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Abstract: Self-supervised learning is a method that learns general representation from unlabeled
data. Masked image modeling (MIM), one of the generative self-supervised learning methods, has
drawn attention for showing state-of-the-art performance on various downstream tasks, though it has
shown poor linear separability resulting from the token-level approach. In this paper, we propose a
contrastive learning-based multi-view masked autoencoder for MIM, thus exploiting an image-level
approach by learning common features from two different augmented views. We strengthen the
MIM by learning long-range global patterns from contrastive loss. Our framework adopts a simple
encoder–decoder architecture, thus learning rich and general representations by following a simple
process: (1) Two different views are generated from an input image with random masking and by
contrastive loss, we can learn the semantic distance of the representations generated by an encoder. By
applying a high mask ratio, of 80%, it works as strong augmentation and alleviates the representation
collapse problem. (2) With reconstruction loss, the decoder learns to reconstruct an original image
from the masked image. We assessed our framework through several experiments on benchmark
datasets of image classification, object detection, and semantic segmentation. We achieved 84.3%
in fine-tuning accuracy on ImageNet-1K classification and 76.7% in linear probing, thus exceeding
previous studies and showing promising results on other downstream tasks. The experimental results
demonstrate that our work can learn rich and general image representation by applying contrastive
loss to masked image modeling.

Keywords: contrastive learning; deep learning; image representation learning; masked image
modeling; self-supervised learning

1. Introduction

Deep learning, which has been revolutionized over the past decade, has recently
faced data-hungry problems due to the rapid growth of hardware and resources [1–3].
Self-supervised learning, which learns meaningful data representations from unlabeled
data [4], has emerged as an alternative to supervised learning resulting from the inefficiency
of labeling in terms of time and labor [5–7].

Masked autoencoding [8] is a method that learns representations by removing part
of the input and predicting the masked part. Autoencoder [9,10] architecture is used for
masked autoencoding, thus compressing high-dimensional data into a latent representation
with an encoder and reconstructing the original data with a decoder, as shown in Figure 1.
It has been successful in NLP as a method of self-supervised pre-training. The approach of
learning representation by reconstructing images from corrupted images is not new; the
idea was already proposed before 2017 [11,12]. The idea was buried after the emergence of
contrastive learning, since it has shown promising results on downstream tasks [13–15].
Upon witnessing the success of masked autoencoding in NLP fields [16–18], many works
tried to apply masked autoencoding to vision, but they lagged behind due to the following
reasons: (1) In vision, convolutional network architecture has been dominant [19], where
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indicators like mask token [17] or positional embedding [20] are inapplicable. (2) With
only a few neighboring pixels, missing parts of an image can be successfully predicted
without a deep understanding of an image [21]. However, when predicting a missing
part/token, complex language understanding should be investigated. In other words, the
masked autoencoding in the vision field might not demand fully understanding the image,
which results in capturing less useful features. Due to these differences between the two
modalities, masked autoencoding has been limitedly applied in the vision field until the
advent of the vision transformer (ViT) [22].

Figure 1. Overview of autoencoder architecture. Given input, encoder compresses the input into low-
dimensional latent representation, and it reconstructs the original data with decoder. Autoencoder
aims to make input X and reconstructed output X̂ similar.

Motivated by the success of masked language modeling (MLM) in language under-
standing, masked image modeling (MIM), following the idea of MLM, learns rich and
holistic representations by reconstructing masked original information (e.g., pixel and
representation) from unmasked information. MIM has gained much importance recently
by showing state-of-the-art performance [2,23,24] not only in ImageNet classification, but
also in other downstream tasks like object detection and semantic segmentation.

Before MIM, contrastive learning (CL), which learns meaningful representation by
using similarities and differences between image representations, was a dominant method
in self-supervised learning [4]. By learning embedding space in a way that contrasts each
other so that positive samples are located close and negative samples are far away, CL
learns to discriminate instances using features of the entire image [25]. Contrary to CL, MIM
does not learn instance discriminativeness, since it only considers relationships between
patches or pixels through the image reconstruction task [26]. Therefore, although MIM
methods exceed the performance of CL methods in fine-tuning, they are shown to be less
effective in linear separability.

