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Modeling highly nonlinear, coupled systems with a large number of variables is
a current challenge in engineering and sustainability. These models are used for the
identification, optimization, control, and estimation of various tasks [1–3]. Mathematical,
systemic, and computational models now include sustainable aspects crucial in today’s
engineering and urban development systems [4,5]. The new indicators being developed
consider various aspects such as social, human, health, and cultural factors that must be
preserved or improved to maintain an adequate and environmentally friendly level of
service and human development. These indicators go beyond the economic or service
objectives previously used in these models [6,7].

Optimizing complex systems in multiple dimensions presents a challenging task that
requires new algorithms based on metaheuristics and emerging systemic and computational
tools. Classical mathematical and computational tools are no longer sufficient to find quasi-
optimal solutions in a reasonable time [8,9].

Another set of challenges in engineering and urban development involves finding
ways to use indicators and low-impact solutions to promote energy resilience and sus-
tainable development while maintaining a balance of natural resources in the face of
population growth. Often, these two needs are closely linked and must be addressed
simultaneously [10,11].

In problems with multiple dimensions, both for discrete and continuous cases, there is
a tendency to propose and test new computational metaheuristics for optimization [12,13].
In the discrete case, combining metaheuristic techniques with new local search models is a
current research topic. For the continuous case, it is impossible to propose an algorithm
better than all others for all cases by the NFL (no free lunch) theorem, so researchers
focus on proposing new metaheuristics inspired by natural or artificial systems. These
metaheuristics must be simple to implement and provide acceptable results in an adequate
time [14,15].

Many of the problems organizations face today are not only quantitative but also
qualitative and can be difficult to measure. To address these problems, soft systems have
been combined with systems engineering concepts to model, improve, and optimize orga-
nizational systems. This approach takes a more human, social, and sustainable perspective
and investigates the context in which organizations operate to achieve continuous improve-
ment [16,17].

Ensuring sustainable development of both new and existing urban sites, along with
improving their resilience to cope with limited access to water resources, energy, green
spaces, and essential services such as health, leisure, education, and culture, has become an
increasingly complex problem. Finding sustainable solutions for this issue requires account-
ing for a vast range of heterogeneous variables and adopting low-impact, environmentally
friendly technologies during implementation [18,19].
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It is possible to use decision-making tools to optimize building design parameters that
will reduce carbon emissions, as stated in reference [20]. Additionally, poor-quality build-
ings can lead to health problems and decreased productivity in work environments, [21].
Urban sprawl harms the environment, causing the loss of natural resources. However,
low-impact alternatives can be adapted to existing urban areas, which can address a range
of issues that affect the population. For example, such alternatives can provide food locally,
extend the useful life of sewage and drainage systems by capturing and reusing water,
mitigate floods, reduce travel times in urban areas, and reduce the adverse effects of heat
islands, among other benefits [22–26]. Multi-objective optimization models are also used to
achieve more sustainable urban growth, seeking economically feasible solutions that can
be adapted on an increasingly larger scale [27].

The issues above present diverse and stimulating fields for future exploration that shall
continue to evolve in light of the rising demand for sustainable and low-impact engineering
and urban development solutions to address increasingly complex and pressing problems.
There is a pressing need for scientific advancement and research that combines various
engineering, mathematical, computational, and systemic techniques to identify innovative
and cutting-edge solutions to address these complex and high-priority challenges.
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