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Abstract: Symbolic semantic understanding of staff images is an important technological support to
achieve “intelligent score flipping”. Due to the complex composition of staff symbols and the strong
semantic correlation between symbol spaces, it is difficult to understand the pitch and duration of
each note when the staff is performed. In this paper, we design a semantic understanding system
for optical staff symbols. The system uses the YOLOv5 to implement the optical staff’s low-level
semantic understanding stage, which understands the pitch and duration in natural scales and other
symbols that affect the pitch and duration. The proposed note encoding reconstruction algorithm is
used to implement the high-level semantic understanding stage. Such an algorithm understands the
logical, spatial, and temporal relationships between natural scales and other symbols based on music
theory and outputs digital codes for the pitch and duration of the main notes during performances.
The model is trained with a self-constructed SUSN dataset. Experimental results with YOLOv5
show that the precision is 0.989 and that the recall is 0.972. The system’s error rate is 0.031, and the
omission rate is 0.021. The paper concludes by analyzing the causes of semantic understanding errors
and offers recommendations for further research. The results of this paper provide a method for
multimodal music artificial intelligence applications such as notation recognition through listening,
intelligent score flipping, and automatic performance.

Keywords: semantic understanding; neural networks; optical music recognition; YOLOv5; digital
code

1. Introduction

Our project seeks to develop an “intelligent score flipping” that automatically turns
sheet music, allowing performers to focus on their performance, teaching, and practice
without the need to use their hands to flip pages. Currently, using staff paper is one of
the primary methods musicians use to annotate music. Therefore, our research in this
paper seeks to enable the device to recognize each symbol on the staff and convert the
image of the staff into the corresponding pitch and duration for each note that should be
played during a performance. These values are then compared with the actual pitch and
duration of the notes being played to determine whether the device should trigger the page
flip. The findings of this research have significant implications for various fields, such as
notation recognition through listening [1,2], intelligent score flipping, music information
retrieval [3,4], and more.

It is difficult to understand the pitch and duration of each note in the staff because
of the complex composition of the symbols, the strong semantic correlation between the
symbols, and the complexity and cohesiveness of the notes. Semantic understanding of
the optical staff is closely related to optical music recognition (OMR) [5–7]. This area has
been an important application in machine learning since the middle of the last century.
The extent to which optical music recognition can be achieved has varied according to
technology development and different needs. In the low period of deep learning, OMR
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went from separating and extracting symbolic primitives (lines, heads, stems, tails, beams,
etc.) to using correlations between primitives and related rules of musical notation and
recognizing notes [8,9]. With gradual improvements in the deep learning ecological system,
various types of research based on deep learning have provided new ideas for OMR and
put forward new recognition requirements.

This paper aims to achieve codes for pitch and duration of the notes in a complex
staff image during a performance, so an end-to-end optical staff semantic understanding
system is designed. The system consists of YOLOv5 as the Low-Level Semantic Under-
standing Stage (LSUS) and the Note-Encoding Reconstruction Algorithm (NERA) as the
High-Level Semantic Understanding Stage (HSUS). In the LSUS, the whole optical staff
is the input of the system. The model is then trained with the self-constructed SUSN
dataset to output digital codes for the pitch and duration of the main note under the
natural scales as well as for other symbols that affect the pitch and duration of the main
note. The NERA, which takes the output of the LSUS of the staff as the input and ap-
plies music theory and MIDI encoding rules [10], resolves the natural scale and other
symbol semantics as well as their mutual logical, spatial, and temporal relationships,
which results in the output of the staff symbol relationship structure of the given sym-
bols, realizes the HSUS of the main notes through calculation, outputs the pitch-duration
codes of the main notes during the performance, and provides an end-to-end optical staff
symbol semantic understanding encoding for notation recognition through listening, in-
telligent score flipping, and music information retrieval. The dataset, code, pre-trained
models, and experimental results covered in this paper are open source (https://github.
com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols, accessed on 18
November 2023).

The innovations of this paper mainly include the following:

• The LSUS pre-trained model has the ability to recognize the pitch and duration of
symbols and notes in staff images, even when they exhibit varying levels of complexity.
The test results demonstrate precision and recall rates of 0.989 and 0.972, respectively,
fulfilling the requirements for “intelligent score flipping” with high accuracy.

• According to the specific application of “intelligent score flipping”, a comprehensive
end-to-end system model has been developed and implemented. This model converts
graphical staff symbols into performance coding.

• A note-encoding reconstruction algorithm has been developed, which establishes
the relationship between individual symbols based on the notation method. This
algorithm outputs the pitch and duration of each note during performance.

• The SUSN dataset has been created. This dataset innovatively includes relative posi-
tional information of symbols in the staff without increasing the length of the label
field. The dataset is suitable for end-to-end-type algorithm models.

2. Related Work

This section describes key references to optical music recognition using deep learning
and related datasets relevant to the present work.

2.1. Optical Music Recognition

With the rapid development of computer vision, research into OMR based on deep
learning has brought new breakthroughs and improvements to traditional music score
recognition and analysis methods. Object detection is an important problem in the field of
computer vision. The YOLO [11–14] algorithm family adopts a one-stage detector structure,
which combines classification and localization tasks into a regression problem, using a
neural network model to directly predict the class and bounding box of each object. It is
known for its speed, accuracy, and lightweight design, making it one of the state-of-the-
art object detection algorithms. Compared to other object detection algorithms, such as
the Fast R-CNN family [15,16] and SSD [17], YOLOv5 [18,19] has faster detection speed,
higher precision, and performs well with small objects. Moreover, YOLOv5 is implemented

https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols
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using the PyTorch framework, which provides advantages such as ease of use, extensive
community support, and seamless integration with other deep learning tools. Additionally,
YOLOv5 supports efficient deployment on various hardware platforms, making it an ideal
choice for practical applications. Considering these advantages, YOLOv5 is well-suited for
application in the field of OMR.