In this work, we propose a simple yet effective framework, thus adopting multi-view
autoencoder architecture and utilizing contrastive learning for MIM to overcome the gap
between CL and MIM. Different from conventional autoencoder architectures are shown in
Figure 1; we add an additional branch to learn common information from two different aug-
mented views by contrasting different images originating from the same image. We call this
architecture a multi-view autoencoder. CL learns instance discriminative representations
to result in better performance in linear probing, while MIM shows better performance in
fine-tuning settings. We note that the proposed contrastive learning-based MIM method
can strengthen MIM by learning global patterns of an image with contrastive loss, which
is in contrast to the existing pixel-level approaches that only learn local representations
of images.

In more detail, we adopt an asymmetric encoder–decoder architecture using ViT [22]
blocks. The ViT makes the model focus on important features of an instance. We visualized
maps of the attention of our pre-trained ViT encoder as shown in Figure 2, thus taking
the average of the ViT heads following the work of [27]. CL is used to capture global
information and learn discriminative representation by contrasting negative samples while
pulling positive samples. By generating two augmented views via masking, with the
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encoder, we compress them into latent representations, which are used for contrastive loss.
While learning holistic information from contrastive loss, reconstruction loss helps the
decoder to learn local representation by predicting patches from the masked image.

Figure 2. Visualization of attention heatmap using pre-trained ViT encoder of the proposed method.
(a) shows the original images, (b) shows the heatmaps of each original image, and (c) shows the
heatmaps added to original images.

We conducted experiments to prove the effectiveness of our work. The proposed
method is a pre-training method, and we only used a pre-trained ViT encoder during
fine-tuning. Our ViT encoder pre-trained with the proposed method exceeds previous
work, thereby showing 84.3% ImageNet-1K classification top-1 accuracy. Though show-
ing lower performance, but comparable compared to other CL-based methods in linear
probing, our work shows an impressive performance gain compared to MIM methods by
achieving a 76.7% accuracy. We also evaluated the transfer learning on object detection
and segmentation. We recorded a 51.3% APbox and a 45.6% APmask on COCO, as well as a
50.2% mIOU on ADE20K, which yielded the best and second best performance outcomes,
respectively, compared to previous studies. Through ablation studies, we demonstrate that
utilizing CL for MIM helps the model learn better representation.

Our contributions are summarized as follows:

• We propose a simple framework exploiting contrastive learning for MIM to learn
rich and holistic representations. The model learns discriminative representation by
contrasting two augmented views while reconstructing original signals from the
corrupted ones.

• A high masking ratio works as strong augmentation. Without additional augmentation
like color distortion, blur, etc., our model shows better performance than previous
CL-based methods by only using masking and random cropping.

• Experimental results prove that our work is effective, thus outperforming previous
MIM methods in ImageNet-1K classification, linear probing, and other downstream
tasks like object detection and instance segmentation.

The rest of this paper is structured as follows. Section 2 introduces related works.
In Section 3, we give an overview and details of our framework. Then, we show the
experimental results and analysis in Section 4. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Contrastive Learning

Contrastive learning [13–15,28–30] is a method of learning instance discriminative
features by contrasting samples against each other to learn common features between data,
which is categorized as discriminative self-supervised learning. CL has been a dominant
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self-supervised learning method [26], since it has demonstrated overwhelming performance
over supervised learning. CL relies on negative samples and strong data augmentations to
avoid the representation collapse problem, thus outputting constantly when given different
inputs. Previous studies have investigated the use of memory banks [15] and large batch
size [13] for better informative negative samples. Recent works have shown that, without
discriminating between images, we can learn features by only using positive samples.
BYOL [29] and SimSiam [31] use only positive samples in a different way; BYOL uses a
momentum encoder, while SimSiam uses a stop gradient. Recent studies [14,32] that exploit
the use of ViT architecture stand out compared to convolutional neural networks. The
makers of DINO [14] discovered that ViT features contain explicit information about the
semantic segmentation of an image and outperform previous self-supervised methods.

