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Abstract: Auto-driving detection usually acquires low-light infrared images, which pose a great
challenge to the autopilot function at night due to their low contrast and unclear texture details. As
a precursor algorithm in the field of automatic driving, the infrared image contrast enhancement
method is of great significance in accelerating the operation speed of automatic driving target recog-
nition algorithms and improving the accuracy of object localization. In this study, a convolutional
neural network model including feature extraction and image enhancement modules is proposed
to enhance infrared images. Specifically, the feature extraction module consists of three branches,
a concatenation layer, and a fusion layer that connect in parallel to extract the feature images. The
image enhancement module contains eight convolutional layers, one connectivity layer, and one
difference layer for enhancing contrast in infrared images. In order to overcome the problem of the
lack of a large amount of training data and to improve the accuracy of the model, the brightness and
sharpness of the infrared images are randomly transformed to expand the number of pictures in the
training set and form more sample pairs. Unlike traditional enhancement methods, the proposed
model directly learns the end-to-end mapping between low- and high-contrast images. Extensive
experiments from qualitative and quantitative perspectives demonstrate that our method can achieve
better clarity in a shorter time.

Keywords: infrared image enhancement; neural networks; pattern recognition; auto-driving

1. Introduction

High-quality infrared images play a crucial role in scenarios such as auto-driving,
fault diagnosis, and fire detection [1–4]. However, the quality of infrared images obtained
in real-life scenarios tends to be poor due to environmental effects and the limitations of
infrared thermal imaging technology [5]. The low contrast and unclear texture details of
infrared images largely increase the difficulty of subsequent processing, such as detection,
perception, and location [1,6–8]. Low-contrast infrared images lead to large deviations
in target localization, so the first step in target localization is to increase the contrast of
the image. Traditional infrared image enhancement methods are mainly divided into
three types: histogram-based methods, transform function-based methods, and transform
domain-based methods. Most of the traditional methods need to set parameters artificially,
which enormously reduces the flexibility of applications [9]. Moreover, it takes a longer
time to process larger-resolution images via traditional methods. Predicting the target and
background precisely is crucial to achieve the aim of improving image contrast robustly.
Unlike with fixed filters, we try to learn the filters suitable for extracting the target and back-
ground sub-images using a data-driven method. Inspired by the ability of convolutional
neural networks (CNNs) in the image classification field, we propose a novel approach
to predicting target and background features using filters learned by a CNN for infrared
image enhancement.

In this paper, we propose a convolutional neural network model to enhance the quality
of infrared images. The model consists of two parts: a feature extraction module and an
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image enhancement module. We consider low-contrast infrared image enhancement as
a supervised learning problem, and the model learns the end-to-end mapping between
low- and high-contrast images, directly. Then, the targets and background clutters are
predicted from the extracted multiscale feature images by the learned feature extraction
module. Finally, the weak infrared image is enhanced by zooming in on the target while
removing background clutter in the image enhancement module.

The contributions of our work can be summarized in three ways.
(1) Convolutional neural networks consisting of a feature extraction module and image

enhancement module are applied to infrared image enhancement.
(2) The low- and high- contrast images are considered the input and output of the

model for training. To overcome the lack of a large amount of training data, the brightness
and clarity of the infrared images are randomly reduced to form sample pairs.

(3) Extensive experiments show that our method can not only effectively improve the
quality of infrared images, but also reduce processing time.

