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Abstract: Inverting land cover reflectance or derived indices from low-spatial-resolution images to
refine the spatial resolution of this data is cost-effective for land surface monitoring applications that
face technical or budget limitations. Based on the linear spectral mixing model, many approaches
have successfully unmixed coarse mixed pixels using high-spatial-resolution land cover maps in the
past decades. However, in some cases, the solutions of linear systems composed of several mixed
pixels may not be acquired due to the underdetermined problem. This study presents the causes
of this problem and proposes an iterative approximation strategy to address it. An elastic-window-
based algorithm was developed, where the initial size of the window was calculated based on the
land cover of the mixed pixel. Mixed pixels of neighborhoods with similar land covers were then
selected to form the unmixing linear system, which was examined through a simulation test to ensure
it was not underdetermined. Otherwise, the window would expand to include more adjacent pixels.
This process was repeated until a successful solution was obtained. A statistical analysis of sixty land
cover maps from around the globe shows that the underdetermined problem exists at a low level but
becomes more serious with an increase in mixed scale. The results demonstrate that the proposed
algorithm effectively prevents the underdetermined problem for mixed pixels of different scales and
can be integrated into the coarse NDVI downscaling procedure to refine spatial resolution. This study
provides a reference for estimating underdetermined mixed pixels and benefits applications that
require dealing with the inversion of land cover values directly.

Keywords: linear spectral unmixing; downscaling; linear system; time series; land cover

1. Introduction

Natural hazards, such as floods, disasters, forest fires, and landslides, occur frequently
around the world and cause serious damage, and monitoring the environment consistently
can reduce these adverse effects [1–3]. Vegetation mapping, especially crop mapping, is an
important issue for land cover mapping, which is related to carbon storage and production
forecast [4–6]. With the help of high-temporal-resolution remote sensing images, an effec-
tive way can be provided for these land surface dynamic applications extensively [7–10].
Unfortunately, the temporal resolution of a satellite imaging system is roughly inversely
proportional to the spatial resolution, leading to the dilemma that high-temporal resolution
remote sensing images have degrading spatial resolution characteristics [11–13]. That
means it is difficult to provide high-spatial and -temporal remote sensing images in large
areas simultaneously. The AVHRR (Advanced Very-High-Resolution Radiometer) has a
broad swath width, a short imaging period of less than a day, and about 1000 m of spatial
resolution. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor in Terra
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and Aqua repeats daily global observation, but its highest image spatial resolution is only
250 m. The images from these high-temporal remote sensors are not suitable for monitoring
land surface processes concerning to high-spatial variants [14,15]. Biotic communities and
residential buildings usually have a small size in large proportion, resulting in the difficulty
of monitoring the damage and assessing the effects caused by natural hazards [16]. The
cultivated land field size is often smaller than 250 m in some agricultural regions [17]. There-
fore, these high-temporal images seem to lack the ability to map detailed land cover [18].
The Landsat series sensors have a 30 m spatial resolution and 16-day temporal resolution
for multispectral bands, which have proven useful for land surface applications [19,20].
However, about 35% of these Landsat images are cloud-cover-contaminated and cloud-free
images can be as low as 10% in a given year [21]. According to a statistic, all Landsat images
that can be used in the land cover mapping of the year 2010 on a global scale account for
41%. This shows even one available Landsat image can hardly be obtained for about 59%
of the land surface in 2010. The current effective coverage and relatively low temporal
resolution of Landsat images are limitations for the demands of high-frequency detailed
land surface applications in large areas [14,22].

The generation of high-temporal-resolution image series with high-spatial-resolution
is one popular solution to bridge the gap [23,24]. It utilizes the spatial detail information
in high-spatial resolution images and the phonological information in high-temporal res-
olution images to create corresponding high-spatial-resolution image series, known as
spatial and temporal data fusion [12,25–27]. As one of the most widely adopted spatial
and temporal data fusion technologies, linear spectral unmixing-based approaches are
downscaling the coarse pixel value (e.g., radiance, reflectance, or derived indices) of a
low-spatial-resolution image to the inner parts (e.g., endmembers, components, or land
cover types) value of the pixel to improve spatial resolution [28–32]. The coarse pixel is
regarded as the mixed pixel. Based on the linear spectral mixing model, one mixed pixel is
translated into a linear equation, in which the pixel value is denoted as a known parameter
and the value of several inner parts is denoted as an unknown parameter. For obvious
reasons, several unknown values cannot be solved within only one equation. More pixels
must be involved to make up a linear system with equation numbers that are no less than
unknown value numbers. Based on the hypothesis of Tobler’s First Law of Geography [33],
the pixels around the mixed pixel are regarded as having the same inner parts as the mixed
pixel, the same inner part spectrum, and a similar spectral mixing mode. These pixels in
adjacent land surface regions contribute to the solving of inner part values. However, when
near things are less related to each other on the land surface, the inner parts are usually
different around the adjacent pixel regions. This phenomenon often leads to linear systems
having no unique solution, called an “underdetermined problem” [34]. The downscaling
approach is incapable in this situation because the pixel value cannot be decomposed into
an inner part value [22]. Therefore, understanding the relationship between the mixed pixel
and its region on the land surface and handling these cases may be the key to avoiding the
underdetermined problem of linear spectral unmixing.