Pacha et al. [20] proposed a region-based convolutional neural network for staff symbol
detection tasks and used the Faster R-CNN neural network model to locate and classify
single-line staff symbols. Both semantic segmentation methods for staff symbols, which
include the U-Net [21] neural network model applied by Hajič, Jr. et al. [22] and the deep-
water detector algorithm proposed by Tuggener et al. [23], fail to detect pitch and duration.
Huang et al. [24] proposed an end-to-end network model for staff symbol recognition
by modifying YOLOv3 to detect pitch and duration separately. OMR algorithms based
on sequence modeling mainly target monophonic music sheets and cannot completely
understand the meaning of all symbols; e.g., Van der Wel et al. [25] used a sequence-to-
sequence [26] model, while Baró et al. [27] used a convolutional recurrent neural network
consisting of CNN and LSTM [28].

2.2. OMR Dataset

In the past, several OMR datasets have been published that address one or more of
the following problems.

DeepScore [29]: DeepScore is a large-scale, comprehensive dataset for music symbol
recognition. This dataset collects staff notation images from the classical music domain and
manually annotates the music symbols contained within them, including symbol category,
position, and size information. The symbols in the dataset include common music symbols
such as notes, rests, clefs, and key signatures. For note symbols, the dataset adopts an
annotated symbol primitive approach, which requires reassembling the primitives during
application. This undoubtedly increases the difficulty of post-processing and prevents
end-to-end recognition of the pitch and duration of the notes.

MUSCIMA++ [30]: This dataset contains thousands of handwritten music symbol
images and their corresponding annotations. The real annotations are defined as a symbol
graph; in addition to individual symbols, the relationships between them are annotated
to infer semantics such as pitch, duration, and start time. It is possible to train a complete
OMR pipeline on this dataset, but recognizing the pitch and duration of the notes still poses
significant challenges.

HOMUS [31]: HOMUS is a large dataset designed for music symbol classification.
It contains 15,000 isolated samples of music symbols, each with recorded individual
strokes used to draw them. This unique feature allows for online symbol classification to
be performed.

2.3. Summary

In summary, thus far, deep learning algorithms are able to detect and recognize the
locations and classes of some symbols in staff images with low complexities (i.e., low
symbol density, small span, and few varieties), achieving partial semantic understanding.
Therefore, this paper uses YOLOv5 as an LSUS to recognize the pitch and duration of
symbols and notes in staff images of different complexity. Since YOLO is based on an end-
to-end object detection algorithm, the datasets that are applied to YOLO should be those
with the detected target as the object, while datasets that do not consider the relationship
between symbols’ spatial locations in the staff cannot be applied to this algorithm. In this
paper, the SUSN dataset is constructed by taking the musical note and control symbol as
the recognition object, fully considering the spatial position of the note in the staff, and
providing accurate information on pitch and duration.
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3. Materials and Methods
3.1. Dataset

In this paper, the overall goal of the Semantic Understanding of Staff Notation
(SUSN) dataset is to encode the pitch and duration of the main notes during the per-
formance. (https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-
Staff-Symbols/tree/master, accessed on 18 November 2023; The staff images in the dataset
are the open-license staffs provided by the International Music Score Library Project (IM-
SLP). No copyright issues are involved.) In addition to single notes, there are numerous
other forms of notes in the score, such as appoggiaturas, overtones, and harmonies. Au-
rally, appoggiaturas (shown in Figure 1h) and overtones increase the richness of musical
frequencies but do not change the fundamental frequency of the main melody; generally,
all the notes in harmony except the first one are weak-sounding. Therefore, we define
single notes and the first note of the harmony in the score as the main note. When labeling
the dataset, the notes are only labeled with the category of the main note and its related
information. In this context, the annotated information and the method of labeling used for
this dataset are as follows:

• The main notes are labeled with information about the note position, pitch, and
duration in the natural scale. The labeling method has two steps. Firstly, draw the
bounding box: the bounding box should contain the complete note (head, stem, and
tail) and the specific spatial information of the head. In other words, the bounding
box is supposed to contain the 0th line to the 5th line of the staff as well as the position
of the head. Then, annotate the object: the format of the label is the ’duration_pitch’
code under the natural scale (as shown in Figure 1f,g).

• Label the categories of symbols that affect the pitch and duration of the main notes
as well as position information. In the score, the clef, key signature, dot, and pitch-
shifting notation (sharp, flat, and natural) are the main control symbols that affect
the pitch and duration of the main note, and Table 1a–c lists the control symbols
identified and understood in this paper. Each of these kinds of symbols is labeled
with a minimum external bounding box containing the whole symbol and category
information, as shown in Figure 1a–c,e.

• Label the categories and position of the symbols of the rest. The rest is used in a score
to express stopping performance for a specified duration. The symbol of the rest is
labeled with a minimum external bounding box that contains the rest entirely as well
as information about its category and duration. The rests identified and understood
in this paper are listed in Table 1d, while the rests in the staff are labeled as shown
in Figure 1d.