2.2. Masked Language Modeling

Masked language modeling (MLM) [16–18] is one of the most-used approaches for
pre-training and shows promising results on various downstream tasks in NLP. GPT [16,33]
and BERT [17] are the foundation models in MLM, but they have differences: BERT [17]
uses entire words all at once using special mask tokens, while GPT [16] predicts the next
word with previous words in an auto-regressive manner. They both remove a portion
of text tokens and predict the removed part, which makes the model learn the context
understanding of language by masking some parts [8].

2.3. Masked Image Modeling

In early works of masked image modeling (MIM), a denoising autoencoder [11,12] was
introduced to restore blurred, masked pixels to original clean pixels. MIM studies [2,34]
inspired by the successful context understanding of the masked parts in MLM tasks
have been introduced. In [34], sequences of pixels were used to predict unknown pixels.
BEiT [2] and MAE [23] are foundation models of MIM showing promising results on several
downstream tasks. BEiT utilizes BERT-style pre-training by reconstructing visual tokens
using a pre-trained dicrete VAE [35] as a tokenizer, while MAE predicts pixels directly
using a ViT [22]. Also, ref. [36] improved segmentation performance through pre-training to
predict pixels from masked pixels. Recent works have explored pixel or feature regression,
though only in a relatively small model. The work of [37] proposes a model employing an
enhancer network to either recover original image pixels or predict whether each visual
token is replaced by a generator sample or not.

3. Method
3.1. Framework

The overall framework is shown in Figure 3, which adopts an autoencoder architecture.
We propose contrastive learning to learn representation using multi-view of an image,
thus using contrastive learning on latent representations of shared encoder. We generate
multi-view of an image by simple augmentation with random masking. With encoder, we
compress high-dimensional image data into low-dimensional latent representations and
reconstruct the original images given latent representations with decoder. In detail, firstly,
with random masking, two different masked images are generated from an input image.
Encoder, consisting of ViT layers, takes two masked images as input, thus compressing
them into latent representations, which are used for contrastive learning. Afterwards,
decoder reconstructs the original image from latent representations with mask tokens. The
training process is specified below.
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Figure 3. Overall architecture. Original image Ii is converted into randomly masked images x′1
and x′2 after augmentation process. The encoder compresses them into z1 and z2, which are used
for contrastive learning. Given z1 and z2, the decoder predicts the masked parts, thus outputting
reconstructed images y1 and y2.

3.1.1. Input and Target Views

We randomly sample N images in every iteration when pre-training. To create target
views, denoted as x+i ∈ R224×224, we apply simple data augmentation, random resized
cropping, and horizontal flipping. Also, we exploit applying augmentation two times, thus
creating two different target views for effective use of contrastive learning as shown in
Figure 4. Two different target views make the model see an input image from different
points of view. The process of how target views are generated is shown in Figure 5.

Figure 4. A framework utilizing contrastive learning for masked image modeling. We firstly generate
two different target views x+1 and x+2 with simple augmentation. Given x′1 and x′2, generated by
random masking operation h(·), our encoder f (·) converts patch sequences into latent representations
z1 and z2. Finally, our decoder outputs y1 and y2, which are reconstructed images.

Figure 5. A flowchart of how target views are generated. Simple augmentation is applied to
an input image Ii. Afterwards, augmented images are converted into patch sequence and then
randomly masked.