In general, the mixed pixel and its adjacent land surface region are considered homo-
geneous, as Tobler’s First Law of Geography describes [33]. It implies that the inner parts
of mixed pixels are included in the pixels of adjacent regions to a certain extent, and the
adjacent region affords enough pixels to the linear system of unmixing pixels in inner part
value solving. It can be deduced that the acquisition of pixels from a certain-sized adjacent
region is an orthodox way to accomplish the unmixing process. On this account, the image
scene with a certain extent size was adopted to access the pixels around the adjacent region.
For instance, Kerdiles et al. (1995) introduced two sets of 3-by-3-pixel windows to extract
the land cover given via TM classification and the AVHRR pixel response [29]. Asner et al.
(1997) adopted a sub-scene with 3-by-3 pixels in the AVHRR image to construct the system
of equations for each pixel [31]. Zhukov et al. (1999) performed the unmixing of coarse
pixels in a moving window mode with a selected size, in which the contextual information
of surrounding coarse pixels was used [35]. Zurita-Milla et al. (2008), Amorós-López et al.
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(2013), and Zhang et al. (2013) applied a sliding window to the classified image to select the
coarse neighborhood pixels [32,36,37]. These approaches provide the neighborhood pixels
for the unmixing process directly and effectively and have a wide range of applications.
With the development of research, the underdetermined problem caused by the unbalance
of inner part numbers and neighborhood pixel numbers in the unmixing process draws
attention, and two major means are taken to address this problem. On one hand, it is
achieved by reducing the number of inner parts in the window. Gevaert et al. (2015)
considered the relation between the numbers of the inner part k and the sliding window
size n [22]. The inner part with a low proportion in the window is discarded when k is
larger than n2 to allow a more accurate decomposition. On the other hand, it is achieved by
raising the number of neighborhood pixels by enlarging the window size. Wu et al. (2015
and 2016) deemed the window size for each land cover class to be different and developed a
correlation-coefficient-based method to obtain the best window size [38,39]. These manners
are important for the unmixing process and show great improvement. However, they are
not the fundamental solutions.

During the complex distribution of objects on the land surface, various land cover
types contribute to each coarse pixel, and the relationship between the inner parts of
the pixel and adjacent region pixels exceeds the qualitative definition of homogeneity or
heterogeneity. The unmixing process is based on the pixel unit, aiming to solve the inner
part values within the local land region. Therefore, setting the optimal window size for
each land cover type is still not enough for the whole image pixels to unmix, which limits
the performance of recent research facing the underdetermined problem [40]. For each
mixed pixel under the unmixing process, the composition of the inner parts is known, but
the composition of adjacent pixels is unknown. The distribution and extent of adjacent
pixels cannot be estimated based on the inner parts and abundance of central pixels. In
other words, the solution to the underdetermined problem in the linear spectral unmixing
process might lie in the approximation in the adjacent land region instead of the estimation
of the local region. The proposed elastic-window-based method in this paper adjusts its
window size dynamically based on the land covers of mixed pixels, ensuring the unmixing
linear system is not underdetermined. The rest of the paper is organized as follows. In
Section 2, the theoretical basis of inner part inversion using a linear spectral mixing model
is reviewed, and the imperfection in approximating the adjacent land region is revealed. In
Section 3, an iterative procedure to approximate the local land surface is discussed, and an
elastic-window-based algorithm is introduced. In Section 4, a case study is conducted to
validate the proposed method based on the GlobeLand30 dataset. Finally, the conclusion
and future research are presented.

2. Problem Analysis of Linear Spectral Unmixing
2.1. Inversion of Inner Part Values

Various land surface objects within the remote sensing pixel size are recorded in
these low-spatial-resolution pixels. At the pixel scale, these various land surface objects
are considered the internal components of the pixel, possessing a finer spatial resolution
compared to the pixel itself. In different studies, these objects within the pixel have been
referred to as endmembers, components, land cover types, class types, or sub-pixels. In
this study, considering the spatial relation between the pixel and its internal components as
well as the nature of these objects, we refer to them as the inner parts of the pixel. The main
objective of unmixing approaches is to estimate the values of these inner parts based on the
pixel value. The mathematical foundation of linear spectral unmixing approaches is the
linear spectral mixing model. According to this model, the value of a coarse pixel can be
expressed as a linear combination of several inner parts and their respective abundances,
as shown in Formula (1), where R represents the pixel value, r denotes the inner part value,
f represents the abundance of the inner part, n denotes the total number of inner parts in
the pixel, and ε refers to the residual error of the model. Typically, the abundance of the
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inner parts is derived from a land cover map or land use database by calculating the area
proportion of each class type relative to the pixel.

R =
n

∑
i=1

fi·ri + ε, (1)

The pixel value and the abundance of the inner parts are considered known parameters,
while the values of several inner parts are treated as unknown parameters. Each coarse
pixel is represented using a linear equation. If more pixels are available, a linear system
can be constructed by combining these linear equations, as shown in Formula (2). Taking
into account that the residuals remain constant within each equation, the coefficient matrix
of this linear system can be expressed as Formula (3). According to the computational
principles of linear systems, the number of equations m should be equal to or greater
than the number of unknown parameters n. The optimal solution of the linear system
can be obtained using the least squares method under this condition [41]. Otherwise, the
linear system would have no unique solution, which is referred to as an “underdetermined
problem”. The solvability of a linear system depends largely on its coefficient matrix.
Therefore, the crucial aspect of inverting the values of inner parts for mixed pixels in linear
spectral unmixing lies in creating linear systems with appropriate coefficient matrices.

f1,1 · r1 + f1,2 · r2 + · · ·+ f1,n · rn + ε1 = R1
f2,1 · r1 + f2,2 · r2 + · · ·+ f2,n · rn + ε2 = R2

...
fm,1 · r1 + fm,2 · r2 + · · ·+ fm,n · rn + εm = Rm

, (2)

F =


f1,1 f1,2 · · · f1,n
f2,1 f2,2 · · · f2,n
...

