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Abstract: Binary code similarity detection (BCSD) plays a vital role in computer security and software
engineering. Traditional BCSD methods heavily rely on specific features and necessitate rich expert
knowledge, which are sensitive to code alterations. To improve the robustness against minor code
alterations, recent research has shifted towards machine learning-based approaches. However,
existing BCSD approaches mainly focus on function-level matching and face challenges related to
large batch optimization and high quality sample selection at the basic block level. To overcome
these challenges, we propose BlockMatch, a novel fine-grained BCSD approach that leverages natural
language processing (NLP) techniques and contrastive learning for basic block matching. We treat
instructions of basic blocks as a language and utilize a DeBERTa model to capture relative position
relations and contextual semantics for encoding instruction sequences. For various operands in binary
code, we propose a root operand model pre-training task to mitigate semantic missing of unseen
operands. We then employ a mean pooling layer to generate basic block embeddings for detecting
binary code similarity. Additionally, we propose a contrastive training framework, including a block
augmentation model to generate high-quality training samples, improving the effectiveness of model
training. Inspired by contrastive learning, we adopt the NT-Xent loss as our objective function, which
allows larger sample sizes for model training and mitigates the convergence issues caused by limited
local positive/negative samples. By conducting extensive experiments, we evaluate BlockMatch and
compare it against state-of-the-art approaches such as PalmTree and SAFE. The results demonstrate
that BlockMatch achieves a recall@1 of 0.912 at the basic block level under the cross-compiler scenario
(pool size = 10), which outperforms PalmTree (0.810) and SAFE (0.798). Furthermore, our ablation
study shows that the proposed contrastive training framework and root operand model pre-training
task help our model achieve superior performance.

Keywords: binary code similarity detection; basic block matching; contrastive learning

1. Introduction

Binary code similarity detection (BCSD) is a pivotal technique in the spheres of com-
puter security and software engineering. Given an unknown binary file, the BCSD tools
extract features of binary code and search corresponding similar code in the reposito-
ries. Its broad applications span various field of software analysis, including software
plagiarism [1], malware analysis [2–6], and bug search [7–18].

Given the significance of BCSD techniques, numerous approaches have been proposed
to work on a variety of BCSD scenarios. Traditional BCSD approaches [8,18–22], which
predate the incorporation of machine learning (ML) into BCSD tasks, depend heavily on
specific features such as control flow graphs (CFGs), raw bytes, instructions, basic block
counts, and strings for detecting similarities in binary code. For example, CFG-based
approaches [20] transfer binary code into CFGs and calculate their similarities based on
their graph structure, nodes, and edges. These approaches necessitate rich experience and
expert knowledge to determine feature weights and are also sensitive to code alterations.
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Even minor changes in binary code can cause substantial changes in these features, thereby
challenging traditional BCSD methods.

In recent years, researchers have gravitated towards machine learning-based solutions
to perform the BCSD tasks. Current state-of-the-art BCSD approaches [10,13,15,23–25]
leverage machine learning (ML) techniques and utilize trained neural networks to compre-
hend the semantics of functions based on their instructions. These semantics are embedded
onto normalized high-dimensional embeddings within a hyper-sphere, and we measure
the similarities of binary code according to the proximity of their embeddings within the
hyper-sphere. Approaches such as Genius [26] and Gemini [27] manually select the statisti-
cal features of basic blocks and employ graph neural networks (GNNs) to generate function
embeddings for function matching, while jTrans [13], VulHawk [10], and SAFE [25] treat
instructions of function as a language and employ Natural Language Processing (NLP) tech-
niques to automatically extract semantics and generate function embeddings to compute
function similarity.

Presently, BCSD approaches mainly focus on function-level BCSD tasks. However,
due to the fact that binary functions are typically composed of many basic blocks, identi-
fying corresponding basic blocks or code snippets in two similar functions still requires a
significant amount of work, making it a challenging problem.

In binary files, basic blocks refer to sequences of instructions that have a single entry
point and a single exit point. A function with complex functionality usually consists
of a large number of basic blocks. Figure 1 illustrates three functions sourced from the
same source code (function register_state in the gawk project) but different compilation
options. Despite these functions being homologous, matching similar basic blocks or code
snippets among them remains a time-consuming and challenging problem, considering
their complex CFGs and numerous basic blocks. Thus, a fine-grained BCSD approach at the
basic block level becomes urgent to solve the last-mile problem of BCSD tasks regarding
matching among numerous basic blocks. When conducting BCSD at the basic block level,
the following challenges need to be addressed.

(a) (b) (c)

Figure 1. Functions compiled with different compilation options. They are all from the same source
code of register_state in the gawk project, (a) register_state O0, (b) register_state O1, (c) regis-
ter_state obfuscated.