3.1.2. Patchify and Masking Strategy

Since we adopt ViT for the encoder, we patchify the target views into a non-overlapping
14 × 14 patch sequence. To retain spatial information about where each patch is located, we
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add positional embedding to them. For positional encoding, we used sine–cosine positional
encoding. In addition, for augmented view, we apply random masking to the patches.
Masking is simple; we generate numbers following a uniform distribution. Afterwards,
we ’mask’ a specific ratio of the total number of patches in the embedded patch sequence
using the generated random numbers, i.e., random masking. The randomly masked patch
sequences are denoted as x′i ∈ Rm× and can be formulated as x′i = h(x+i ), i ∈ {1, 2}, where
h denotes the patchifying and masking operation.

Conventionally, masked language models mask relatively low portion of tokens,
because more masking would result in insufficient context to learn good representation [38].
However, because image pixels are continuous contrary to discrete language tokens, higher
masking ratio should be applied to eliminate redundancy in image. We choose certain
masking ratio through experiments; see Section 4.2.1.

3.1.3. Encoder

Our encoder f (·) adopts ViT architecture, specifically ViT base with patch size 16.
Each masked image x′1 and x′2 can be decomposed into visible patches and masked patches.
They can be formulated as follows:

x′i −→ xv
i , xm

i (1)

zi = f (xv
i + xpos) = ViT(xv

i + xpos) (2)

where xv
i , xm

i , and xpos are visible patches, masked patches, and positional embeddings,
respectively. A whole process of encoder is shown in Figure 6. Specifically, for encoder input,
as represented in Equation (2), only visible patches and positional encoding are passed
through to generate latent representations denoted as z1 and z2, thus excluding masked
patches in line with MAE, which allows for computing efficiency. Since ViT operates on
image patches and uses self-attention mechanisms, which results in more computational
complexity compared to CNNs, we should consider computational efficiency. We excluded
masked patches, which means only 20% of image patches were computed with 80% of
masking ratio.

The encoder learns to compress high-dimensional vectors retaining important infor-
mation representing the given input data. We use latent representation, the output of the
encoder, for contrastive learning by pulling the positive pairs close and pushing the nega-
tive pairs away. Using two different target views, mentioned in Section 3.1.1, strengthens
the encoder to better learn instance discriminativeness by using different points of view.
Also, since we aim to learn global patterns of an image, encoder learns to capture patterns
that represents an image with visible patches by operating only on unmasked patches
in encoder.

Figure 6. A flowchart of an encoder. Encoder takes unmasked patches xv
i and positional embeddings

as input, and it outputs latent representation zi.

3.1.4. Decoder

To perform the reconstruction task, the decoder, g(·), reconstructs images from given
inputs z1 and z2 as shown in Figure 7. Our decoder also adopts ViT, but it is lightweight
compared to the encoder. Given z1 and z2 as inputs, mask tokens are added, since our
decoder computes over full patches. Also, we add positional embeddings to them. By doing
so, mask tokens do know where they should be located. Following the setting of MAE, we
also adopt an asymmetric encoder–decoder design, thus having a shallow depth of decoder.
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As our goal is to learn image representation, not reconstruct corrupted images, the decoder
was only used in pre-training.

Figure 7. A flowchart of an decoder. Decoder takes latent representation zi, masked patches xm
i , and

positional embeddings as input, and it outputs reconstructed image yi.

3.2. Training Objectives

For the training objective, we use two objectives: reconstruction loss and contrastive
loss. Both loss functions are specified below.

3.2.1. Reconstruction Loss

We use reconstruction loss, mean squared error (MSE), as one of our training objectives,
which is generally used in MIM. The model performs a pre-text task to reconstruct the
original images from corrupted (here we say masked) ones. Given y1 and y2, prediction
from the model, reconstruction loss computes over patchified target image x+i , which is
formulated as follows:

Lr =
1

2N

N

∑
j=1

2

∑
i=1

(yi − x+i )2 (3)

where N is batch size. We divide MSE over twice the batch size, because two different views
are generated from one image. This loss helps the model to learn local representations of
images, since it uses neighboring patches to predict the masked ones.