...
...

...
fm,1 fm,2 · · · fm,n

, (3)

2.2. Imperfection in Approximating Adjacent Land Region

The values of coarse pixels in different bands are distinct from one another. Therefore,
the values of inner parts in different bands cannot be assumed to be the same unknown
parameters in a linear system. The inversion of inner part values for a pixel needs to
be performed within the current band. Considering the variations caused by natural or
artificial influences, the same land cover type may exhibit inconsistent characteristics in
different regions. For instance, crop growth can be affected by factors such as agrotype,
surface water, and cultivation, resulting in spatially variable behavior. This phenomenon,
known as spectral-spatial variability [42], can cause the inner part values of pixels in
different locations to differ significantly from each other across the entire image band.
Based on the assumption that “Everything is related to everything else, but near things are
more related than distant things”, known as Tobler’s First Law of Geography [33], coarse
pixels in adjacent regions are logically selected to form the linear system for the central
pixel. Typically, the adjacent pixels are chosen using a regular window of a specific size.
The window is defined using Formula (4), where S represents the odd length or width of
the rectangular area and N represents the number of inner parts on the land surface.

S2 ≥ N, (4)

In most cases, this rectangular area is square-shaped, with a coarse pixel size as the
unit—for example, a window region of 3 × 3 or 5 × 5 pixels centered on a coarse pixel. By
using this formula, the window size S can be calculated based on the number of inner parts
N in the mixed pixel. Then, the adjacent pixels within this window are selected to form the
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linear system, with pixel values and inner part abundances as known parameters and the
inner part values as unknown parameters.

An example is provided to illustrate the problem by combining a land cover map
and a low-spatial-resolution image band. In Figure 1, the grid represents the pixels in the
low-spatial-resolution image band, and specific pixels are labeled as A, B, C, and D. Pixel A
encompasses six land cover types: crop, built-up area, bare land, grass, forest, and shrub.
Pixel B includes five land cover types: crop, forest, grass, water, and wetland. Pixel C
consists of seven land cover types: crop, built-up area, bare land, grass, forest, shrub, and
wetland. Finally, pixel D contains two land cover types: crop and grass.
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3 × 3 pixel window, where the dash box illustrated the boundary of the A window.

According to Formula (4), the window size is 3 pixels by 3 pixels. A total of nine pixels
inside the window are selected to form the linear system for the inversion of inner part
values for each of these four pixels separately. However, the linear systems of pixels A, B,
and C encounter the underdetermined problem.

While bare land and shrubs are present in pixel A, they do not exist in the pixels
within the window. The same situation occurs for pixel C, where built-up areas and shrubs
cannot be separated in the unmixing process. Both cases, A and C, involve situations
where undividable inner parts are present within the window. The pixels around pixel B
can handle this unmixing scenario, but due to a limited number of adjacent pixels (e.g.,
pixel c9) included in the linear system of pixel B, the underdetermined problem arises
(although a weighted method can help improve this case). The situation with pixel B
involves undividable inner parts in the adjacent region within the specific window. When
it comes to selecting enough pixels to decompose a given pixel, the appropriate window
sizes for pixels A, B, and C are 5, 3, and 7, respectively. The inner part numbers of these
pixels satisfy Formula (4), but the window sizes adopted are ill-suited. Thus, it appears
that opting for a larger window size might be a suitable choice. However, the case of pixel
D indicates that this assumption is incorrect. Pixel D encompasses grass and crop, which
can be easily decomposed using a 3 × 3 window. Unfortunately, employing a window size
of 5 includes pixel C, which is challenging to decompose due to its adjacent region with
pixel D. The abundances corresponding to these 3 × 3 windows for pixels A, B, C, and D
are listed in Table 1.
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Table 1. The inner part types and abundance of the coarse pixels (1-1, 1-2, 1-3, and 1-4 show A, B, C,
and D in Figure 1, respectively, unit: %).

1-1

Num. Pixel Code Crop Forest Grass Shrub Wetland Water Built-Up Bare Land

1 A 42 17 3 9 0 0 7 22
2 b2 78 2 20 0 0 0 0 0
3 b3 82 0 0 0 0 0 18 0
4 b4 88 4 0 0 0 0 8 0
5 c2 83 0 0 0 0 0 0 0
6 c4 1 61 5 0 28 3 1 0
7 c2 90 0 0 0 0 0 10 0
8 c3 85 15 0 0 0 0 0 0
9 c4 38 13 1 0 8 40 0 0

1-2

Num. Pixel Code Crop Forest Grass Shrub Wetland Water Built-Up Bare Land

1 B 5 12 69 2 4 8 0 0
2 b7 35 10 26 0 9 20 0 0
3 b8 32 25 31 0 0 12 0 0
4 b9 69 12 12 0 0 8 0 0
5 c7 3 14 71 0 5 7 0 0
6 c9 50 19 15 0 0 0 4 13
7 d7 18 4 78 0 0 0 0 0
8 d8 75 0 25 0 0 0 0 0
9 d9 87 5 4 0 2 2 0 0