11              1_3 2_–2 4_2 16_–2 16_116_116_–1 8_5 8_2 32_6
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Figure 1. Dataset labeling method. (a) Labeling of the treble clef: the yellow minimum external
bounding box labeled as ’Gclef’; (b) Labeling of D major: the blue minimum external bounding
box labeled as ’D_S’; (c) Labeling of the dot: the red minimum external bounding box labeled as
’dot’; (d) Labeling of the quarter rest: the gray minimum external bounding box labeled as ’Rest4’;
(e) Labeling of the sharp symbol: the orange minimum external bounding box labeled as ’Sharp’;
(f) Labeling of the single note C in the main note: purple bounding box from the note head (in-
cluding the lower plus 1 line) to the 5th line labeled as ’16_−1’; (g) Harmony in the main note: the
rose colored minimum external bounding box, labeling only the first note and annotated as ’8_5’;
(h) Appoggiatura: the appoggiatura’s size is smaller than the main note’s in the staff.

https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/master
https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/master
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Table 1. Images with labels of the note control symbols and rests.

Classes Images/Labels

(a) clefs
High_Fclef 

Lower
_Fclef

M-soprano 
_Cclef

DHigh
_Gclef

Baritone 
_Cclef

Soprano 
_Cclef FclefCclef

DHigh
_Fclef DLower

_Fclef

High_Gclef DLower
_Gclef

Lower
_GclefGclef

Tenor 
_Cclef

(b) key
signatures

G _S D _S A _S E_S B_S F_S C_S C_F G_F D_F A_F E_F B_F F_F

(c)
accidentals

Sharp Flat Natural dot

(d) rests
Rest1 Rest2 Rest4 Rest8 Rest16 Rest32 Rest64

In this paper, the system trained by the SUSN dataset achieves a great result. This
proves that it meets the requirements of the system in this paper.

3.2. Low-Level Semantic Understanding Stage

YOLOv5 is used to implement the LSUS of the staff notation. The symbols in the
staff images belong to the category of small object graphics in image recognition, and
the multi-scale (1 × 1, 2 × 2, 3 × 3) convolutional neural network is used as the backbone
network structure for feature extraction. The multi-scale convolutional network uses
convolutional kernels of different sizes to obtain different types of features at different scales,
thus extracting richer symbolic features to address the small object, multiple poses, and
complexity of the staff symbols. The backbone network is composed of the convolutional
layers, the C3 modules, and an SPPF module [32]. The C3 module of the backbone network,
mainly composed of a convolutional layer and X ResNet blocks, is the main module for
learning the residual features of the staff, which divides the feature mapping into two parts:
one goes through multiple stacked residual modules and a convolutional layer, while the
other goes through one convolutional layer. They were then merged through a cross-stage
hierarchy to reduce the computational effort while ensuring accuracy. The SPPF module
passes the staff symbol feature map sequentially through three maximum pooling layers,
each with a 5 × 5 network structure, which extracts spatial features of different sizes and
improves the model’s computational speed and robustness to the spatial layout.

The neck network uses a pathway aggregation network [33] for feature fusion. The
neck network is composed of the convolutional layers, the upsampling layers, the connec-
tion layers, and the C3 modules without the residual structure. The staff features generated
by the feature extraction network contain more symbol location information in the bottom
features and more symbol semantic information in the top features. The Feature Pyramid
Network (FPN) [34] is introduced to communicate symbolic semantic features from top
to bottom. Path enhancement is achieved by the bottom-up feature pyramid structure to
convey the localized features. The entire feature hierarchy is enhanced by using localized
information at the lower levels, which also shortens the information path between the
bottom-level and top-level features.

The LSUS implements the mapping f : X 7→ Y of the input staff imageX to the output set
Y of digital codes corresponding to the symbols (https://github.com/Luyledu/Semantic-
Understanding-System-for-Optical-Staff-Symbols/tree/main/result/LSUS/*/labels, ac-
cessed on 18 November 2023), where Y = {y1, y2, . . . , yN} denotes all symbols in the staff,
and each symbol yi (i ∈ [1, N]) has positional coordinates and semantic information.

https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/main/ result/LSUS/*/labels
https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/main/ result/LSUS/*/labels
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3.3. High-Level Semantic Understanding Stage

The NERA is designed to convey music theory and the method of staff notation in
a system model. Using this algorithm, the resulting set Y is preprocessed to construct a
structure of notation relations for the given symbols and, using music theory and MIDI
encoding rules, the pitch and duration of each note are parsed to achieve the HSUS of the
optical staff notation. The general rules of the music theory targeted by the NERA are
as follows:

• The clefs are the symbols used to determine the exact pitch position of a natural scale
in the staff. It is recorded at the leftmost end of each staff, and there is also a flag that
indicates the mth line in the staff. Meanwhile, it is also the first symbol considered by
the NERA when encoding the pitch;

• The key signature located after the clef is the symbol used to mark the ascending or
descending pitch of the corresponding notes and is expressed as a value in the NERA.
The clefs and key signatures are effective within one line of staff notation;

• In accidentals, the pitch-shifting notation changes the pitch. It raises, lowers, or
restores the pitch of the note on which it is applied. The dot extends the original
duration of the note by half.