3.2.2. Contrastive Loss

For contrastive loss, we use NT-Xent (the normalized temperature-scaled cross-entropy
loss) proposed in [13]. This loss operates cosine similarity between given pairs, thus com-
puting mutual information between them. In a mini-batch of N samples, images augmented
from the same image are regarded as a positive pair and the rest of the samples, 2(N − 1),
are treated as negative samples. Contrastive loss is defined as follows:

`(i, j) = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 l[k 6=i]exp(sim(zi, zk)/τ)

(4)

sim(i, j) = z>i zj/(‖zi‖‖zj‖) (5)

Lc =
1

2N

N

∑
k=1
{`(2k− 1, 2k) + `(2k, 2k− 1)} (6)

where l[k 6=i] ∈ {0, 1} is an indicator representing 1 if k 6= i and τ denotes temperature
constant. τ is set to 0.07, thus following the default setting of [13]. The denominator of
`(i, j) computes similarity over a positive pair, and the final contrastive loss function, Lc,
is computed across all positive pairs. By doing so, different views from the same image,
which we call positive samples, are pulled together while pushing away negative samples
in embedding space.

The total loss L is a weighted sum of reconstruction loss Lr and contrastive loss Lc,
which is formulated as follows:

L = Lr + λLc (7)

where λ is a hyperparameter deciding loss weight. The combination of two losses, re-
construction loss, and contrastive loss, contributes to learning image representation in a
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different way: reconstruction loss computes over the reconstructed images (i.e., model
prediction), and the aimed target images learn local patterns of an image by reconstructing
original information from corrupted ones. Contrastive loss computes over latent rep-
resentations generated from the encoder and learns to capture instance discriminative
representations of an image. By jointly using them, the model learns rich representations
considering both global and local patterns of an image.

4. Experiments
4.1. Implementation Details

We pre-trained our model at 224 × 224 resolution on an ImageNet-1K [39] training
set without labels. ImageNet-1K is a benchmark dataset for image classification consisting
of about 1.2M training images and 50K validation set with 1000 classes. It is commonly
used for pre-training due to its high quality and diversity of instances. After pre-training,
we conducted several experiments to evaluate the proposed method. We fine-tuned our
pre-trained model on the ImageNet dataset and conducted experiments on linear prob-
ing for analyzing the linear separability. To assess the transferability of the model, we
used the COCO [40] and ADE20K [41] benchmark datasets for object detection, instance
segmentation, and semantic segmentation. The implementation details are specified below.

4.1.1. Pre-Training

Most of the settings followed the MAE [23]. In detail, we applied random resized
cropping and random horizontal flipping for augmentation. They were resized to be
224 × 224 so they could be divided into 16 × 16 patches. For the encoder, we used
ViT-Base [22] with a 12-layer transformer with a 768 hidden size. We adopted the AdamW
optimizer with β1 = 0.9 and β2 = 0.95 for optimization. The learning rate was set to
1.5 × 10−4, with a warmup of 40 epochs and a cosine learning rate decay. To initialize the
transformer blocks, we used Xavier uniform initialization. We pre-trained the model for
1600 epochs with a batch size of 256. We set the hyperparmeters, mask ratio, loss weight,
and decoder depth through experimental results, as described in Section 4.2.1.

4.1.2. Fine-Tuning

We conducted full fine-tuning on the image classification, object detection, and seman-
tic segmentation. Every experiment was trained on the training set and evaluated on the
validation set of the corresponding datasets.

Image Classification: For image classification, we evaluated our model with top-1
accuracy on the ImageNet validation set and trained for 100 epochs with a batch size of
512. Mixup [42] with a probability of 0.8 and RandAugment [43] were used. We use the
vanilla ViT base for the backbone architecture with a classifier for classification. Only the
encoder was used for fine-tuning the initializing ViT with our pre-trained encoder weights.

