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Abstract: In modern clinical medicine, the important information of red blood cells, such as shape and
number, is applied to detect blood diseases. However, the automatic recognition problem of single
cells and adherent cells always exists in a densely distributed medical scene, which is difficult to
solve for both the traditional detection algorithms with lower recognition rates and the conventional
networks with weaker feature extraction capabilities. In this paper, an automatic recognition method
of adherent blood cells with dense distribution is proposed. Based on the Faster R-CNN, the balanced
feature pyramid structure, deformable convolution network, and efficient pyramid split attention
mechanism are adopted to automatically recognize the blood cells under the conditions of dense
distribution, extrusion deformation, adhesion and overlap. In addition, the Align algorithm for
region of interest also contributes to improving the accuracy of recognition results. The experimental
results show that the mean average precision of cell detection is 0.895, which is 24.5% higher than that
of the original network model. Compared with the one-stage mainstream networks, the presented
network has a stronger feature extraction capability. The proposed method is suitable for identifying
single cells and adherent cells with dense distribution in the actual medical scene.

Keywords: automatic recognition; densely distributed cell image; deep learning; Faster R-CNN;
feature extraction

1. Introduction

Cell detection techniques have played an increasingly important role in modern
clinical medicine and pathological diagnosis, because the shape and number of red blood
cells contribute to detecting blood diseases. The manual cell detection method with lower
efficiency is easily affected by subjective factors, while automatic instruments, such as cell
analyzers, are not only expensive but also interfered with by impurities like white blood
cells, resulting in a lower detection accuracy. Therefore, more and more researchers have
been focusing on the automatic detection of cells.

The traditional cell detection methods may be divided into three categories. The
first kind is cell detection based on traditional segmentation algorithms [1], commonly
including watershed segmentation [2,3], global threshold segmentation [4] and color seg-
mentation [5,6]. These methods make use of the gray or color features of the image to
realize cell segmentation and recognition. The second type are recognition algorithms
based on edge detection, such as the canny operator [7,8] and the Sobel operator [9,10].
These algorithms utilize the object edge information as the detection result. The third cate-
gory are the traditional machine learning algorithms, for example, support vector machine
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(SVM) [11] and neural networks [12]. They are used to classify the obtained features and
further perform border regression by the target category. However, the traditional detection
methods above need to select a suitable model for the automatic recognition of samples
with different features; therefore, they are poor in generalization and robustness.

As deep learning is increasingly integrated into the medical field, much research on
cell detection methods of deep learning has been carried out. The typical target detection
network is composed of a faster region-based convolutional neural network (Faster R-
CNN) [13], you only look once (YOLO) [14] and a single shot multi-box detector (SSD) [15],
which mainly focus on cell segmentation or single-cell recognition. In 2018, Han et al. [16]
proposed a method based on a generative adversarial network to realize the detection of
cancer cells in pathological sections of breast cancer, in which the U-Net network was a
generative network. In 2020, Banik et al. [17] used the K-means algorithm and a CNN
to classify and locate white blood cells, respectively, thus separating them from whole
blood smear images. In the same year, Chen et al. [18], by referring to a LeNet-5 network,
constructed a model using a traditional texture feature classifier and shallow CNN to effec-
tively identify the type of milk somatic cells, which provided a new idea for subsequent
research on classification methods. In 2021, Lavitt et al. [19] combined the xResNet archi-
tecture of a CNN with transfer learning to realize cell counting, in which the cell counting
problem was transformed into a regression task. In 2022, based on the design criteria of
optimizing the accuracy and speed of detection with minimal resources, Anand et al. [20]
developed a customized deep-learning architecture (YOLO-mp), and obtained the number
of pathogens in microscope images of thick blood smears. Although these methods realize
cell recognition and classification, most of them complete single-cell recognition under the
premise of sparse distribution. However, dense cell distribution is inevitable in the actual
medicine scenario, in which the target sizes caused by adhesion and overlap are different
and the cell morphological changes caused by squeezing are irregular. There, the problem
of unrecognizable adherent cells appears, resulting in an increased false detection rate.
The current algorithm research on these cases is usually limited to general target detection
or specific scene detection. Few studies involve the extraction of adherent cells’ features,
which makes feature extraction inadequate and the recognition rate low.