3.3.1. Data Preprocessing

Data preprocessing using the preprocessing part of the NERA for numeric encoding
set Y has the purpose and functions as follows:

• Removal of invalid symbols. The task of this paper is to implement the encoding of
the pitch and duration of staff notes during the performance. Among the numerous
symbols that affect the pitch and duration of notes are the clefs, the key signatures, the
accidentals, and the natural scales, while other symbols are considered invalid symbols
within this article. In the preprocessing stage, invalid symbols are removed, and valid
symbols are retained. We define the set of valid symbols as E. The relationships
among clefs, key signatures, accidentals, natural scales, the valid symbol set, and the
dataset are shown in Equation (1):

C,L,T,S ⊆ E ⊆ Y , (1)

where clef, key signature, accidental, and natural scale are denoted by C={Gcle f , Fcle f ,
. . . , Ccle f }, T = {0, D_S, A_S, . . . , C_F, }, L = {sharp, f lat, natural, dot}, and set
S ∈ [P, Du], respectively. Specifically, P is the space spanned by the natural scale
(C, D, E, F, G, A, B), and Du is spanned by the duration (1, 1/2, 1/4, 1/8, 1/16, 1/32,
1/64). Further, the element 0 in set T means there is no key signature and implies
that the signature in this line is C major. Each natural scale s ∈ S has two pieces
of information that indicate the pitch and duration, respectively. Table 2 shows the
relationship between categories and sets.

Table 2. The relationship between categories and sets.

Sets Categories

Y
E

C
Gclef, High_Gclef, DHigh_Gclef, Lower_Gclef, DLower_Gclef,
Soprano_Cclef, M-soprano_Cclef, Cclef, Tenor_Cclef, Baritone_Cclef.
Fclef, High_Fclef, DHigh_Fclef, Lower_Fclef, DLower_Fclef

T 0, G_S, D_S, A_S, E_S, B_S, F_S, C_S, C_F, G_F, D_F, A_F, E_F, B_F, F_F

L Sharp, Flat, Natural, Dot

S
P C, D, E, F, G, A, B

Du 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/6

other Rest1, Rest2, Rest4, Rest8, Rest16, Rest32, Rest64
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• Sorting of valid symbols. The YOLOv5 algorithm in the LSUS outputs the objects, and
each object yi is unordered with the information (cls, X, Y, W, H), where ′cls′ denotes
the symbol’s class; X, Y denote the Cartesian coordinate values of the center point of
the object bounding box; and W, H denote the width and height. The clef is the first
element of each row in the staff. Let its center point coordinate be (XC, YC). Denote
∆ = D/2, where D is the distance between two adjacent clefs’ center points. If the
symbol yi is Y ∈ [YC − ∆, YC + ∆], then it goes to the same line. Next, the symbols in
the same row are sorted in order by X from small to large. By this method, all valid
symbols are rearranged in a new order, which is the exact order of the symbols when
reading the staff.

After the preprocessing, the digital information of the staff with M lines is repre-
sented as M vectors, and each vector has Jm elements. The specific implementation of
the preprocessing part is shown in Algorithm 1 (https://github.com/Luyledu/Semantic-
Understanding-System-for-Optical-Staff-Symbols/tree/main/result/LSUS/*/csv, accessed
on 18 November 2023).

Algorithm 1 Algorithm for the NERA Preprocessing Part.

Input: The output of the LSUS.
Output: The staff digital information in the right order. //With M vectors and Jm elements

in each vector.
1: Initialize: N ← len(Y); i← 0; m← 0;// f : X 7→ Y
2: while (i ≤ N) do
3: i← i + 1
4: if (yi /∈ E) then
5: continue; //To determine whether the current symbol is a valid symbol.
6: end if
7: if (yi ∈ C) then
8: m← m + 1;
9: j← 0;//If the input symbol belongs to the clefs, a new vector is created.

10: else
11: j← j + 1; //If the valid symbols are not clefs, then continue.
12: end if
13: end while
14: return Output

3.3.2. Note Reconstructing

In the process of constructing the staff symbol relationship structure, the understand-
ing of the semantic information of the symbols and the interrelationship between the
symbols are what we should focus on. We define e(m, j) as the semantics of the element
j in the mth vector, e(m, j) ⊆ E. As the symbol acts directly or indirectly on the natural
scale, it affects the played pitch and duration. As for the entire staff image, we define the
global variables e(m, 0) and e(m, 1) for the mth line, where e(m, 0) ⊆ C, e(m, 1) ⊆ T. In
addition, we define the local variables v1mn and v2mn that affect the nth note in the mth
line. The variable v1mn indicates whether the note is transposed or not and how it should
be transposed, i.e., sharp, flat, or natural. The variable v2mn indicates whether the note’s
duration is extended to 1.5 times.

In this context, when YOLOv5 outputs the symbol class ′cls′ as a note, the dura-
tion and pitch information of the symbol are expressed as (pmn, dumn). Thus, the note
information in line m is represented as [pm, dum], where vectors pm = [pm1, pm2, pm3, · · · ,
pmNm]

T and dum = [dum1, dum2, dum3, · · · , dumNm]
T , and where Nm, the number of notes

in each line, varies depending on the line. The control information for pitch and duration
is expressed as [v1m, v2m], where vector v1m = [v1m1, v1m2, v1m3, · · · , v1mNm]

T and vector
v2m = [v2m1, v2m2, v2m3, · · · , v2mNm]

T .

https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/main/result/LSUS/*/csv
https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/main/result/LSUS/*/csv
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The variables v1mn and v2mn are calculated as shown in Equations (2) and (3):

v1m(n+1) =


0 e(m, j) /∈ {sharp, f lat, natural}
1 e(m, j) = sharp
−1 e(m, j) = f lat
−e(m, 1) e(m, j) = natural

(2)

v2mn =

{
0 e(m, j) 6= dot
1/2 e(m, j) = dot

(3)

In Equation (2), n + 1 is the update of the note index. If e(m, j) is natural, the corre-
sponding note performs the opposite control of the key signature, e.g., F in G major has
been raised a semitone, but when there is a natural before an F, v1mn controls the note to
perform a descending semitone operation. In Equation (3), if e(m, j) is a dot, the duration
of the corresponding note is extended by 1/2 of the original duration; otherwise, it is
not extended. The specific implementation of the note reconstructing part is shown in
Algorithm 2 (https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-
Staff-Symbols/tree/main/result/HSUS, accessed on 18 November 2023).