1-3

Num. Pixel Code Crop Forest Grass Shrub Wetland Water Built-Up Bare Land

1 C 26 2 0 13 40 1 10 8
2 d5 0 0 0 0 36 64 0 0
3 d6 5 0 10 0 70 15 0 0
4 d7 19 4 77 0 0 0 0 0
5 e5 17 0 0 0 44 39 0 0
6 e7 43 2 56 0 0 0 0 0
7 f5 97 0 2 0 1 0 0 0
8 f6 95 0 5 0 0 0 0 0
9 f7 64 1 35 0 0 0 0 0

1-4

Num. Pixel Code Crop Forest Grass Shrub Wetland Water Built-Up Bare Land

1 D 81 0 19 0 0 0 0 0
2 e7 43 2 56 0 0 0 0 0
3 e8 94 1 5 0 0 0 0 0
4 e9 80 0 2 0 5 1 12 0
5 f7 64 1 35 0 0 0 0 0
6 f9 85 0 8 0 0 0 7 0
7 g7 93 0 7 0 0 0 0 0
8 g8 77 0 22 0 0 0 1 0
9 g9 93 0 3 0 0 0 5 0

Based on the land cover map, the value of abundance in each coarse pixel can be
derived by calculating the proportion of area occupied by every land cover type to the total
coarse pixel area. The abundance value of adjacent pixels located in windows of pixels A,
B, C, and D has been shown in Table 1, each row corresponding to the distribution of land
convert types and their abundance within a pixel. These arrangements of land cover types
and their abundance can be seen as the coefficient matrix of the linear systems for pixels A,
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B, C, and D. By combining the principle of the existence of solutions to linear systems, the
solutions of pixels A (Table 1(1-1)), B (Table 1(1-2)), and C (Table 1(1-3)) are unavailable.

3. Solution
3.1. Iterative Approximation Procedure

The diversity of land surface types and their various distributions result in significant
complexity on the land surface. This complexity extends from large to local areas and
is reflected in remote sensing images with a discrete pattern. As a result, many pixels
cover multiple land cover types, and it is difficult to ensure that the same land cover types
are present in other pixels within the adjacent region. Expanding the extent around the
adjacent region is important and effective for selecting pixels to form the linear system with
the same land cover types, but it is not essential. The presence of the required pixels to such
an extent is uncertain. Additionally, the size of the extent calculated based on the number
of land cover types in the unmixing pixel is only an estimated value and is not always
reliable. A larger extent can introduce more pixels compared to a smaller extent, which can
help reduce the possibility of the underdetermined problem to some extent. However, as
shown in the case of pixel D in Figure 1, it is not a fundamental solution. Moreover, since
each linear system determines a least squares solution by involving the same land cover
type but different values to a large extent, the outputs can reduce the spectral variability.
Therefore, more attention should be paid to the complexity of the adjacent region.

Theoretically, each pixel has other pixels that can assist in the successful inversion of
inner part values. These pixels are scattered in the adjacent region around the mixed pixel
at various distances, implying a spatial distribution pattern of scattered pixels. Unmixing a
pixel is a process that approximates this spatial distribution pattern using certain methods.
However, due to the unknowns of these spatial distribution patterns, it is almost impossible
to select all the pixels at once within a certain extent or specific shapes. Nevertheless,
continuously approximating the spatial distribution pattern in the adjacent region is a
preferable solution until knowledge of these patterns becomes available. Because of this
idea, a strategy, as shown in Figure 2, is introduced to guide the approximation procedure.
It involves utilizing the mixed pixel to estimate the initial spatial approximating mode
and selecting pixels from the adjacent pixels within the estimation region. Based on the
adjacent pixels, an optimization option can be chosen to adjust the initial approximating
mode. The adjustment may involve assigning higher weights to similar or nearby pixels
or directly excluding opposite pixels. Through iterative selection and optimization, the
spatial approximating mode approaches the spatial distribution pattern of theoretical
pixels. At the same time, it is ensured that the number of selected pixels is not less than
the inner part numbers N of the mixed pixel, and the rank of the coefficient matrix F,
which is composed of the abundances of these pixels, should be equal to N (as shown in
Formula (5)). The strategy estimates the spatial distribution pattern of pixels based on the
mixed pixel according to Tobler’s First Law of Geography. Furthermore, the composition
of land cover types and their abundance among adjacent pixels is utilized to optimize the
previous spatial approximation mode to prevent failure when the assumption is not valid.
The iterative procedure modifies the spatial approximation mode continuously and ensures
the approximation of the spatial distribution pattern properly in the adjacent region. In
extreme cases, an excessively large range may be traversed for the approximation process.

rankF = N (5)
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3.2. The Elastic-Window-Based Algorithm

As an implementation of the iterative approximating strategy, an elastic-window-
based algorithm was developed to approach the adjacent pixels around the coarse pixel and
address the underdetermined problem of linear spectral unmixing. The entire workflow of
the algorithm is shown in Figure 3.
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In the algorithm, the inner part types and numbers within the mixed pixel were
extracted from the fine spatial resolution land cover map. The initial window size was
estimated using Formula (4). Each mixed pixel created its own initial window centered
around it to select the adjacent pixels. Then, pixels containing different land cover types
compared to the central mixed pixel were discarded. The abundances of all inner parts
among these selected pixels were extracted, and a corresponding linear system was con-
structed. A simulated examination was also conducted to assess the presence of the
underdetermined problem.