In this paper, a deep-learning target recognition network based on Faster R-CNN is
proposed in order to recognize both single cells and adherent cells in a densely distributed
cell scene. On the basis of the Faster R-CNN, a balanced feature pyramid (BFP) [21]
structure, deformable convolution network (DCN) [22] and efficient pyramid split attention
(EPSA) mechanism [23] are adopted to form a method named BDE_RCNN. This method can
effectively extract multi-scale features of cells and thus realizes the automatic recognition
of binary classification for single cells and adherent cells. The proposed method has better
feature extraction capability in comparison to other networks in terms of cell recognition.
This will provide an effective solution for the automatic recognition of densely distributed
cells in an actual medical scene.

2. Methods
2.1. Network Structure

Faster R-CNN is a two-stage target detection model for end-to-end training. It is
mainly composed of a backbone network, a region proposal network (RPN), region of
interest pooling (ROI Pooling), classification and regression. The backbone network is a
basic CNN, in which the input image is processed by convolution, rectified linear unit
(ReLU) activation, pooling, etc. Its output image with high-dimensional features is imported
into the RPN and processed by a 3 × 3 convolutional layer to generate the anchors with
multiple size proportions. The two outputs of the classification layer and regression layer
are obtained for every anchor.

For the medical scene with densely distributed cells, there are many characteristics,
such as a large number of cell samples, dense and disorderly distributions and larger
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morphological difference between adherent cells and single cells. Thus, the recognition
problems of the conventional Faster R-CNN are as follows:

1. The labeling results inevitably contain some non-target information due to the dense
distributions of cells in the complex environment, which leads to an increased false
detection rate.

2. The squeezing of cells may happen, resulting in irregular morphology. This increases
the difficulty of feature extraction.

3. There are single red cells, agglomerated red cells, white blood cells or other impurities
in an actual medical scene. These cause the problem of multi-scale recognition and
reduce the range of receptive field.

In the BDE_RCNN method, ResNet50 is selected to replace Vgg16 as the backbone
network in the Faster R-CNN. Firstly, a feature pyramid network (FPN) [24] is added in the
feature extraction network to make full use of the visual features extracted. Considering
the dense distributions of cells, the FPN is integrated with a non-local module [25] to
produce a BFP structure, in which the feature extraction capability is enhanced by correctly
identifying multi-scale targets. Secondly, due to the diversity of irregular changes in cell
morphology, it is difficult for the conventional convolutional networks to learn the multi-
posture features caused by cell squeezing and deformation. The DCN is adopted to reform
the C3 and C4 layers in the backbone feature extraction network, thus improving the feature
extraction capability of the multi-posture features. Finally, the EPSA module is introduced
to extract the multi-scale features of spatial information in each channel feature map by
channel segmentations. It solves the loss problem of feature details caused by the different
sizes of cells and the overlap of adherent cells. In addition, the resolution of the feature
map decreases with the deepening of network depth in target detection of conventional
networks, so the top-level feature map will lose the cell details. By using ROI Align in the
improved network, instead of ROI Pooling, the problem of region mismatch caused by two
quantization errors can be avoided in the pooling process. Figure 1 shows the structure
of BDE_RCNN.
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2.2. BFP Module

The BFP is a feature integration method. It combines the respective advantages of FPN
and non-local to solve the unbalanced feature level of FPN in feature fusion. The BFP uses
the feature map information of multiple levels to enhance the expression ability of each
level in the feature map. The feature extraction network proposed is a ResNet50. Its last four
convolutional layers are selected as the bottom-up network of the feature pyramid, defined
as C2, C3, C4 and C5. After the C5 layer, a transverse connection and top-down network of
new feature layers are established, namely P5, P4, P3 and P2. The complementary forms of
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high- and low-level information can improve the detection performance of the network
and produce richer semantic features.

In order to integrate the features of multiple layers while preserving their respective
semantic layers, the BFP unifies the feature maps of different levels to the C4 layer by
adaptive maximum pooling or the interpolation method. The pooling processing is adopted
for a small feature map, while the bilinear interpolation is carried out for a large-scale
feature map. By average operation, the balanced semantic feature is expressed as:

C =
1
L

l=lmax

∑
l=lmin

Cl , (1)

where Cl is the prediction feature layer, l is the hierarchy, L is the total number of predicted
feature layers, lmax and lmin are the highest level and lowest level, respectively.

The balanced semantic features are refined by an embedded non-local, which will
integrate the global information and further re-scale it to enhance the original features. This
way of feature integration allows each scale to utilize richer details for recognition of dense
cells at multiple scales.