Algorithm 2 Algorithm for the NERA Notation Reconstructing Part.

Input: Vector data.
Output: Staff notation relationship structure.

1: Initialize: M ← len(C ∈ E); m ← 0;Jm ← len(e(m, )); //Maximum value of the line
index according to the clef number; initializes the row index and symbolic index.

2: while (m ≤ M) do
3: m← m + 1; j← 0; n← 0; //Initializes index j for symbols and index n for notes
4: e(m, 0), e(m, 1), j← 1; //Gets the value of the line clef and key signature.
5: while (j ≤ Jm − 1) do
6: j← j + 1; //Loop through all valid symbols in the mth line.
7: if (e(m, j) ∈ L then
8: v1m(n+1) ← value; //Assign pitch-shifting notation to the v1mn of the next note.
9: else

10: if (e(m, j) ∈ S) then
11: n ← n + 1;(pmn, dumn); //If it is a note, then calculate its value of pitch and

duration.
12: v2mn ← 0; //Assign the note duration.
13: v1m(n+1) ← 0; //Assign the pitch of the next note.
14: else
15: v2mn ← value; //If it is a dot.
16: end if
17: end if
18: end while
19: end while
20: return Output

3.3.3. Note Encoding

In note-encoding part, the encoding strategy is as follows:

• Pitch Encoding
According to the clef, key signature, and MIDI encoding rules, the pitch code pmn of
the natural scale is converted to a code that includes the function of clef e(m, 0) and
key signature e(m, 1) in the mth line one by one. We define f (·) as the mapping of this
strategy and obtain the converted code f (pmn, e(m, 0), e(m, 1)). The encoding process
is shown in Figure 2. Then, the pitch encoding part obtains the pitch code PPmn for

https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/main/result/HSUS
https://github.com/Luyledu/Semantic-Understanding-System-for-Optical-Staff-Symbols/tree/main/result/HSUS


Appl. Sci. 2023, 13, 12627 9 of 19

each note played using the MIDI encoding rules after scanning the note control vector
v1m, as shown in Equation (4):

PPmn = f (pmn, e(m, 0), e(m, 1)) + v1mn. (4)

Step1pmnpmne(m,0)e(m,0)

6465
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4
6
8

10

-2
-4

3
5
7
9

-1
-3

.

.

.

.

.

.

D

F

A

C

E

G

B

6466
67

71
74

78
81

60
57

69
72
76
79

62
59

Step2e(m,1)e(m,1)

E

B

A

C

A

G

D

F

clef,
key signature pitch names line,space pitch code(a) (b)

Figure 2. The mapping between the clef, key signature, and the pitch code. In the diagram, the clef
e(m, 0) is a treble clef. Step1 means the clef’s mapping and the MIDI encoding rules. After passing
Step1, pmn is converted to (a). The key signature e(m, 1) is G major. Each note F in the mth line is
raised a half tone correspondingly; i.e., the upper F is 78, and the lower is 66. Then, (a) is converted
to (b). The mapping relationship is shown in Step2 in the figure.

• Duration Encoding
Scan each duration control vector v2m and corresponding note duration vector dum,
define the individual performance style coefficient as ω, and apply the MIDI encoding
rule; then, the duration encoding strategy is shown in Equation (5):

PDmn =
1

dumn
∗ (1 + v2mn) ∗ω (5)

where ω varies according to the different performers and ω = 1 means that the
performers’ characteristics are not considered.

3.4. System Structure

The structure of the optical staff symbol semantic understanding system is shown in
Figure 3. The system consists of two parts: the LSUS (shown in Figure 3b) and the HSUS
(shown in Figure 3d). The LSUS is YOLOv5. The model outputs information of the object
yi expressed as (cls, X, Y, W, H) when it is fed a staff image, and the visualization of its
results is shown in Figure 3c. The HSUS takes three steps to produce the code for pitch
and duration during the performance. To begin with, data preprocessing removes invalid
symbols from the disordered Y , then sorts the valid symbols. Additionally, the staff symbol
structure vector set is obtained by using note reconstructing. Last but not least, the note
encoding part outputs the final results according to the encoding strategies of pitch and
duration, as shown in Figure 3e.
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(a) Input staff image

(b) YOLOv5 model

(c) Output result of LSUS

(d) NERA

(e) Output result of HSUS

Removal Sort [e(m,0), e(m,1), v1mn, pmn, v2mn, dumne(m,0), e(m,1), v1mn, pmn, v2mn, dumn]

Pitch encoding Duration encoding

Note Reconstructing

PPmnPPmn PDmnPDmn[                                                          ]

Figure 3. Structure of the optical staff symbol semantic understanding system. The system has two
parts: the LSUS (b) and the HSUS (d). The natural scale (c) is the response of the (b) module when
the optical staff image (a) is the system’s excitation; (c) then acts as the excitation of the module (d),
which eventually outputs the performance code (e).