In the simulated examination, all inner part values were assumed to be known by
assigning constant values. The values of the pixels could be calculated using the linear
spectral mixing model with abundances and zero residual error. The linear system, treating
the inner part values as unknown parameters, was then inverted using the ordinary least
squares method. If the inverted values matched the constant values, the selected pixels
could be used to estimate the inner part values of the mixed pixel. If not, the window size
would be expanded by two-pixel units, and the additional pixels within the expanded
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window would be included in the new linear system. The simulated examination would be
repeated until the inverted values matched the constant values. This simulated examination
serves as a practical alternative to Formula (5).

The matrix form of the algorithm’s linear system is given in Formula (6), where F
represents the coefficient matrix, r represents the matrix of inner part values, ε represents
the residual error matrix of the linear system, and RE represents the matrix of coarse pixel
values. The limiting conditions for RE are shown in Formula (7), where Ri represents
the value of a coarse pixel located within the spatial range of the elastic window SW,
and k represents a coarse pixel that contains different inner part types compared to the
central pixel.

F · r + ε = RE, (6)

RE = {Ri|Ri ∈ SW , i 6= k}, (7)

The least-squares solution of Formula (6) is given in Formula (8). The superscript FT is
the transformation of the matrix, and (FT·F)−1 is the inverse of the matrix.

r = (FT · F)−1 · FTRE (8)

It should be noted that achieving an exact equivalency between the inverted values
and constant values during the simulated examination may be unlikely due to the inherent
computational errors of computers. Therefore, considering a minor difference between the
values is a more practical approach. To prevent the situation where more than two inner
parts of the mixed pixel never appear in the entire image, leading to the process getting
stuck in a loop, it is necessary to set a maximum number of iterations for the loop. This
ensures that the algorithm does not continue indefinitely and allows for a predetermined
number of iterations before reaching a stopping condition.

4. Experiment
4.1. Study Area and Data

To investigate the theoretical existence of the underdetermined problem in linear
spectral unmixing, a simulation experiment was conducted within a local neighborhood of
coarse pixels. The local region had a size of 3 × 3 coarse pixels, and it was assumed that
various land cover types appeared randomly around the center coarse pixel. The land cover
layout of the entire region was ensured to be non-repetitive throughout the experiment.
The underdetermined results were recorded for local regions with land cover types ranging
from 2 to 6. Several issues of land cover types were taken into account, including the huge
calculation workload among the global simulation, the relationship between the spatial
resolution of coarse pixels and the spatial scale of land cover types within the corresponding
coarse pixel extent, and the practical application of linear spectral unmixing.

Following the simulation experiment, a statistical experiment was conducted on a
global scale using the land cover data from GlobeLand30 (www.ngcc.cn (accessed on
18 June 2023)). The land cover types considered in this dataset included water, wetland,
artificial surface, cultivated land, forest, shrubland, grassland, bare land, tundra, permanent
snow, and ice. The world terrestrial ecoregion map (www.worldwildlife.org (accessed on
18 June 2023)) was used as a reference to manually select map sheets from GlobeLand30.
The sampling process aimed to achieve qualitative balance in terms of continent and
ecological region factors, ensuring representative map sheets with both heterogeneous
and homogeneous landscapes from around the globe. Most map sheets had a size of
approximately 6 degrees in longitude and 5 degrees in latitude, while a few map sheets in
high latitudes spanned 12 degrees in longitude. A total of sixty map sheets were used in
the experiment, as shown in Figure 4 and Table 2. For each map sheet, ten different mixed
pixel scales were chosen to simulate varying mixed situations within the same landscape
region. The inner part values were then inverted based on these mixed pixels and their

www.ngcc.cn
www.worldwildlife.org
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abundances, following the methodology described in the simulation test of Section 2.2. The
spatial resolution ratio between the mixed pixel and the land cover pixel ranged from 5 to
50, with an increment of 5 (referred to as the mixed scale).
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Figure 4. The sample map sheets of GlobeLand30 with a background of the terrestrial eco-region
map (sheets number range from 1 to 60) and the location of the Shandong Province of China.

Table 2. The UTM zone and row of the sample map sheets of GlobeLand30 in 2010.

Num. Name Num. Name Num. Name Num. Name Num. Name Num. Name

1 N07_65 11 S23_15 21 N33_40 31 N38_05 41 N45_30 51 N47_60
2 N11_60 12 S20_00 22 N32_50 32 N32_10 42 N43_40 52 N51_70
3 N15_55 13 N18_05 23 N35_50 33 N29_15 43 N47_40 53 N50_25
4 N11_45 14 N12_30 24 N36_40 34 N35_25 44 N47_50 54 N50_40
5 N14_40 15 N17_45 25 S34_30 35 N30_30 45 N45_55 55 N49_50
6 N13_20 16 N38_20 26 S35_20 36 S51_00 46 S50_30 56 N51_55
7 N16_30 17 N42_25 27 S38_15 37 N49_00 47 S55_25 57 N57_55
8 S18_45 18 N40_35 28 S34_10 38 N48_05 48 S52_20 58 S59_40
9 S21_30 19 N41_50 29 S33_00 39 N48_15 49 S54_15 59 N43_10