The existing BCSD approaches employ Triplet Loss [28] to optimize the parameters
of models based on partial samples [13,29]. However, this way has potential drawbacks
as it may lead to suboptimal optimization and overlook better models. Triplet loss is a
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widely-used training objective function, aiming to minimize the distance between em-
beddings of similar binary code while maximizing the distance for dissimilar ones. As
shown in Figure 2a, an anchor represents an input basic block B, a positive sample B+

denotes a similar block to the anchor, and a negative sample B− represents a dissimilar
one. During the training, the triplet loss objective brings the embeddings of block B and
block B+ closer in the hyper-sphere, while ensuring a distinct separation between B and B−.
Nevertheless, in real-world BCSD tasks, given an anchor basic block, there are numerous
similar basic blocks and dissimilar basic blocks. As shown in Figure 2b, the triplet loss
function focuses primarily on the local positive/negative samples and lacks a more com-
prehensive optimization, resulting in slow convergence and even difficulty in converging
to the desired parameters.

Furthermore, selecting representative positive/negative samples from a large number
of basic blocks is challenging, and the quality of the positive/negative samples seriously af-
fects the effectiveness of model training. In BCSD tasks, easy samples represent basic blocks
with distinguishable features that facilitate accurate predictions or classifications, while
hard samples present challenges and complexities for the model predictions. In Figure 2b,
with B as the anchor sample, B+ and B− are an easy positive sample and an easy negative
one, while B′+ and B′− are a hard positive sample and a hard negative one, respectively. As
depicted in Figure 2b, with B as the anchor sample, B+ and B− represent easy positive and
easy negative samples, respectively, while B′+ and B′− represent hard positive and hard
negative samples. Easy samples are typically associated with low prediction errors and
contribute less to the overall loss calculations, while hard samples tend to result in higher
prediction errors and have a greater impact on the overall loss calculations.

Anchor

Positive Sample

Negative Sample

�

�+

�−

(a)

Negative Sample
Positive Sample

�
�+

�−

�’−

�’+

(b)
Figure 2. An example of BCSD model training. (a) An example of triplet loss, and (b) the actual
situation.

In this paper, we introduce a novel approach called BlockMatchfor fine-grained Binary
Code Similarity Detection (BCSD) that utilizes Natural Language Processing (NLP) and
contrastive learning techniques to match similar basic blocks between complex functions for
the last-mile problem of BCSD tasks. Basic blocks in binary files consist of various instruc-
tions. We first treat binary code as a language and use a DeBERTa model to capture position
relations and contextual semantics for instruction sequence encoding. We then use a mean
pooling layer to generate basic block embeddings for binary code similarity detection. To
solve the aforementioned challenges, we propose a training framework based on contrastive
learning [30,31]. We adopt NT-Xent loss [31] as our objective functions for model training to
address the aforementioned challenges. The NT-Xent loss function supports larger sample
sizes for model training, which mitigates slow convergence optimization-less problems
caused by local limited positive/negative samples. We also propose a block augmentation
model to generate high-quality samples for training effectiveness improvements.

In summary, we have made the following contributions:

• We propose a novel fine-grained BCSD approach based on NLP technique for basic
block matching, namely BlockMatch. It first uses an NLP model to capture position
relations and contextual semantics for instruction sequence encoding. Then, we use
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a mean pooling layer to generate basic block embeddings for binary code similarity
detection. BlockMatch can be used to solve the last-mile problem of BCSD tasks
regarding matching among basic blocks.

• We propose a training framework based on contrastive learning resolving the small
sample size training problem in BCSD tasks, which uses a block augmentation model
to generate multiple contrastive positive/negative samples for model training and
uses the NT-Xent loss objective function for parameter optimization.

• We implement BlockMatch and evaluate it with extensive experiments. The experi-
ments show that BlockMatch outperforms the state-of-the-art approaches PalmTree
and SAFE. The Ablation study shows the NT-Xent loss benefit and that our model
achieves better performance than the triplet loss.

2. Related Work

This section offers a concise overview of additional related work concerning binary
code similarity detection.

Generally, BCSD is geared towards quantifying the similarity of two binary code
snippets extracted from executable files. As outlined in the BCSD literature [15,32,33],
there are four types of binary code similarity, (1) literal identity, (2) syntactic equivalence,
(3) functional equivalence, and (4) identical or logically similar source code. The current
approaches [10,15,17,23,25,29,34–37] are focused on the fourth type to identify whether
given binary code snippets are from the same or logic similar source code.

