the
experimental results.

3.3.3. Experimental Methodology

In this paper, the focus is placed upon technology stocks within the S&P 500, with a
chosen study period spanning from 1 January 1990 to 31 December 2020, accounting for
a total of 21 years of historical data. The frequency of predictions is set on a daily basis,
implying that forecasts regarding stock prices or return rates are made for each trading
day. The objective of this paper is to predict the daily return rate of stocks, for which the
formula is given by:

Rt =
Pt − Pt−1

Pt−1
(24)

Here, Rt represents the daily return rate of the stock at time point t, Pt denotes the
closing price of the stock at time point t, and Pt−1 stands for the closing price of the
stock at time point t− 1 (i.e., the previous trading day). By employing such a research
design, precise predictions regarding the daily return rates of technology stocks can be
achieved, subsequently providing investors with valuable references for making informed
investment decisions.

3.3.4. Evaluation Metric

In quantifying and evaluating the prediction performance of the model, the following
four common metrics are employed: Precision, Recall, Accuracy, and R2.

1. Precision quantifies the proportion of correctly predicted positive instances out of
all instances predicted as positive. In the context of stock price prediction, a correct
prediction implies that an upward price movement was anticipated and the price did
indeed rise. The formula for Precision is:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(25)

Here, True Positives (TP) represents the number of correctly predicted positive in-
stances, while False Positives (FP) denotes the number of instances incorrectly pre-
dicted as positive.

2. Recall measures the proportion of actual positive instances that were correctly pre-
dicted as positive. Its formula is:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(26)

In this case, False Negatives (FN) are the instances that were incorrectly predicted as
negative.
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3. Accuracy offers insight into the overall proportion of instances that were correctly
predicted, regardless of being positive or negative. Its formula is expressed as:

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Number of Samples
(27)

Here, True Negatives (TN) are the instances correctly predicted as negative.
4. R2, also known as the coefficient of determination, is a statistical measure reflecting

the correlation between the actual and predicted values. Its formula is:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳ)2 (28)

where yi is the actual value, ŷi is the predicted value, and ȳ is the mean of the
actual values.

5. In order to rectify for degrees of freedom, the adjusted R2 was utilized, taking into
consideration the number of predictive variables within the model:

Adjusted R2 = 1− (1− R2)
n− 1

n− k− 1
(29)

Herein, n denotes the quantity of observations while k represents the number of
predictive variables. By employing the adjusted R2, a more equitable comparison
of models incorporating varying quantities of predictive variables is facilitated. The
adjusted R2 undertakes a correction for degrees of freedom, ensuring an increase
in the R2 value only when the addition of new variables genuinely enhances the
predictive capability of the model.

4. Results and Discussion
4.1. Stock Price Prediction Results

The primary objective of the experimental design in this study was to validate the
effectiveness of the proposed model in the task of stock price prediction and to compare it
with other popular models currently in use. By comparing the performance of different
models on four evaluation metrics, namely Precision, Recall, Accuracy, and R2, the intent
was to comprehensively assess the predictive capability of each model. Precision and Recall
evaluate the model’s ability to predict positive instances accurately, Accuracy assesses the
model’s overall predictive accuracy, and R2 serves to describe the correlation between the
model’s predicted values and the actual values. The experimental results are presented
in Table 1.

Table 1. Performance comparison of different models on the evaluation metrics.

Model Precision Recall Accuracy R2 Adjusted R2

Random Forest [24] 0.83 0.81 0.84 0.73 0.73
SVM [25] 0.86 0.84 0.86 0.77 0.77

Temporal Transformer [27] 0.87 0.85 0.87 0.79 0.79
Time-series Neural Network [26] 0.90 0.88 0.89 0.88 0.88

Seq2Seq Transformer [28] 0.92 0.90 0.91 0.90 0.90
Proposed Method 0.95 0.91 0.94 0.97 0.97