2.3. DCN Module

Cases of cell adhesion, squeezing and morphological change exist in a cell dataset,
resulting in irregular deformations of cell morphology. To solve this problem, the DCN
module is introduced in the C3 and C4 layers of the backbone, respectively. On the
basis of traditional convolution, the DCN adds the direction vectors of adjusting the
convolution kernel to obtain more areas of interest according to sample shapes. This
allows the kernel to closely align with characteristic objects, facilitating the learning of
more complex transformations and reducing the background information in the receptive
field. Figure 2 shows the sampling location diagrams of standard convolution and DCN,
respectively. The differently colored balls denote the sampling location results, in which the
orange ball is the initial position in each diagram. It can be seen that the DCN enables the
sampling points of convolution kernel to shift in the input feature diagram, which makes
the convolutional module extract more accurate target features.
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2.4. EPSA Module

In order to effectively acquire the characteristic information of different sizes for single
cells and adherent cells, the lightweight EPSA module is adopted, which replaces a 3 × 3
convolution with PSA in the residual network bottleneck.
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First of all, the spatial pyramid convolutional (SPC) module divides the input channels
and extracts the multi-scale features according to the spatial information in the feature
map of each channel, which improves the multi-scale representation capability at a finer
level. Secondly, the squeeze-and-excitation weight (SEWeight) module is used to extract the
channel attention from the feature maps with different scales to obtain the attention vector
of each channel. Then, the softmax algorithm recalibrates the attention vector features of
multi-scale channels to obtain the attention weights. Finally, the dot product is processed
between recalibrated weights and corresponding feature maps by elements. The EPSA
module not only increases the ranges of trunk feature extraction and receptive field, but
also significantly separates the important context information features. So, EPSA is superior
to the existing attention modules in multi-scale cell recognition.

2.5. ROI Align Module

The input of ROI Pooling is the candidate region coordinate obtained by RPN calcu-
lation in the Faster R-CNN. Because there is only one regression process, the coordinates,
mapped from the candidate region in the original map, are the floating point numbers in
the feature map. However, ROI Pooling requires quantizing coordinates to integers, and
the quantization errors produced twice cause the position deviation of the candidate region
in the original feature map. Therefore, this process affects the accuracy of detection results.
In order to resolve the problem, ROI Align [26] is chosen to replace ROI Pooling. The
principle is to cancel the quantization operation and obtain the floating point coordinates
by the bilinear interpolation so as to complete the whole continuous operation. When the
feature information is entered into the pyramid, the last four layers of data are entered
into the ROI Align layer in the prediction of output features, thereby increasing the feature
extraction capability of the network.

3. Experiments and Analyses
3.1. Dataset

The dataset is derived from the Infahan Medical Image and Signal Processing (MISP)
dataset. The blood smear images were taken by a Nikon ECLIPSE 50i microscope with
a magnification of 100 times, in which a large number of single cells and adherent cells
appear in dense distributions. These images reflect the diversity of cell morphology and
the environmental complexity of actual medical scenes, affecting the accuracy of cell
recognition. They are neither labeled nor preprocessed, so it is necessary to draw the
boundary boxes on cell images by labelme 5.0.2 software. The processes of annotation
and labeling can accurately mark and segment single cells and adherent cells to train and
evaluate the model. The sample examples of original dataset are shown in Figure 3. These
images were obtained in different conditions, such as different shooting angles, lighting
conditions, equipment settings and other factors. In order to deal with various images
in the actual scene, the original dataset is expanded to 260 images by randomly rotating,
scaling, cropping and adjusting contrast and brightness. The images are 775 × 519 pixels.
The expanded dataset is randomly divided into a test set, validation set and training set
according to the ratio of 3:3:20. Among them, the numbers of labeled single cells and
adherent cells are 11,350 and 9414, respectively.
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3.2. Evaluation Indexes

In order to comprehensively assess the performance of the proposed model, four
evaluation indexes of recall, precision, mean average precision (mAP) and F1 score are
adopted in here. All these evaluations are calculated based on the confusion matrix [27].

In target detection, the intersection over union (IoU) is the overlap rate between the
candidate bounding box and ground truth box. DR indicates the candidate bounding box
and GT indicates the ground truth box, and the IoU is given as:

IoU =
SGT ∩ SDR

SGT + SDR − SGT ∩ SDR
, (2)

where SGT represents the area of ground truth box, SDR represents the area of candidate
bounding box, SGT ∩ SDR represents the intersection area of the two.

Recall is the number ratio of correctly detected targets to all real labeled targets. It is
expressed as:

R =
TP

TP + FN
, (3)

where TP refers to the number of true positive samples, that is, the positive samples are
correctly identified as positive samples, FN refers to the number of false negative samples,
i.e., the positive samples are incorrectly identified as negative samples.