2. Related work
2.1. Traditional Methods

Histogram equalization (HE) is one of the most common methods used to improve
image contrast [10]. The main idea is to count the histogram of grayscale pixels in an
image, and then, adjust the distribution characteristics of the grayscale pixels to improve
the image contrast. This method treats each pixel point in the image individually without
considering the relationship between its domains. To solve this problem, many scholars
have proposed improved methods for HE. Liu et al. [11] proposed a two-dimensional HE
algorithm that uses the contextual information around each pixel to enhance the image
contrast. In addition, many scholars also transform the image from the spatial domain to the
frequency domain via fast Fourier transform or wavelet transform, and process the relevant
frequencies to adjust the image contrast. Singh et al. [12] combined lifting discrete wavelet
transform and singular value decomposition for low-contrast image enhancement. Zhang
et al. [13] conducted a gradient-domain-based visualization method for high-dynamic-
range compression and detail enhancement of infrared images. Since then, researchers have
proposed filtering framework algorithms based on this technique. Song et al. [14] proposed
a detail enhancement algorithm for infrared images based on local edge-preserving filtering,
which divides the image into base and detail layers. Then, the base layer and detail layer
are processed separately to obtain the respective enhanced images, and finally, a better ratio
is selected to fuse the enhanced images of the base and the detail layer components. As a
result, it takes a long time to enhance images with a larger resolution using the filtering
framework algorithm.

2.2. Deep Learning Method

Convolutional neural networks are widely used in areas such as image classification
and target detection. In addition, researchers have also applied them to image enhance-
ment [15–18]. Shen et al. [19] combined convolutional neural networks with retinex theory
to propose MSR-net for low-light image enhancement. Kuang et al. [20] proposed a con-
ditional generative adversarial network to address infrared image enhancement, which
can avoid background noise being amplified and further enhance contrast and details. Cai
et al. [21] proposed a trainable end-to-end system named DehazeNet, which takes a hazy
image as input and outputs its medium transmission map, which is subsequently used to
recover a haze-free image via an atmospheric scattering model. Qian et al. [22] proposed a
neural network named a multi-scale error feedback network to enhance low-light images.
Wang et al. [23] presented an innovative target attention deep neural network to achieve
discriminative enhancement in an end-to-end manner. The above study illustrates that
CNNs are useful for being able to enhance the contrast of infrared images.



Appl. Sci. 2023, 13, 12581 3 of 11

3. Methodology

In this section, we use convolutional neural networks consisting of feature extraction
and enhancement modules to enhance infrared images. The input image is first processed
by the feature extraction module, and then, goes to the image enhancement module and
finally outputs the enhanced image. The function of the feature extraction module is to
extract the features of the input IR image and to concatenate and fuse these features to
obtain a pre-fused image. The enhancement module is utilized to enhance the pre-fused
image and to obtain a result similar to the target image. In the proposed method, infrared
image enhancement is considered a supervised learning problem, and low- and high-
contrast images are considered input and output data, respectively. Figure 1 shows the
structure of our model.
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Figure 1. Structure of the proposed convolutional neural network for infrared image enhancement.

We define the low-contrast image as the input X, and the corresponding high-contrast
image as the output Y. Assuming that f 1 and f 2 denote the function of the feature extraction
and image enhancement modules, respectively, our model can be written as a combination
of two functions:

Y = f (X) = f2( f1(X)) (1)

The feature extraction module consists of three branches, a concatenation layer, and
a fusion layer. The three branches are connected in parallel to extract the first, second,
and third feature images from the input infrared image. The first branch includes a
convolutional layer and a ReLU activation layer.

X01 = max(0, X ∗W01 + b01) (2)

Here, X01 denotes the output of the first branch, and * denotes the convolution operation.
W01 and b01 denote the convolution kernel of the convolution layer and offset, respectively.
max corresponds to ReLU operation.

The second and third branches both include two convolutional layers and a ReLU
activation layer:

X0i1 = max(0, X ∗W0i1 + b0i1) (3)

X0i = max(0, X0i1 ∗W0i2 + b0i2)( i = 2, 3) (4)

where X0i denotes the output of the i branch, and X0i1 denotes the output of the first
convolutional layer and ReLU activation layer of the first branch. W0i1 and b0i1 are the
convolutional kernel and offset for the first convolutional layer in branch i, respectively.
W0i2 and b0i2 are the convolutional kernel and offset for the second convolutional layer in
branch i, respectively.
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The concatenation layer connects the feature image outputs from the three branches by
channel. The input of the fusion layer is the output of the concatenation layer, and outputs
the pre-fusion image, including a convolutional layer and a ReLU activation layer.