From Table 1, it is evident that the Random Forest exhibits the lowest performance
across all metrics. Random Forest primarily relies on an ensemble learning approach,
aggregating outputs from multiple decision trees for predictions. Although it has shown
commendable performance in many tasks, its capabilities might be limited in intricate
time series prediction tasks due to potential difficulties in effectively capturing long-term
dependencies. SVM, while outstanding for classification tasks, might not be the best fit
for predicting stock prices, a continuous value prediction task. Although its performance
in the table is slightly better than the Random Forest, it still lags significantly behind the
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deep learning-based models. The Temporal Transformer, designed specifically for time
series data and integrating traditional time series analysis techniques, outperforms the
aforementioned two models. However, it still falls behind other deep learning approaches,
possibly due to its inherent constraints in capturing intricate long-term dependencies. The
Time-series Neural Network, a neural network-based time series analysis model, elevates
its performance across all metrics, attributed to the potent representation capabilities of
deep learning. The multi-layered structure of neural networks enables them to decipher
complex patterns within time series data more proficiently. The Seq2Seq Transformer,
leveraging the Transformer architecture for sequence-to-sequence prediction, shows a
marginally superior performance over the Time-series Neural Network, attributed to the
Transformer’s self-attention mechanism, which adeptly captures long-range dependencies.
The model introduced in this study consistently excels in performance across all metrics,
not only validating its efficacy but also underscoring its superiority in the task of stock
price prediction. The Memory Attention module and the Long-Distance Loss function
embedded within the model are likely the pivotal factors for its stellar performance, as
illustrated in Figure 7.
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Figure 7. Ground truth and the predicted values by proposed method.

Mathematically, models based on the Transformer architecture, especially the proposed
model, possess a self-attention mechanism, enabling the model to establish dependencies
across varying time steps and to capture long-term trends. Concurrently, the incorporated
memory module allows the model to retain and utilize pivotal past information, which is
especially pertinent in stock price prediction tasks that are acutely sensitive to past data. The
inferior performance of the Random Forest and SVM might be attributed to their inability
to capture long-term dependencies in time series data effectively. Deep learning models,
especially those based on the Transformer architecture, due to their layered structure and
self-attention mechanisms, can decipher complex patterns in time series data more adeptly.
In summary, the results signify that for intricate time series prediction tasks such as stock
price prediction, deep learning methodologies, particularly those based on Transformer,
offer distinct advantages. The proposed model, amalgamating multiple techniques such as
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the Memory module and Long-Distance Loss, demonstrates an especially commendable
performance in this task.

4.2. Ablation Test on Memory Attention Module

The primary objective of this ablation study is to assess the impact of various attention
mechanisms on the model’s performance in stock price prediction tasks. Specifically, it is
aimed to verify whether the Memory Attention module can bring significant performance
improvements to the model and to compare it with other prevalent attention mechanisms.
Through this design, a deeper understanding of how the Memory Attention Module
enhances the model’s predictive capabilities can be obtained, revealing its underlying
mathematical principles.

By examining the data in Table 2, it can be observed that various attention mechanisms
have commendable performance in stock price prediction tasks, but there is a disparity in
their performances. SENet [20], a channel attention mechanism, emphasizes the channel
relationship of features. Its performance in this experiment is relatively commendable,
indicating that channel relationships are beneficial for time series prediction. However,
since it primarily focuses on channel relationships rather than long-term time series de-
pendencies, its performance is slightly inferior to other mechanisms. CBAM [21] combines
spatial attention with channel attention. Although its performance is slightly less stellar
than SENet, it suggests that relying solely on spatial and channel relationships might not
capture all the information in complex time series tasks. Multi-head attention [13], a core
component of the Transformer structure, allows the model to capture information across
different subspaces. Its performance surpasses both SENet and CBAM, illustrating the
advantage of multi-head attention in capturing long-term dependencies in time series data.
The Memory Attention, which is central to this research, considers not only the current
input features but also past essential information. It exhibits the best performance across all
evaluation metrics, validating the efficacy of the Memory module in enhancing the model’s
capability to capture long-term dependencies.