Object Detection and Segmentation: COCO [40] is a large-scale benchmark dataset
used for object detection and segmentation, and we used the COCO2017 dataset, which
consists of about 120k images with 80 common object classes. The Mask-RCNN [44] frame-
work was adapted, with the FPN [45] backbone replaced with the ViT and initialized ViT
with weights of our pre-trained model. The training settings follow [46]. To evaluate the
model’s performance, we used AP, a widely used metric for object detection and instance
segmentation. APbox and APmask were used to evaluate the object detection and instance
segmentation, respectively.

Semantic Segmentation: ADE20K [41] is a benchmark dataset comprising 150 semantic
categories with 20k images for the training set and 2k for the validation set. We used
UperNet [47] for semantic segmentation on the ADE20K dataset following the code of [2].
To evaluate the semantic segmentation, we used mIOU for the metric, which is the mean
value of the IOU.
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4.1.3. Linear Probing

Linear probing follows a similar process as fine-tuning, but with a frozen backbone
following the process described in [48–50]; we added a linear classifier on top while training.
By doing so, we could evaluate the linear separability of the model. Different from fine-
tuning, common regularization like color jittering, Mixup [42], or cutmix [51] is not used in
linear probing following [32]. Since only the linear classifier is activated, we trained the
model for 100 epochs with a larger batch size of 1024.

4.2. Experimental Results

The experimental results on the ImageNet classification, linear probing, object de-
tection, and semantic segmentation are shown in Tables 1–4. We compared our model
to the previous CL [13–15] and MIM [23,24,36] methods using only the ImageNet-1K for
pre-training, except for BEiT [2], where we used additional data to train tokenizer. We
report the results of each model using ViT-Base/16 [22] for the backbone and ResNet-50
(4×) [19] for the SimCLR.

Table 1. Top-1 accuracy on ImageNet-1K in fine-tuning setting. All models were pre-trained and
fine-tuned on ImageNet-1K. Except for SimCLR, which used CNN for backbone, we evaluated
performance of models with ViT-B encoder. The best result is shown in bold, and second best result
is underlined.

Model Approach Training Epochs Accuracy

SimCLR [13] CL 1000 80.4
MoCo-v3 [32] CL 300 83.2

DINO [14] CL 300 82.8
CIM [37] MIM 300 83.3
BEiT [2] MIM 800 83.2

SimMIM [36] MIM 800 83.8
CAE [24] MIM 1600 83.9
MAE [23] MIM 1600 83.6

Ours MIM+CL 800 83.2
Ours MIM+CL 1600 84.3

Table 2. Linear probing results on ImageNet-1K dataset. The best result is shown in bold, and second
best results are underlined.

Method Approach Pre-Training Epochs Accuracy

SimCLR [13] CL 1000 76.5
MoCo-v3 [32] CL 300 76.7

DINO [14] CL 300 78.2
BEiT [2] MIM 800 56.7

SimMIM [36] MIM 800 56.7
CAE [24] MIM 1600 71.4
MAE [23] MIM 1600 68.0

Ours MIM+CL 1600 76.7

Pre-trained models have rich feature extraction capabilities that are learned from
large image datasets. The pre-trained image encoder extracts meaningful features from the
image, which can be useful in various downstream tasks. This enables transfer learning
and provides useful initial weights for new tasks. In addition, linear probing is commonly
used to evaluate the quality of the learned representations by only activating the linear
classifier while freezing the encoder. In order to evaluate the learned representations and
the transferability of the proposed model, each experiment was conducted on various
downstream tasks using our pre-trained ViT encoder. We only used encoder when fine-
tuning, while both the encoder and decoder were used in the pre-training process.



Appl. Sci. 2023, 13, 12413 10 of 15

Table 3. Object detection and segmentation results on COCO dataset. The best result is shown in
bold, and second best result is underlined.