10 S19_15 20 N37_65 30 N35_05 40 N47_25 50 S54_00 60 N54_35

A land cover map tile from the N11_60 region, consisting of 4000 × 4000 pixels, was
selected to analyze the performance of the proposed elastic-window-based algorithm for
mixed scales ranging from 5 to 50. As a point of comparison, regular windows with fixed
sizes of 3, 7, 11, 15, 21, 27, 33, and 45 were also selected. Additionally, an experiment
was conducted to downscale MODIS-NDVI (Normalized Difference Vegetation Index)
data in the Shandong Province of China using the proposed algorithm. Fourteen Landsat
images from the year 2010 (shown in Table 3), covering the local region, were selected to
generate a fine-resolution land cover map with a spatial resolution of 30 m. The ISO-DATA
classification method in ENVI was employed for this purpose. The 16-day composite of
MODIS-NDVI data (MOD13Q1 h27v05) for the Shandong Province in 2010 was collected to
obtain the coarse pixel values. A total of 23 NDVI products were resampled to a resolution
of 240 m to align with the resolution of the land cover map.
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Table 3. The Landsat-8 OLI multi-spectral images covering the Shandong Province.

Num. WRS Path and Row Day of Year Num. WRS Path and Row Day of Year

1 119034 2010256 8 121036 2010014
2 119035 2010256 9 122034 2010117
3 120034 2010312 10 122035 2010069
4 120035 2010123 11 122036 2010117
5 120036 2010231 12 123034 2010172
6 121034 2010254 13 123035 2010172
7 121035 2010014 14 123036 2010172

4.2. Results and Discussion
4.2.1. Local Simulation Results of the Coarse Pixel Neighborhood

For each coarse pixel, the number of class types for its inner parts could be 1, 2, 3,
and so on. When the number of class types is greater than 2, the possible combinations of
these class types increase significantly. Table 4 illustrates the layouts of total combinations
for each coarse pixel within a 3 × 3 pixel region, and it can be observed that the number
of layout combinations increases substantially with the growth of class types. A coarse
pixel covered by two class types would never encounter the underdetermined problem
within a 3 × 3 pixel adjacent region. However, when three or more class types are present
in a coarse pixel, the likelihood of encountering underdetermined layouts becomes more
diverse. Consequently, the number of underdetermined layouts increases rapidly. Despite
this increase, the proportion of underdetermined problems remains stable, typically at a
level of one thousandth.

Table 4. Simulated results within an adjacent region of 3 × 3 pixels.

Class Types Combinations of
Class Types

Layouts of
Combinations

Underdetermined
Layouts

Underdetermined
Proportion (‰)

2 3 45 0 0
3 7 3003 3 9.99
4 15 319,770 342 10.70
5 31 48,903,492 44,528 9.11
6 63 9,440,350,920 8,098,340 8.58

The results presented in Table 4 demonstrate a theoretical random state, and it is worth
noting that the size of the 3 × 3 region may not be large enough. However, these results
still clearly indicate the presence of the underdetermined problem and its trend in linear
spectral unmixing. It provides statistical averages regarding the likelihood of encountering
an underdetermined problem within a certain size region. Even though the adjacent region
is a small area, it still encompasses a wide variety of objects present on the land surface and
their complex distribution. The local region includes diverse class types and distributions
of these objects. Consequently, the linear system composed of adjacent pixels within the
region cannot guarantee unique solutions. This implies that the underdetermined problem
is inherently associated with the adjacent pixels to some extent (Figure 5).

4.2.2. Statistics for Underdetermined Pixels in Globe Scale

An unmixing test was conducted on all sixty land cover maps at ten different mixed
scales, as described in Section 4.1. The test aimed to count the number of mixed pixels that
encountered the underdetermined problem and calculate the proportion of these pixels
among all mixed pixels. Figure 6 illustrates the proportions of underdetermined pixels for
the ten mixed scales. The results indicate that the underdetermined problem is present
in all land surface areas of the study when performing mixed-pixel unmixing based on
the linear spectral mixing model. Additionally, Figure 6 shows that the underdetermined
problem exists to varying degrees across the ten mixed scales.
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For the mixed scale of 5, half of the land cover tiles have more than 21 underdetermined
pixels in every 10,000 mixed pixels. As for the mixed scales ranging from 15 to 50, these
numbers are 51, 92, 99, 119, 139, 170, 176, 193, and 194 underdetermined pixels in every
ten thousand mixed pixels. Considering the spatial resolution of the land cover map is
30 m, this indicates that approximately 4.67 acres per 100-by-100 mixed pixels area cannot
be inverted based on the linear spectral unmixing theory when the image pixel spatial
resolution is 150 m. As the pixel spatial scale increases, more and more pixels become
mixed pixels, and larger portions of the land surface become unsolvable. These unsolvable
areas amount to 11.34, 20.45, 22.01, 26.46, 30.91, 37.80, 39.14, 42.92, and 43.14 acres when
the image spatial resolutions are 300, 450, 600, 750, 900, 1050, 1200, 1350, and 1500 m,
respectively, for half of the land cover maps over the study area. These results can serve
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as a reference for estimating unsolvable areas when unmixing land surfaces with mixed
pixels using remote sensors with low spatial resolutions.