X04 = [X01, X02, X03] (5)

X1 = max(0, X04 ∗W04 + b04) (6)

Here, X04 denotes the output of the splicing layer. W04 and b04 denote the convolution
kernel of the convolution layer in the fusion layer and the offset, respectively.

The training images in the dataset usually have low luminance, so an image enhance-
ment module is proposed following the convolutional difference strategy. The input of
the image enhancement module is X1, which generates an output X2 with the same width
and height.

X11 = max(0, X1 ∗W11 + b11) (7)

X1i = max
(

0, X1(i−1) ∗W1i + b1i

)
(i = 2, 3, . . . , 8) (8)

Here, X11 denotes the output of the first convolution. W11 and b11 denote the convolution
kernel and offset of the first convolution, respectively. W1i and b1i denote the convolution
kernel and offset of the i convolution, respectively. The images after each convolution are
then joined by the channel and convoluted again as follows:

X19 = [X11, X12, . . . , X18] (9)

X2 = max(0, X19 ∗W19 + b19) (10)

where X19 denotes the output after concatenation, and X2 denotes the output after convolu-
tion. W19 and b19 denote the convolution kernel and offset, respectively. Finally, the final
output image Y is obtained by convolving the difference between X1 and X2:

Y = max(0, (X1 − X2) ∗W2 + b2) (11)

where W2 and b2 denote the convolution kernel and offset of the convolution, respectively.
The sizes of the convolution kernels used in the convolution are 3 and 5.

4. Experiments

The experiments were conducted by using the deep learning framework TensorFlow
2.8.0 on a GPU RTX 2080Ti. Both the input and output image sizes were 200 × 200. Before
training the model, the input image was first transformed into a grayscale image, and then,
normalized to input the model. Adam was used as the optimizer, and the learning rate was
set to 0.0001. The batchsize and epoch were set to 8 and 50, respectively.

Let {Xi, Yi}N
i=1 be the training dataset, where Xi denotes the input infrared image, and

Yi denotes the corresponding output image. N is the number of training pairs. The infrared
images used for training were derived from the FLIR thermal dataset, which contains
a total of 14,000 8-bit images. FLIR is a thermal imaging dataset with a large number
of low-contrast thermal imaging images, including mainly pedestrians and cars [24,25].
Complex image components and low contrast make it extremely difficult to recognize
targets, hence the need for contrast enhancement of infrared images.

For the dataset of FLIR, similar images in the dataset were first removed and
6500 images were selected. Then, 500 images were randomly selected from these im-
ages to be flipped 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦ to enrich the training set and
improve the quality of the model, which resulted in a total of 4000 images. The original
6000 images and the 4000 images obtained after flipping were treated as labeled images.
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Finally, the contrast of the target image was reduced to obtain the training image. A training
set containing 10,000 pairs was created, and 1000 images were selected from the dataset to
form the test set.

The structural similarity index measure (SSIM) [26] and mean square error (MSE) [27]
loss functions were used for the image enhancement class regression tasks. The SSIM is
defined as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2δxy + c2

)(
µ2

x + µ2
y + c1

)(
δ2

x + δ2
y + c2

) (12)

where x is the original image, and y is the target image. µx and µy are the means of x and
y, respectively. δ2

x and δ2
y are the variances of x and y. δxy is the covariances of x and y,

respectively. c1 and c2 are constant to maintain stability, and are defined as follows:

c1 = (k1L)2 (13)

c2 = (k2L)2 (14)

where L is the dynamic range of the image, k1 = 0.01, and k2 = 0.03. The MSE is defined as

MSE(x, y) =
1
N

N

∑
i=1

(xi − yi)

2

(15)

where xi and yi are the pixel points of x and y, respectively.
Figure 2 illustrates the loss changes with iteration number for MSE and SSIM. After

two epochs, the loss values of the two types are reduced to 1/2 of that in the first epoch.
After four epochs, the change in MSE loss is very small, but the change in SSIM loss is
larger. Therefore, in terms of convergence speed, the MSE loss can reach stability in fewer
epochs during training.
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5. Results and Discussion