4. Results
4.1. Data

The dataset used in this article includes a self-built SUSN dataset and an independent
test set. The SUSN dataset contains 130,000 labeled samples. In training, a random
partitioning strategy is adopted, with 90% of the dataset divided into the training set, and
the remaining 10% as the validation set. The test set contains 47 pages of staff images
from 10 different tracks with varying complexities (see Appendix A) for a comprehensive
evaluation of the system’s performance. Among them, the complexities of the staff image
of a track are defined by attributes. The key attributes in this paper are the number of
symbol types, interval span, symbol density, external note density, and image file size.

4.2. Training

The hardware platform used for training is a workstation with an AMD 32-Core
Processor CPU with 80 GB of memory and an NVIDIA RTX 3090 graphics card. The
system model is built on the PyCharm platform using the PyTorch framework. In training,
the system adopted the Stochastic Gradient Descent (SGD) algorithm to optimize the
loss function. In the experiments, the model was trained in 300 epochs, and the first
3 epochs contained linear warm-up, which linearly increases the learning rate from 0 to
the initial learning rate. The Cosine Annealing algorithm was adopted to update the
learning rate. After 11 training epochs, we determined the initial learning rate as 0.01 by
the maximum mAP.
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4.3. Evaluation Metrics

In this paper, precision and recall are used to evaluate the performance of the model
and recognition effect. The precision reflects the ability of the model to accurately classify
symbols:

Precision =
TP

TP + FP
(6)

The recall shows the ability of the model to recognize symbols:

Recall =
TP

TP + FN
(7)

where TP is the number of symbols whose categories are correctly identified, FP is the
number of incorrectly identified symbols, and FN is the number of symbols that are not
identified.

4.4. Experiment and Analysis
4.4.1. Experiment with LSUS

In this paper, the type of symbols, the span of the interval, the density of symbols, the
density of external notes, and the file size of staff images are defined as staff complexity
variables. Table 3 presents statistics for the complexity properties of the test set of 10 track
staves and calculates the precision and recall after LSUS.

Table 3. Performance evaluation of LSUS with different complexity quintiles.

Staff Complexity Variables Evaluation

Name Page Type Span Density
(Symbols)

Density
(External Notes)

File Size
(kb) Precision Recall

Staff 1 2 16 19 484 78 1741 0.968 0.930
Staff 2 5 17 19 679 146 2232 0.996 0.988
Staff 3 3 13 19 319 95 1673 0.997 0.992
Staff 4 12 20 20 478 80 1741 0.994 0.981
Staff 5 7 19 24 530 145 200 0.980 0.958
Staff 6 5 19 20 367 63 435 0.992 0.970
Staff 7 5 15 19 350 62 854 0.996 0.993
Staff 8 3 13 20 441 40 1536 0.990 0.969
Staff 9 3 11 20 424 160 2389 0.986 0.966

Staff 10 2 17 18 315 86 1780 0.987 0.976

The following analysis is from three perspectives:
(1) Evaluation metrics
The average precision of the test set is 0.989, and the recall is 0.972. It is verified that

the model has good generalization and robustness to the LSUS of staffs with different
complexity. The recall of the model is lower than the precision for all staff images, which
shows that the model misses a lot of symbols, especially the external note. For the semantic
understanding of line notation, both missed and wrong checks affect the pitch and duration
of the corresponding notes, especially the clef and key signatures that determine the pitch
and duration of all the notes in a line. Table 4 shows the precision and recall of all the clefs
and key signatures in the test set.

Table 4. Precision and recall of clef and key signatures.

Precision Recall

clef 1.0 00 0.993
key signature 0.992 0.990
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(2) Complexity variables
By analyzing the complexity and evaluation in Table 3, we found that, in the test set of

this paper, the main reasons for the error and omission of symbols in the LSUS process are
as follows:

• In Staff 1, many complex note beams along with the high density of symbols result in
relatively high rates of error and omission, as shown in Figure 4a;

• Staff 2 has the highest density of symbols, and its recall is relatively low, as shown in
Figure 4b;

• Staff 3 has a lower complexity for each item, and its performance evaluation is better;
• The error and omission of notes in Staff 4 are mostly concentrated in the notes with

longer note stems, as shown in Figure 4c;
• Staff 5 has a higher complexity for each item and very low image file size (200 kb), and

its evaluation is worse than others;
• Staff 6 has a lower image file size (435 kb) and, similar to Staff 1, its notes with common

note beams are tedious, as shown in Figure 4d;
• Staff 7 has a lower image file size (835 kb), but its performance evaluation is better due

to the lower complexities of other attributes;
• In Staff 9, the error detection notes are those located in the higher positive line on the

staff, as shown in Figure 4e.

(a) (b)

(c) (d)

(e)

Figure 4. The partial error causes of LSUS. The blue boxes are the correctly identified symbols; the
green boxes are the incorrectly identified symbols; the characters in the boxes are the identification
results; and the symbols without boxes are the missed notes.

(3) Correlation analysis
The different complexity of staffs is a factor that affects the accuracy of symbol recog-

nition. Using the Pearson correlation coefficient to calculate the correlation between the
precision and recall of each of the complexity variables can eliminate the magnitude of
the complexity variables and provide a more direct observation of the correlation between
performance evaluation and complexity. The Pearson correlation coefficient is calculated as
shown in Equation (8):

ρX,Y =
Cov(X, Y)

σ(X) ∗ σ(Y)
(8)

where, by calculating covariance Cov(X, Y), the strength of linear correlation between
complexity variable X and the precision and recall Y is obtained. By calculating the
standard deviation σ(X) of each complexity variable, as well as the standard deviation
σ(Y) of recall and precision, we ensure that the calculation of correlation coefficients is
not affected by the scale of each variable. The computed complexity variable correlation
coefficients are shown in Figure 5.
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Figure 5. Complexity variable correlation coefficient.