Method APbox APmask

MoCo-v3 [32] 47.9 42.7
BeiT [2] 49.8 44.4

CAE [37] 50.0 44.0
SimMIM [36] 52.3 -

MAE [23] 50.3 44.9

Ours 51.3 45.6

Table 4. Semantic segmentation results on ADE20K dataset. The best result is shown in bold, and
second best results are underlined.

Method mIOU

MoCo-v3 [32] 47.3
BeiT [2] 47.1

CAE [37] 50.2
SimMIM [36] 52.8

MAE [23] 48.1

Ours 50.2

As shown in Table 1, our model achieved a 84.3% top-1 accuracy, which is 0.4% higher
than the previous best result [24], thus outperforming other CL MIM-based methods. Table 2
shows the linear probing results, and our model recorded a 76.7% accuracy. Although the
DINO yielded higher performance in linear probing, our model yielded comparable results
compared to the DINO. In particular, we achieved remarkable performance gains compared
to the MIM-based methods [2,23,24,36], which were 20%, 5.3%, 8.7% higher, respectively,
than the previous best results. These results indicate that applying contrastive learning
to MIM better captures the rich and general features of an image and improves the linear
separability simultaneously. We also note that longer training improved the performance.
When pre-trained for 1600 epochs, there was a 1.1% performance gain compared to when
pre-trained for 800 epochs.

To evaluate transfer learning performance, we conducted experiments on the object
detection and segmentation. Table 3 shows the object detection and instance segmentation
results on the COCO dataset. Our model further improved the segmentation results by
achieving a 51.3% APbox and a 45.6% APmask. As shown in Table 4, we achieved a 50.2%
mIOU on the semantic segmentation, thus yielding the second best performance compared
to the other models. In particular, we outperformed the MAE by 2.1% in the mIOU score.
According to these results, we demonstrate that our model can have better transferability
through utilizing contrastive learning for MIM.

4.2.1. Architecture Analysis

To analyze the components of our architecture, we conducted experiments on the
masking ratio, loss weight, and decoder depth, which were evaluated on the ImageNet-1K
dataset. We pre-trained the model for 200 epochs and fine-tuned the model for 100 epochs.
The default setting of our model in Section 4.1.1 is derived from these results. The experi-
mental results on the mask ratio, loss weight, and decoder depth are shown in Table 5.

Masking ratio: Previous contrastive learning methods adopt strong augmentation,
i.e., Gaussian blur and color distortion, due to the representation collapse problem. When
the model learns the same representation losing input data diversity, thus resulting in
constant output and performance decrement, it is called representation collapse. To avoid
this problem, it is necessary to have diverse negative samples, thereby relying on data
augmentation. Previous studies have investigated combinations of augmentation, thus
showing performance gains depending on which augmentation is used. In addition, our
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work overcomes this representation collapse problem to some extent by simply masking
a relatively high portion of the image without additional augmentation. We conducted
experiments on the mask ratio, as shown in Table 5. Masking 80% of the input patch se-
quence showed the best performance, while extreme masking (95%) showed the lowest.
Masked language models conventionally mask relatively low portions (e.g., 15% [17]) of
text tokens, since insufficient context interrupts learning the text representation. However,
to eliminate redundancy in the image, a higher masking ratio should be applied in MIM.
Our experimental results show that a relatively higher masking ratio (80%) removes the
redundancy of image pixels and provides sufficient information to learn image representa-
tions at the same time. Note that a higher masking ratio does not necessarily perform well,
as an extreme masking ratio (95%) yielded the lowest performance. An extreme masking
ratio yielded a performance degradation because it obscures so much of the image that the
model does not have sufficient information to learn the image representation.

Table 5. Fine-tuning results on different masking ratios, loss weights, and decoder depths. Best results
are shown in bold.