Precision is the number ratio of correctly detected targets to all predicted targets. It is
given as:

P =
TP

TP + FP
, (4)

where FP refers to the number of false positive samples, that is, the negative samples are
incorrectly identified as positive samples.
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Average precision (AP) is used to comprehensively measure the model quality by
considering recall and precision. AP is described as:

Ac
t =

1
N ∑

R∈{0,0.01,...,1}
max

{
P
(∼

R
)}

∼
R≥R

, (5)

where t is the threshold of IoU, c is the given category number, N is the number of confidence

thresholds selected,
∼
R is the next recall value. Because there are only two categories, namely

single type and adherent type, thus c = 2.
The mAP is the average of AP of all categories. It is calculated as:

mAP =
∑c

i=1 Ai

c
. (6)

For cell target detection, the larger the mAP value, the better the detection performance
of the model, thus the higher the recognition rate.

F1 score also combines precision and recall and is their harmonic mean. It avoids the
single maximum value of precision or recall to comprehensively reflect the overall index.
F1 is expressed as:

F1 =
2× P× R

P + R
(7)

3.3. Result Analyses
3.3.1. Results of Ablation Experiments

The ablation experiments are carried out among the original network and three im-
proved network models, respectively. The network parameters are as follows: the mo-
mentum gradient is 0.9, the initial learning rate is 0.005, the weight attenuation is 0.0005,
the batch size of the input image is 4 during training and each experiment is trained with
40 epochs. These networks all use the same dataset and training parameters. The original
network selects Vgg16 as the backbone, while the three improved networks use ResNet50
as the backbone. The improved model 1 adds EPSA and ROI Align, the improved model 2
adds BFP on the basis of model 1 and the improved model 3, namely BDE_RCNN, adds
DCN on the basis of model 2. It is decided that when the IoU between the candidate
bounding box and ground truth box is larger than 0.7, the sample is considered as a positive
sample. Otherwise, when it is smaller than 0.3, it is considered as a negative sample. The
positive and negative samples are used to train the classification function of RPN, and
then the suggested areas are accurately output for the subsequent full connection layer.
Figure 4 shows the detection results of four network models, in which the green marks and
blue marks denote the detection results of single red blood cells and adherent red blood
cells, respectively. It is seen from the detection results of the original network that there are
missed cells, as shown in the red boxes in Figure 4a. This is mainly because the extraction
step of the original model is larger, resulting in inadequate learning of small features in
densely distributed scenes. Compared to the original network model, the three improved
models significantly improve the cell detection effects. Model 1 and model 2 still have a few
missing cells, as shown by the red boxes marked in Figure 4b,c. But BDE_RCNN correctly
identifies almost all single cells and adherent cells, as shown in Figure 4d. The recognition
results show that the proposed BDE_RCNN has the best effect for cell detection.

In order to more directly compare the recognition effect of each algorithm, the eval-
uation indexes of four models are listed in Table 1. A check indicates a selected model
and a cross indicates an unselected model. The experimental datasets include three types:
one is the dataset of single cells (SRBC), one is the dataset of adherent cells (ARBC) and
the other is the mixture dataset of single cells and adherent cells (MIX). It is shown from
recall, precision, mAP and F1 that BDE_RCNN is better than other models in SRBC, ARBC
and MIX. In SRBC, the mAP of BDE_RCNN increases by 25.7%, 15.9% and 1.5% and F1



Appl. Sci. 2023, 13, 12412 8 of 12

increases by 27.1%, 16.1% and 1.5%, respectively, compared to the original model, model 1
and model 2. In ARBC, the mAP of BDE_RCNN increases by 54.4%, 18.6% and 2.3% and
F1 increases by 54.5%, 18.8% and 2.2%, respectively, compared to the other three models. In
MIX, the mAP of BDE_RCNN also increases by 24.5%, 16.4% and 2.4% and F1 correspond-
ingly increases by 26.6%, 17.2% and 3.2%, respectively. The experimental results indicate
that the BDE_RCNN method performs best in multiple scenes with different datasets when
it adopts BFP, DCN, EPSA and ROI Align modules, especially for adherent cells with dense
distribution. The proposed method effectively solves the automatic recognition problem of
red blood cells under the conditions of dense distribution, extrusion deformation, adhesion
and overlap.
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Table 1. Index comparison results of four models.