Figure 7 displays the average proportions of underdetermined pixels and mixed pixels
for the ten mixed scales across all sixty land cover maps. The graph shows that the number
of mixed pixels increases with the mixed scales, and a larger portion of these mixed pixels
gradually encounters the underdetermined problem. Generally, the proportions of underde-
termined pixels remain at a low level, accounting for 0.1% to 2% of mixed pixels. However,
when considering the enormous number of mixed pixels from various remote sensing
systems that image the global land surface day and night, this issue becomes significant.
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4.2.3. Performance of Elastic-Window-Based Algorithm

Figure 8 shows the underdetermined pixel proportions of the test between the regular
window and elastic window approaches for the land cover map with a size of 4000 pixels
by 4000 pixels from tile N11_60. The underdetermined pixel proportions of the regular
window approach increase with the mixed scale. On the other hand, the results of the
elastic window approach remain at a low level for all ten mixed scales and are almost
unaffected by the mixed scale size. For a mixed scale of 5, only 0.003% of mixed pixels
cannot be inverted using the elastic window algorithm. This proportion decreases to 0.001%
for mixed scale 10 and becomes zero for mixed scales ranging from 15 to 50. This indicates
that the elastic-window-based algorithm is effective and robust for all ten mixed scales
when inverting the inner part values using the linear spectral mixing model.

In contrast, when inverting the inner part values based on regular windows with
fixed sizes, the underdetermined pixel proportions vary with the window size. The lowest
proportion is 0.223% with a window size of 3, while the highest proportion is 14.799% with
a window size of 45. On each mixed scale, the number of underdetermined pixels increases
with the expansion of the window size.

Traditionally, it is believed that a larger window size provides more adjacent pixels
to construct the unmixing linear system, leading to improved accuracy with the help of
the least squares method. However, this result indicates that a larger regular window
does not help reduce the number of mixed pixels encountering the underdetermined
problem. A larger regular window involves more mixed pixels that consist of land covers
different from the unmixing mixed pixel. These different land covers introduce additional
unknowns to the unmixing linear system, making the inversion more challenging. With
the increase in the mixed scale, more and more mixed pixels are likely to encounter the
underdetermined problem. Therefore, compared to a regular window with a fixed size,
the elastic-window-based algorithm, which approximates the land surface iteratively, is
preferable for preventing the underdetermined problem.
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Figure 9 shows a comparison of time consumption between the elastic window and
the fixed window (size increasing from 3 to 45) on 10 mixed scales separately. It shows that
the unmixing process based on a regular window with a size of 3 is the fastest in terms of
time consumption for all mixed scales. With an increase in the mixed scale, the number
of mixed pixels in the study area decreases, leading to a reduction in the total unmixing
time. The reason why the decrease in time consumption appears with the increase in
mixed scales is the reduction in the total number of mixed pixels in a fixed experimental
region. Therefore, the time consumption decreases sharply in exponent form for either
a fixed window or an elastic window in each mixed scale. It can be seen that the elastic
window takes a relatively small amount of time compared with other fixed windows in
statistics. Until the mixed scale reaches 45, the time consumption of the elastic window
stands at a low level, despite not being the lowest value. At the mixed scale 50, the elastic
window spends extra time on iterative approximation of the local region compared with the
least time-consuming fixed window. The elastic-window-based algorithm demonstrates
high performance, indicating that the iterative approximation of the land surface does not
require significant time, making it a practical approach.

4.2.4. MODIS-NDVI Downscaling Based on the Elastic Window

The experiment involved downscaling 23 coarse spatial resolution MOD13Q1 NDVI
images to a finer resolution within the study area of Province Shandong in the year 2010
using the elastic window method described in Section 3.2. The land cover class maps were
obtained through the ISO-DATA classification of Landsat images, as shown in Table 3. The
results of the downscaling experiment are presented in Figure 10, where the images are
listed in row-major order based on 16-day intervals.
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Due to the large size of the study region, images with a spatial resolution of 30 m
occupy a significant amount of computer memory. The Dell workstation (i5, 8G) with a
Windows-based operating system was used for the experiment. The source code of the
method was compiled with ENVI 5.4 desktop software (https://envi.geoscene.cn/ accessed
on 18 June 2023). To overcome this limitation, the high-resolution NDVI data images were
resampled and segmented into small domains, resulting in a striping phenomenon in the
mosaic image. Nevertheless, the high-resolution NDVI data images exhibit clear details
and provide spatial information. Isolated outlier pixels are almost non-existent in Figure 10,
indicating that the elastic-window-based downscaling method can effectively handle vari-
ous land surface conditions over a wide area and mitigate the underdetermined problem to
a certain extent. A comparison of the 23 high-resolution NDVI images throughout the year
reveals noticeable changes in the land surface during vegetation growth periods.

Figure 11 presents the high-resolution NDVI time series curves for several land cover
types within the study area of Shandong Province. The dashed line in the figure represents
the NDVI curve of MOD13Q1 products at the same geographic location. It can be observed
that the range of NDVI values for typical land cover types is greater in high-resolution
pixels compared to low-resolution pixels at the same scale. The fluctuation trends of
the generated high-resolution NDVI curves throughout the year align with the original
MOD13Q1 NDVI curves. Notably, for the built-up land cover type, significant differences
in NDVI values can be observed at multiple time points between the original NDVI values
and the downscaling values. However, the overall fluctuation trend remains consistent.
For cropland, the generated NDVI curve exhibits a similar trend to the original curve, with
higher NDVI values in the fine-resolution data. The NDVI values show a sudden decrease
and subsequent increase in the 14th period, indicating that the generated NDVI curve
captures the cultivation characteristics of two crops per year in the study area, similar to
the original NDVI curve.