Figure 3 shows the input images, target images, and predicted images obtained using
our proposed method. The target images and the predicted images are close in detail and
contrast, and their subjective visual effects are similar. Table 1 shows the evaluation metrics,
including contrast per pixel (CPP) [28], mean pixel contrast (MPC) [29], enhancement
measure evaluation (EME) [30], image clarity (IC) [31], and entropy (E) [28]. Their formulas
have the following representation:

CPP =
1

(H − 1)(W − 1) ∑
x

∑
y

|G(x, y)|√
2

(16)

MPC =
Cprocessed

COriginal
(17)

EMEα,x,y(φ) =
1

xy

y

∑
l=1

y

∑
k=1

20ln
Iw
max;k,l(φ.par)

Iw
min;k,l(φ.par) + c

(18)

IC = σRGYB + (0.3µRGYB) (19)

E = −
l−1

∑
i=0

P(q) · log(P(q)) (20)
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In Equation (1), H and W represent the size of the image, and G(x, y) is the gradient
vector of the image. In Equation (2), C is the average contrast. Cprocessed and COriginal are
the contrast of the input image and the processed image, respectively. For Equation (3),
the image is broken up into x, y blocks, φ is the given transform, and α is an enhancement
parameter. C is a constant value of 0.0001. In Equation (4), σ represents the standard
deviation and µ is the mean value of all pixels. In Equation (5), E represents the set of
image pixel values, q is the pixel of the image, and P(q) represents the probability that one
pixel value will appear.

For the first input image, the predicted results and the target image only differ signifi-
cantly in the EME evaluation index, and are close in other aspects. For the second and third
input images, there are large differences between the predicted and target images on EME
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and CPP, and all other aspects are close. For the fourth input image, the predicted result
and the target image only have a large difference on CPP, and the other aspects are close to
each other. The results show that the predicted results are very close to the target images
in terms of details. However, there is still room for improvement in our approach to EME
and CPP.

Table 1. Metrics of target images and predicted images and their deviation.

No. Metrics Target Predicted Deviation

CPP 94.4899 94.0496 0.4403
MPC 11.4896 11.0152 0.4744

Sample 1 EME 30.5660 28.4836 2.0824
IC 9.7094 9.7622 −0.0528

Entropy 7.6945 7.6157 0.0788
CPP 165.5337 164.0485 1.4852
MPC 18.3142 17.6326 0.6816

Sample 2 EME 45.7666 31.6619 14.1047
IC 10.1010 9.9180 0.1830

Entropy 7.7262 7.6916 0.0346
CPP 136.7770 133.6527 3.1234
MPC 15.6801 15.1603 0.5198