Model BFP DCN EPSA ROI
Align Type Recall Precision mAP F1

Original
model

× × × ×
SRBC 0.686 0.761 0.731 0.722
ARBC 0.587 0.505 0.545 0.543
MIX 0.664 0.754 0.719 0.706

Model 1 × ×
√ √ SRBC 0.772 0.811 0.793 0.791

ARBC 0.666 0.752 0.710 0.706
MIX 0.736 0.791 0.769 0.763

Model 2
√

×
√ √ SRBC 0.886 0.923 0.905 0.904

ARBC 0.782 0.865 0.823 0.821
MIX 0.838 0.897 0.874 0.866

BDE_RCNN
√ √ √ √ SRBC 0.895 0.942 0.919 0.918

ARBC 0.796 0.887 0.842 0.839
MIX 0.868 0.921 0.895 0.894

The convergences of training loss function and the changes in model learning rate
(lr) for four models are shown in Figure 5. It is shown that the first three models tend
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to converge at 1750 iterations, as shown in Figure 5a–c, while BDE_RCNN converges at
600 iterations, as shown in Figure 5d. The BDE_RCNN method is superior to other models
in terms of convergence times. Thus, with the reduction of loss curve, a higher level of
training model can be obtained at fewer iterations. In addition, the learning rate curve of
BDE_RCNN begins to decline when the iteration numbers reach about 250, as shown in
Figure 5d. Compared with other models, BDE_RCNN more easily approaches the optimal
model solution of training parameters in the training process.
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3.3.2. Results of Comparison Experiments

In order to further verify the effectiveness of the proposed algorithm, several single-
stage mainstream models such as SSD, YOLOv5 and RetinaNet [28] are compared to
BDE_RCNN, as shown in Figure 6. Among them, SSD network is based on a convolutional
network of forward propagation to generate the boundary frame with fixed size and target
scores of the sample. Its final detection result is obtained by non-maximum suppression.
YOLOv5 is one of the typical single-stage algorithms. By dividing the feature graph into
multiple lattices and detecting the targets in each lattice, the position and category of targets
within the lattices can be predicted at once. Using the FPN structure and focal loss function,
the RetinaNet network solves the imbalance of positive and negative samples in the target
detection network. Figure 6 shows that the three single-stage models fail to detect the
whole cells and miss some cells for the same dataset, as shown by the red boxes marked in
Figure 6a–c, respectively. Meanwhile, BDE_RCNN can correctly recognize the single cells
and adherent cells, as shown in Figure 6d. This is attributed to lacking the step of candidate
region extraction in the single-stage network, and only the first-stage network completes
the two tasks of classification and regression.
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Table 2 shows the comparison results of SSD, YOLOv5, RetinaNet and BDE_RCNN in
the evaluation indexes. It is seen that the overall detection accuracy of the improved
BDE_RCNN is better than that of single-stage networks. For mAP and F1 indexes,
BDE_RCNN is 46.5% and 44% better than SSD, respectively. Compared to YOLOv5,
they increase by 17.1% and 17.8%, respectively. Similarly, the two indexes increase by 6.9%
and 7.5% compared to RetinaNet, respectively. These results indicate that BDE_RCNN has
stronger feature extraction capability compared to single-stage mainstream networks in the
actual scene, thus effectively improving the automatic recognition effect for cells.

Table 2. Index comparison results of mainstream models and BDE_RCNN.

Model Recall Precision mAP F1

SSD 0.586 0.659 0.611 0.620
YOLOv5 0.717 0.804 0.764 0.758

RetinaNet 0.808 0.856 0.837 0.831
BDE_RCNN 0.868 0.921 0.895 0.893

4. Conclusions

In this paper, an automatic recognition method, BDE_RCNN, of adherent cells in
densely distributed scene is proposed based on Faster R-CNN. To improve the network
performance, BFP, DCN and EPSA are applied to automatically recognize the cells under
the conditions of dense distribution, extrusion deformation, adhesion and overlap. In
addition, the region mismatch caused by quantization error is avoided by the ROI Align
module. The experimental results show that BDE_RCNN can obtain a higher level of
training model with fewer iterations and its mAP and F1 values are 24.5% and 26.6% higher
than that of the original Faster R-CNN, respectively. Compared with several single-stage
mainstream models, BDE_RCNN has stronger feature extraction capability, thus effectively
improving the cell recognition effect. The proposed method can maximize the network
recognition rate and realize the automatic recognition of single cells and adherent cells in an
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actual scene. It may be applied in holographic imaging such as particle field measurement
and biological cell morphology observation.
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