Table 2. Performance comparison of different attention mechanisms on the evaluation metrics.

Attention Mechanism Precision Recall Accuracy R2 Adjusted R2

SENet [20] 0.90 0.89 0.90 0.92 0.92
CBAM [21] 0.86 0.88 0.88 0.87 0.87

Multi-head Attention [13] 0.91 0.88 0.89 0.88 0.88
Memory Attention 0.95 0.91 0.94 0.97 0.97

Different attention mechanisms possess distinct mathematical characteristics. SENet
and CBAM primarily focus on local or inter-channel relationships in feature maps rather
than the long-term dependencies in time series data. Hence, when faced with intricate time
series prediction tasks, they might not fully capture all patterns in the data. Multi-head
attention, by parallel processing across various subspaces, can more effectively capture
long-term dependencies. Nevertheless, it might still fail to store and utilize key information
over extended periods. From a mathematical perspective, the Memory Attention module
provides the model with a mechanism to “recall” and harness past critical information. This
memory capability, especially in tasks such as stock price prediction, can assist the model
in better understanding and predicting future trends. In summary, this ablation study
underscores the significance of attention mechanisms in intricate time series prediction
tasks. Particularly, the introduced Memory Attention module, by integrating current
input features with past essential information, significantly boosts the model’s predictive
performance. This affirms the pivotal role of deeply considering long-term dependencies
in time series data when crafting effective predictive models.



Appl. Sci. 2023, 13, 12160 16 of 19

4.3. Ablation Test on Long-Distance Loss Function

The objective of this ablation experiment is to assess the influence of different loss
functions on the model’s performance in stock price prediction tasks. Specifically, the ex-
periment aims to ascertain if the proposed Long-Distance Loss function could significantly
enhance the performance of the model in comparison to other prevalent loss functions.
Through this design, a deeper understanding of how the Long-Distance Loss function bol-
sters the model’s predictive capability can be achieved, shedding light on the underlying
mathematical principles.

Observations from Table 3 indicate that while various loss functions exhibit certain
levels of performance in stock price prediction tasks, there are disparities in their results.
The Mean Square Error Loss Function, a standard loss function in regression problems,
demonstrates consistent performance. It directly measures the average discrepancy be-
tween predicted and actual values but may be overly sensitive to outliers. The Huber loss
function combines attributes of both Mean Square Error and Absolute Error. When the error
is below a certain threshold, it behaves similar to the Mean Square Error, and above that, it
mirrors the Absolute Error. This renders it more robust in handling outliers compared to
the Mean Square Error. However, the results suggest its performance is slightly inferior to
the Mean Square Error, possibly because handling outliers is not the primary challenge in
stock price prediction tasks. The Log Cosh loss function, a smoother variant of the Mean
Square Error, is especially adept at handling large error values, offering more robustness
and smoothness than the Mean Square Error. This superior performance implies that in
stock price prediction tasks, smooth handling of substantial errors can be advantageous.
The Long-Distance Loss function, a core contribution of this study, not only takes into
account the current prediction error but also considers past prediction errors, thereby
effectively capturing the long-term dependencies in time series data. As demonstrated in
the table, its performance is optimal across all evaluation metrics, confirming the efficacy
of the Long-Distance Loss function in enhancing the model’s ability to capture long-term
dependencies.

Table 3. Performance comparison of different loss functions on the evaluation metrics.

Loss Function Precision Recall Accuracy R2 Adjusted
R2

Mean Square Error Loss [29] 0.89 0.87 0.89 0.91 0.91
Huber Loss [30] 0.82 0.79 0.81 0.83 0.83

Log Cosh Loss [31] 0.92 0.91 0.91 0.93 0.93
Long-Distance Loss 0.95 0.91 0.94 0.97 0.97

Mathematically speaking, the Mean Square Error, Huber loss, and Log Cosh loss
functions optimize based on the discrepancies between current predictions and actual
values. In contrast, the Long-Distance Loss function contemplates a broader span of time
steps, enabling the model to retain and utilize long-term information. This capacity for
recollection is pivotal, especially in tasks such as stock price prediction where prices are
influenced by a myriad of long- and short-term factors. By considering an extended time
span, the model can more adeptly discern these influences and make more accurate predic-
tions. In conclusion, this ablation experiment underscores the significance of loss functions
in time series prediction tasks. The Long-Distance Loss function, by integrating current
prediction errors with those from the past, markedly elevates the predictive performance
of the model. This further substantiates the notion that in intricate time series prediction
tasks, the selection and design of the loss function are paramount.