On forest land, the trend of the NDVI curve changes after construction is consistent
with the original curve, and the values are generally higher. Similarly, on grassland, the
constructed NDVI curve shows good consistency with the original NDVI curve in terms
of trends and values. However, for wetlands, there is a noticeable difference between the
generated NDVI curve and the original curve. The fluctuation amplitude of the generated
curve is smaller and smoother, with values generally fluctuating around zero. In the case
of water, the generated curve is generally lower than the original curve, consistently below
zero, and exhibits relatively small variation compared to the original curve.

https://envi.geoscene.cn/
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To evaluate the accuracy and reliability of the generated fine NDVI compared to the
original MODIS-NDVI, an accuracy assessment was conducted. A stratified sampling
strategy was employed, where 2 out of 14 Landsat scenes were selected and points were
randomly scattered to obtain values of fine curves and original curves for different land
cover types, as shown in Table 5. In total, there were 3738 sampling points in 2010.

The original values of the MODIS-NDVI curve were considered the true values. Three
measures, namely variance, mean difference, and correlation coefficient, were used to
assess the similarity between the constructed curve and the original curve. The variance
calculation is shown in Formula (9), where n represents the total number of periods in the
NDVI time series, and ∆NDVI represents the difference between the two curves during
the corresponding period. The parameter ∆µ represents the average value of the NDVI
difference between the two curves, as shown in Formula (10). The correlation coefficient
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calculation is shown in Formula (11), where n represents the total number of periods in the
temporal NDVI, a represents the generated NDVI curve, and b represents the low-spatial-
resolution curve. The parameters µa and µb represent the NDVI means of the fine curve
and the low-spatial-resolution curve, respectively.

σ =

√√√√√ n
∑

i=1
(∆NDVIi − ∆µ)

n− 1
(9)

∆µ =
1
n

n

∑
i=1

(∆NDVIi) (10)

c =

n
∑

i=1
(NDVI(a,i) − µa)(NDVI(b,i) − µb)√

n
∑

i=1
(NDVI(a,i) − µa)

2

√
n
∑

i=1
(NDVI(b,i) − µb)

2
(11)
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The statistical distribution of the constructed NDVI and the original NDVI for the
main land cover categories at the sampling points in 2010 is presented in Figure 12. It can
be observed that the mean difference of NDVI values (Figure 12A) in the sampled land
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cover types follows a normal distribution. Generally, the constructed NDVI curve has
higher values than the original NDVI curve, with an average increase in approximately
0.16 points across all points. Except for forest land types, the standard deviation (Figure 12B)
for all other types is around 0.1, and the correlation coefficients (Figure 12C) for each
sampling point are generally above 0.9. Based on the local climate characteristics of the
study area, it can be inferred that vegetation growth was stagnant during the specified
period. Consequently, this image may not comprehensively reflect the accurate vegetation
distribution in the area. When this image is used as the basis for generating classification
maps, it may introduce errors and hurt the classification results of ground objects. Therefore,
some errors were introduced into the generated high-spatial-resolution NDVI dataset in
this specific scenic area.

Table 5. The numbers of sampling points of two areas and the according land cover types.

Year Land Cover Sampling Point Number of 119034 Sampling Point Number of 122035

2010 Crop 455 622
2010 Forest 417 228
2010 Grass 193 252
2010 Water 348 240
2010 Built-up 565 418
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5. Conclusions

In this study, we have described the underdetermined problem that arises when invert-
ing the inner part values using a linear spectral mixing model. Through simulation studies
and a case study with a class map, we have provided a detailed illustration of this problem.
We have concluded that the main reason for encountering the most underdetermined
cases is the imperfect approximation of land surface using current regular window-based
methods. To address this issue, we have proposed an iterative approximation strategy that
focuses on local mixed pixels and their adjacent regions. This strategy aims to provide a
solution to the underdetermined problem by gradually approaching the solution instead
of attempting to solve it in a single step when dealing with mixed pixels and their neigh-
borhoods. As an example of this strategy, we have developed an elastic-window-based
algorithm that can handle mixed pixels that may be involved in linear systems to prevent
these systems from encountering the underdetermined problem.

Based on a statistical analysis of sixty land cover maps from around the world, the
results have shown that the underdetermined problem exists at a relatively low level
(ranging from dozens to hundreds in every ten thousand mixed pixels) in all of these areas.
However, the severity of the problem tends to increase to some extent with the increase in
mixed scales. A comparison between the single-window-based method and the proposed
algorithm has demonstrated that the proposed algorithm can reduce the proportions of
mixed pixels that encounter the underdetermined problem. However, it should be noted
that the proposed algorithm requires more time compared to the single window-based
method, mainly due to the iterative approximation of local mixed pixels. Ensuring that
equations do not result in an underdetermined problem is crucial for successfully inverting
linear systems.

The presented strategy and algorithm can have potential applications in various areas
that require the inversion of inner part values directly—for example, downscaling high-
temporal-resolution images or time series of derived indices (such as NDVI) to obtain
high-spatial-resolution time sequences based on linear spectral unmixing. Additionally, it
can provide an alternative approach for parameter inversions related to local land surface
approximation, with mixed pixels as the computational unit. However, it is important to
note that although the experiment has been tested with ten mixed scales based on 30 m
spatial resolution land cover maps, further studies are needed considering various land
cover maps with different spatial resolutions and classification systems. Future research
should focus on improving the accuracy of unmixing in these scenarios.
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