Mask Ratio Accuracy Loss Weight Accuracy Decoder Depth Accuracy

50% 79.22 0.1 78.10 1 74.89
75% 79.09 0.5 78.09 2 78.56
80% 79.25 1 78.09 4 80.03
90% 79.23 1.5 79.31 8 80.03
95% 78.30 2.0 79.64 12 79.11

Loss weight: As was aforementioned, our total loss is a weighted sum of two training
objectives. We conducted experiments to explore how λ, a hyperparameter of the loss
weight, affected the model performance by changing the loss weight. Note that when
λ was set to zero, the model was the same as the baseline, the MAE. The results show
that contrastive loss does affect model performance in a good way. Interestingly, as the
loss weight increases, that is, the more the contrastive loss is contributed, the model’s
performance correspondingly increases. We can say that by adding contrastive loss, the
encoder is trained to learn more general and holistic representations.

Decoder depth: Since we only used the decoder in the pre-training process, we can
flexibly design the decoder, thus adopting an asymmetric encoder–decoder architecture. We
conducted experiments on the decoder depth to figure out whether the model would benefit
from a shallower decoder depth. It is clear that computational cost would be reduced due
to fewer parameters; however, the reconstruction task relies on the decoder, thus requiring
a sufficient depth of the decoder to reconstruct original signals from the corrupted ones.
We experimented on several depths of 1, 2, 4, 8, and 12. Our baseline, MAE, adopts a depth
of eight for the decoder. As shown in Table 5, a deeper decoder (12-layer) did not benefit
the model performance, but only contributed to more computation. Also, depths of four
and eight yielded the same performance on the fine-tuning results. To choose the decoder
depth among a four- and eight-layer decoder, we visualized the reconstruction results of
the decoder depth with four and eight for qualitative evaluation. As shown in Figure 8,
the four-layer and eight-layer decoders featured no difference in the reconstruction results.
Because the four-layer decoder has two times less computational cost compared to the
eight-layer, we adopted a four-layer decoder for computing efficiency.

4.3. Ablation Studies

We ablated studies on the main properties of our framework, which included two
different target views and contrastive losses. The ImageNet-1K top-1 accuracy was used for
evaluation. Note that when two main properties were removed, the model was the same as
the baseline, the MAE. For a fair comparison, all of the models were trained at the same
setting: fine-tuning after pre-training for 200 epochs, with a batch size of 512.
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Figure 8. Visualization of reconstruction of different decoder depths for qualitative evaluation. (a) is
the original input image, (b) is the masked image, (c) and (d) feature the predicted image with 4-layer
and 8-layer, respectively.

Table 6 shows the results of the ablation experiments. Among all of the methods, ours,
with two different target views and contrastive losses, performed the best, thus showing
1.23%, 4.76%, and 2.61% performance gains, respectively, compared to the other methods.
When any of the components was removed, it was shown to be less effective or showed
only marginal performance increments compared to the baseline. According to these results,
we deduce that each component benefits mutually in learning rich image representation.

Table 6. Ablation experiment results. Best result is shown in bold.

Methods Accuracy

Ours 79.09
Ours w/o two different targets 77.86

Ours w/o contrastive loss 74.33
Baseline [23] 76.48



Appl. Sci. 2023, 13, 12413 13 of 15

5. Conclusions

In this paper, we introduce a simple framework applying contrastive learning to
masked image modeling that enables the model to learn rich representations considering
both global and local patterns. Masking a high portion of the entire image works as strong
augmentation, which overcomes the representation collapse problem of contrastive learning.
In addition, we exploit an image-level approach by contrasting two different views, thus
strengthening MIM to learn holistic representations. We conducted several experiments
to prove the effectiveness, thereby achieving promising results on various downstream
tasks, image classification, object detection, and semantic segmentation. According to these
results, we demonstrate that utilizing contrastive learning to masked image modeling
via a multi-view autoencoder strengthens the model to learn rich representation when
considering both image and token-level features. Since our work is about the method
of pre-training, it can be applied in various ways. Possible extensions may include pre-
training with a web-scale dataset for better generalization, image search engines, and
medical image analysis.
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