As seen in Figure 5, the type of symbol, the span of interval, the density of symbols, and
the density of external notes have a negative correlation with the performance evaluation
of the recognition model, and the file size of images has a positive correlation with the
model’s ability. Take the example of Staff 3 and Staff 10. With a high similarity in other
complexity variables, Staff 10 has more types of symbols, and its performance evaluation
is lower than Staff 3. Staff 6 has a higher image file size, resulting in higher performance
evaluation compared to Staff 4.

A visualization of the output results from the LSUS is shown in Figure 6.

Figure 6. For LSUS visualization, the diagram shows the staff of Oboe String Quartet in C Minor, Violin
Concerto (JS BACH BWV 1060), page 5, lines 1 and 2. The characters in each box indicate the semantics
of the corresponding symbol. In the diagram, green boxes indicate incorrectly identified symbols,
and the symbols without boxes are the missed notes.

4.4.2. Experiment with HSUS

The accuracy of the HSUS is related to the accuracy of the output of the LSUS and the
stability and accuracy of the NERA. To verify the accuracy of the NERA, using the ideal
data (manual annotation) and the practical data (the output of the LSUS) as inputs—named
ideal input and practical input, respectively—the error rate and the omission rate of the
output results are calculated as follows:

• When the input is ideal, the error rate and the omission rate of the output result are
the performance indexes of the NERA;

• The error and omission rates are the performance indexes of the whole system when
the output is practical.
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Tests were conducted on the test set, and the experimental results are shown in Table 5.
The specific analysis is as follows:

Table 5. Experimental results for HSUS.

Staff
Ideal Input Practical Input

Error Rate Omission
Rate Error Rate Omission

Rate

Staff 1 0.006 0.000 0.052 0.044
Staff 2 0.011 0.000 0.016 0.010
Staff 3 0.010 0.000 0.020 0.006
Staff 4 0.019 0.000 0.027 0.020
Staff 5 0.013 0.000 0.044 0.014
Staff 6 0.005 0.000 0.020 0.008
Staff 7 0.000 0.000 0.004 0.010
Staff 8 0.020 0.000 0.055 0.053
Staff 9 0.022 0.000 0.037 0.021

Staff 10 0.000 0.000 0.036 0.019

(1) HSUS output error
As shown in Table 4, the ideal data as the input of HSUS have a zero omission rate,

which indicates that the NERA has performed the HSUS for each note input, thus proving
its stability. The error is mainly caused by the deviation of the range of accidentals. The
accidentals are defined in music theory to work for the notes with the same height within a
bar; however, in this paper, the note reconstruction does not extend the effective range of
accidentals to other symbols within the bar, which leads to the error in the HSUS, as shown
in Figure 7.

× ×

Figure 7. The pitch-shifting notation leads to HSUS errors. The sharp should be applied to notes of
the same height in the bar, but the NERA only applies it to the first note after the sharp.

(2) Scope of application of NERA
The NERA proposed in this paper can only be applied to the general rules of staff

notation whose expression is notation, i.e., the rules described in Section 2.3. Additionally,
due to the ambiguous restriction that the author may want to express the content using
symbols, there will be some special rules of note expressions [5], and then the output of the
HSUS will be very different from what the author expresses, as in the example shown in
Figure 8.
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Figure 8. This excerpt from Beethoven’s Piano Sonata illustrates some of the characteristics that
distinguish musical notation from ordinary notation. The chord in the lower left contains a mixture
of half- and quarter-notes of the mixed note head, yet the musical intent is that the two quarter notes
in the middle of the chord are actually played as eighth notes, adding to the thickness of the first beat.
(Excerpted from Understanding Optical Music Recognition by Calvo-Zaragoza et al. [5]).

(3) LSUS as input
The average error rate of the HSUS is 0.031, and the omission rate is 0.021 when the

input is the system’s practical data. Among numerous replicate experiments, we found
that, despite the high overall accuracy of the system output, some errors with very low
probability still occur. After analysis, we found that these errors are caused by LSUS errors,
as shown in Figure 9, mainly as follows:

• Misidentification of the pitch and duration of natural scales can lead to errors during
HSUS;

• Misidentification or omission of accidentals (sharp, flat, natural, dot) acting on natural
scales can lead to errors during HSUS;

• Omission of a note affects the HSUS of the note or the preceding and following notes.
There are three cases: (1) when the note is preceded and followed by separate notes,
the omission of the note does not affect the semantics of the preceding and following
notes; (2) when a note is preceded by a pitch-shifting notation (sharp, flat, natural)
and followed by another note, the omission of the note will cause the pitch-shifting
notation originally used for the note to be applied to the latter note, resulting in a pitch
error at the HSUS of understanding of the latter note; (3) when the note is preceded
by a note and followed by a dot, the omission of the note will cause the appendage
originally used for the note to act on the preceding note, and thus the HSUS of the
preceding note will be incorrectly timed;

• Misidentification or omission of the key signature will result in a pitch error in the
HSUS for some notes in this line. There are three cases: (1) when the key signature
is missed, the pitch of the note in the key signature range is incorrect at the HSUS;
(2) when the key signature is misidentified as a key with the same mode of action,
i.e., when both modes of action are the same, making the natural scale ascending
(or descending) but with a different range of action, the HSUS of some of the notes
will be wrong in terms of pitch; (3) when the key signature is incorrectly identified
as a key with a different mode of action, the pitch will be incorrect when the note is
semantically understood;