Sample 3 EME 39.3058 34.6533 4.6526
IC 9.2267 9.1819 0.0448

Entropy 7.6764 7.6628 0.0139
CPP 88.2410 85.3299 2.9111
MPC 6.8062 6.4638 0.3424

Sample 4 EME 26.6753 27.6096 −0.9343
IC 8.5703 8.8449 −0.2746

Entropy 7.1067 7.0160 0.0907

Figure 4 shows the input images and enhanced images of our method and other
algorithms. We selected four representative images for a comprehensive comparison,
including sequences with multiple targets, no targets, and mixed targets. For the first
image, the HE method makes the roof of the car on the road too dark and other parts of
the car too bright. Although the SSR [32] and MSR methods do not make the car appear
obviously locally too bright or too dark, they make the lines on the road unclear. Our
method not only avoids partial over-brightening or over-darkening of the cars, but also
maintains the details of the lines on the road. For the second image, the HE method makes
the sky darker, resulting in some clouds not being easy to notice. The images processed
using the SSR and MSR methods have more clouds, but the details on the road are still
unclear. The use of our method to enhance the image can not only clearly exhibit the clouds
in the sky, but also preserve the details on the road. For the third image, the HE method
makes the car and the building on the right appear too bright, and the SSR and MSR
methods make some textures of the building blurred, so their images are not as detailed
as those of the HE method. Our method not only avoids the local over-brightness caused
by the HE method, but also makes the details of the building clearer than the SSR and
MSR methods. For the fourth image, the HE method not only makes the tires of the car
appear too bright, but also gives the trees above part of the image similar brightness to
the night sky, which lowers the contrast between trees and the night sky. Our proposed
method improves the contrast between trees and the night sky and clarifies the details
between layers.
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Table 2 shows the objective evaluation index values for sample 5 and sample 6 in
Figure 4. We can see in sample 5 that the CPP and MPC values of the image enhanced using
the proposed method are larger than those of images enhanced using the other methods.
The EME values of the images enhanced using our method are lower than those of images
enhanced using the HE method, but higher than those using the SSR and MSR methods.
In terms of image sharpness, the IC values of the images enhanced using the proposed
method are lower than those of images enhanced using the HE and MSR methods. For
sample 6, the CPP and MPC values of the images enhanced using the proposed method are
significantly higher than those of images enhanced using the other methods, and the EME
values of the enhanced images are also higher than those of images enhanced using the
other methods. In terms of image sharpness, the IC values of the images enhanced using
the proposed method are lower than those of images enhanced using the HE and MSR
methods in samples 6 and 7. In addition, a comparison of the mean values of 300 images in
test dataset shows that our designed algorithm has a clear advantage in CPP, MPC, and
EME evaluations, but is slightly inferior to MSR in IC comparisons. Therefore, improving
IC will be the main direction of the subsequent optimization of our algorithm. The above
subjective evaluation and objective index evaluation show that the proposed method can
not only enhance the contrast of the infrared image, but also highlight the image details,
which can effectively improve the quality of infrared images.
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Table 2. Evaluation indexes of different enhancement algorithms.

Method CPP MPC EME IC

HE 79.8993 7.2304 27.0587 10.6582
Sample 5 SSR 53.3885 3.2250 15.6223 7.0078

MSR 59.1110 4.3980 19.9183 12.7831
Our 87.1325 7.3228 23.2544 10.3215
HE 48.5970 3.0053 20.9383 11.5948

Sample 6 SSR 48.2287 2.6711 15.2022 8.4336
MSR 55.2908 3.6576 12.1363 13.5185
Our 89.7028 7.0560 26.1675 10.1935

Average

HE 60.9128 5.0932 22.0208 9.5812
SSR 45.2971 2.9945 13.4705 8.1280
MSR 60.6530 2.0377 18.2294 10.2501
Our 82.8761 7.2801 26.8362 9.7684

To study the computational speed of different algorithms, 10 images of size 200 × 200
were tested using an i5 CPU. Table 3 shows the average time required for enhancing the
ten images using MSR, LEPF [18], PSO [33], and the proposed method. The convolutional
neural network method proposed in this study requires the shortest average time of 2.02 s,
and the MSR algorithm is the next shortest. In contrast, the LEPF algorithm takes the
longest average time of 302.3 s. This shows the unique advantage of the short time required
for the convolutional neural network method to enhance the image.

Table 3. Average time required for infrared enhancement using different algorithms.

Method Average Time (s)

MSR 2.18
PSO 4.03
LEPF 302.3
our 2.02

6. Summary

In this paper, a convolutional neural network model for low-contrast infrared grayscale
image enhancement is proposed, which directly learns the mapping relationship between
low-contrast images and high-contrast images. Low- and high- contrast images are con-
sidered the input and output of the model for training. To overcome the lack of a large
amount of training data, the brightness and clarity of the infrared images are randomly
reduced to form sample pairs. Experiments on the training and test sets demonstrate the
advantages of our method over other methods, including its advantages in enhancing the
quality of infrared images as well as in processing speed. The proposed algorithm serves
as a precursor algorithm for automatic driving image recognition, which not only greatly
improves the image processing speed, but also enhances the contrast between the target
and the background. In addition, the algorithm can also be used for image enhancement
processing in complex tracking systems, which can quickly and effectively deal with the
noise in infrared images and improve the contrast of images.
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