4.4. Limitations and Feature Works

In this study, while the effectiveness of the model for stock price prediction was vali-
dated through various methods and experiments, several limitations remain and directions
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for further research exist. Firstly, concerning model selection, although the adopted models
demonstrated commendable performance in stock price prediction, there may be other
potential models or algorithms that could be suitable for this task or might outperform
the current ones. For instance, Random Forest and Support Vector Machines could exhibit
superior performance in certain time series forecasting tasks. Furthermore, regarding
attention mechanisms, although various mechanisms were incorporated into the model
and their effectiveness was verified through ablation studies, other attention patterns or
variations might confer greater advantages to the model. In terms of the loss function, the
long-distance loss function indeed showcased promising results in experiments; however,
there might be other loss functions or combinations that could provide more benefits for
this task. Additionally, although an attempt was made to partition the dataset based on
the sequence of the time series, other partitioning strategies might have a more profound
impact on the model’s generalization capabilities. From a mathematical perspective, even
though mathematical theoretical support was provided for various methods and models,
other mathematical or statistical principles might better elucidate the performance of the
models. Such potential principles could guide further improvements in the model.

For future endeavors, further exploration and optimization of these models or other
contemporary machine learning models for stock price prediction tasks can be considered.
Especially for time series forecasting tasks, a deeper investigation into other attention
patterns or their variations is warranted. Contemplating further research and refinement of
the Long-Distance Loss function or exploring other potential loss function combinations
also present a promising avenue. Moreover, employing more advanced data augmentation
techniques, such as adversarial training or semi-supervised learning, could further enhance
the generalization and robustness of the model. In conclusion, although progress was
achieved in stock price prediction tasks in this research, ample exploration space remains
in model selection, attention mechanisms, and loss function design. It is hoped that future
research can further advance the field, offering more insights and innovative methodologies
for time series forecasting.

5. Conclusions

In the context of the burgeoning complexity of financial markets, the prediction of
stock prices has been established as a critical research domain within the finance sector. The
attainment of accuracy in forecasting stock prices proves imperative for enabling investors
to make sagacious investment decisions and concurrently plays a pivotal role in sustaining
market stability and alleviating financial risks. Nevertheless, the endeavor to precisely
predict stock price trends presents an intimidating challenge, attributed to the influence of a
plethora of factors encompassing macroeconomic indicators, corporate financial statements,
and market sentiment. In response to this, a model encapsulating contemporary machine
learning techniques has been introduced within this research and its efficacy substantiated
through an extensive series of experimental validations.

Upon scrutiny of the experimental results, it has been discerned that the model intro-
duced herein consistently outstripped alternative benchmark models across various metrics,
including Precision, Recall, Accuracy, and the R2 metric, notably achieving an impressive
score of 0.97 in the latter. These outcomes robustly affirm the effectiveness and superiority
of the proposed model in the realm of stock price prediction tasks. In summation, the
quintessential contribution of this research is encapsulated in the introduction of a stock
price prediction model that synergistically integrates a memory attention module with a
Long-Distance Loss function, the efficacy and superiority of which have been comprehen-
sively validated through experimentation. Concurrently, the conducted ablation studies
have furnished compelling evidence, enriching the understanding of the influences exerted
by diverse attention mechanisms and loss functions on the performance of the model. It
is anticipated that the insights gleaned from this research will prove invaluable for future
endeavors in stock price prediction whilst equipping investors and market analysts with
more precise forecasting tools.
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