• When the clef is missed, all natural scales in this row are affected by the clef of the
previous line. When the clef is incorrectly identified, an error occurs at the HSUS of all
natural scales in this row.
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Figure 9. Impact on HSUS in case of symbolic errors or omissions at LSUS. (a) indicates the meaning
of the corresponding symbol in the figure below. (b) has a wrong note pitch identification of 12, so
the HSUS has a pitch error. (c) missed a sharp, so the note pitch of the action is wrong. (d) omitted
the dot, so the note duration of the action is wrong. (e) has a note omission that does not affect
the semantics of the preceding and following notes. (f), however, has an omission of a note, which
causes the flat to act on the pitch of the next note, and the pitch of the next note is incorrect. (g) has
an omission of a note, which causes the dot to act on the duration of the preceding note, and the
duration of the preceding note is incorrect. (h) has missed the key signature of D major, and the notes
in the natural scale roll call of “Do” and “Fa” will not be raised. (i) has incorrectly identified D major
as G major, and the pitches of the notes in the range of action are raised (D major acts on natural
scales with the roll call of “Fa” and “Do”, while G major acts on natural scales with the roll call of
“Fa“); when performing the HSUS, natural scales with a roll call of “Fa” in this line of the staff are not
subject to error, while natural scales with a roll call of “Do” are subject to error. (j) has recognized D
major as F major, and the mode of action is different, which causes the pitch of all the notes in the
range to be incorrect. (k) missed the bass clef, and the pitch of all the notes in this line of the staff is
determined by the clef of the previous line. (l) identified the alto clef incorrectly as the treble clef, and
all the pitches in this line of the pitch are incorrect.

The pitch and duration codes of the played notes output by the staff notation semantic
understanding system after the HSUS are shown in Figure 10.

Figure 10. Visualization of the results of HSUS.
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5. Conclusions and Outlooks
5.1. Conclusions

This paper aims to solve the problem of semantic understanding of the main notes of
the optical staff as pitch and duration during performances in the field of music information
retrieval. The SUSN dataset is constructed using the basic properties of the staff as a starting
point, and the YOLO object detection algorithm is used to achieve LSUS of the pitch and
duration of the natural scale and other symbols (such as clefs, key signatures, accidentals,
etc.) that affect the natural scale. Experimental results of the LSUS show that the precision
is 0.989 and the recall is 0.972. We analyze the causes of error and omissions in the LSUS
due to the differences in the complexity of the staff.

The HSUS is based on the NERA proposed by music theory, which parses the low-level
semantic information according to the semantics of each symbol and its logical, spatial, and
temporal relationships with each other, constructs the staff symbol relationship structure of
the given symbols, and calculates the pitch and duration of each note played. The NERA
has limitations in modeling the staff image system and can only realize the encoding of the
pitch and duration of the notes whose staff symbols are defined according to a version of
the rules of notation. The accuracy of notes in the process of HSUS depends on the accuracy
of LSUS, and once there are symbol errors and omissions, it will lead to incorrect pitch and
duration encoding of the corresponding notes in the process of HSUS. In this paper, we
summarize the different cases of HSUS errors caused by symbol errors and the omission
of different symbols of the staff scale during the LSUS. The optical staff notation semantic
understanding system implements the input staff images and outputs the encoding of the
pitch and duration of each note when it is played.

5.2. Outlooks

The main problems with LSUS are as follows:

• The staff notation in this paper is mainly related to the pitch and duration of musical
melodies. The recognition of other symbols, such as dynamics, staccatos, trills, and
characters related to the information of the staff is one of the future tasks to be solved;

• The accurate recognition of complex natural scales such as chords is a priority;
• The recognition of symbols in more complex staff images, e.g., those with larger

intervals, denser symbols, and more noise in the image.

For the HSUS, the following problems still need to be solved:

• It is important to improve the scope of accidentals, so that they can be combined with
bar lines and repetition lines, etc;

• The semantic understanding of notes is based on the LSUS and, after solving the
problem of the types of symbols recognized by the model, each note can be given
richer expression information;

• In this paper, rests are recognized, but the information is not utilized in semantic
understanding. In the future, this information and the semantic relationships of other
symbols can be used to generate a complete code of the staff during performances.

The system provides an accurate semantic understanding of optical staff symbols for
multimodal music artificial intelligence applications such as notation recognition through
listening, intelligent score flipping, and automatic performance.
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Abbreviations

The following abbreviations are used in this manuscript:
LSUS Low-Level Semantic Understanding Stage
HSUS High-Level Semantic Understanding Stage
NERA Note-Encoding Reconstruction Algorithm

Appendix A

The ten staffs selected for the test set are shown below:

• Staff 1: Canon and Gigue in D Major (Pachelbel, Johann)
• Staff 2: Oboe String Quartet in C Minor, Violin Concerto (J.S. Bach BWV 1060)
• Staff 3: Sechs ländlerische Tänze für 2 Violinen und Bass (Woo15), Violino 1 (Beethoven,

Ludwig van)
• Staff 4: Violin Concerto RV 226, Violino principale (A. Vivaldi)
• Staff 5: String Duo no. 1 in G for violin and viola KV 423 (Wolfgang Amadeus Mozart)
• Staff 6: Partia à Cembalo solo (G. Ph. Telemann)
• Staff 7: Canon in D, Piano Solo (Pachelbel, Johann)
• Staff 8: Für Elise in A Minor WoO 59 (Beethoven, Ludwig van)
• Staff 9: Passacaglia (Handel Halvorsen)
• Staff 10: Prélude n°1 Do Majeur (J.S. Bach)
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