Significant research has been conducted in the field of binary code similarity detection.
Traditional approaches, such as those proposed by Luo et al. [1], Ming et al. [2], Myles
et al. [38], Jang et al. [39], and Pewny et al. [22], utilize statistical, syntax, and structural
features to identify similar binary code fragments. However, these approaches require
extensive expertise and knowledge to effectively select features and assign appropriate
weights for BCSD tasks. DiscovRE [40], Genius [26], and GitZ [19] employ features that
are robust to small changes derived from statistical, syntactic, and structural analysis
to calculate binary code similarity. Trex [24] introduces a transformer-based model that
utilizes micro-traces comprising instructions and dynamic values to capture function
execution semantics for BCSD tasks. Drawing inspiration from NLP techniques, many
researchers [10,13,15,23,37,41,42] introduce language models to automatically extract se-
mantic features of binary code for BCSD tasks. For example, Ding et al. [15] propose
Asm2Vec using the Distributed Memory Model of Paragraph Vectors (PV-DM) model [43]
to represent binary functions as high-dimensional numerical embeddings to detect sim-
ilar binary code. PalmTree [23] applies a transformer-based NLP model, BERT [44], for
assembly instructions to measure similarity of binary code. Wang et al. [13] propose a
transformer-based approach, named jTrans, to capture CFG structures using jump-aware
representation for binary code similarity detection. These approaches are mainly work-
ing for functions of binary files. However, matching corresponding code snippets/basic
blocks in two similar functions still requires a significant amount of effort, considering the
complexity of their CFGs and the abundance of basic blocks involved. Thus, a fine-grained
BCSD approach at basic block level becomes urgent to solve the last-mile problem of BCSD
tasks regarding matching among numerous basic blocks.

Basic block similarity matching, as a fine-grained BCSD scenario, is more specific in
identifying which basic blocks are similar compared to a function-level BCSD scenarios.
At the same time, it also faces a larger number of matching samples. Current approaches
represent binary code as high-dimensional embeddings on a hyper-sphere, facilitating
the search for similar binary code based on cosine distance. Consequently, the primary
training objective is to minimize the distance between embeddings of similar binary code
while maximizing the distance between embeddings of dissimilar binary code. The existing
approaches [13,29] utilize Triplet Loss [28] to optimize the parameters of models based on
triplet samples (i.e., anchor sample, positive sample, and negative sample). The quality
of these samples profoundly affect the effectiveness of model training. However, BCSD at
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the basic blocks is a multi-class problem with thousands (or even more) of different basic
blocks, and the different basic blocks are not completely different from each other, which
makes it difficult to select representative samples to compute triplet loss for optimization.
SimCLR [31] proposes a NT-Xent loss for the large-batch contrastive learning of visual
representations and shows high performance for multi-class prediction in image classifica-
tion. It support multiple negative samples and positive samples to calculate training loss,
avoiding bias from local samples.

Compared with the above approaches, our proposed BlockMatch is a fine-grained
approach for BCSD tasks at the basic block level, which uses an NLP model based on
DeBERTa [45] to automatically capture position relations and contextual semantics for basic
block embeddings. Considering the thousands of different basic blocks, we propose a
contrastive training framework for BCSD tasks. It first uses a basic block augmentation
model to generate multiple high-quality samples, and then adopts NT-Xent loss [31] as our
objective functions to train our model with large-sized samples, allowing it to converge
faster and achieve superior performance in BCSD tasks.

3. Design

To mitigate the problems discussed in Section 1, we propose a novel Binary Code
Similarity Detection (BCSD) approach called BlockMatch to solve the last-mile problem
of BCSD tasks regarding matching among basic blocks. Figure 3 illustrates the overall
architecture of BlockMatch, encompassing two key modules that enable its functionality:
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Figure 3. The overview of BlockMatch, which consists of a representation generation model and a
contrastive training framework.

Representation Generation Model. This module is responsible for generating em-
beddings for each basic block present in the input functions. Initially, we extract basic
blocks from the input functions and employ disassembly tools to convert machine code into
instruction sequences for each basic block. Subsequently, we utilize a basic block model
based on DeBEATa [45] to capture the semantics of these basic blocks, thereby producing
corresponding embeddings. To train our model, we employ a masked language model
and a novel root operand model for pre-training. We then use a block similarity model to
fine-tune our model, ensuring that similar basic block embeddings are closer together.

Contrastive Training Framework. This module aims to generate diverse and high-
quality samples for training the model, employing the NT-Xent loss objective function [31]
to optimize the model parameters. During the training phase, given training basic blocks,
we propose a block augmentation model to generate positive samples and negative samples
based on their metadata. Specifically, for positive samples, the block augmentation model
generates basic blocks originating from the same source code lines, but compiled using
different compilers, architectures, and optimizations compared to the anchor basic block.
Conversely, for negative samples, the block augmentation model generates basic blocks
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with different I/O emulation results from different source code lines in relation to the
anchor function. Subsequently, we utilize the NT-Xent loss objective function to optimize
the representation generation model by considering their block similarities between large-
batch samples.

3.1. Representation Generation Model

The representation generation model aims to generate basic block embeddings that
capture relative positions, contextual information, and instruction semantics. To accomplish
this, we consider basic blocks as language sentences, where their instructions are treated as
words within these sentences. We leverage a customized transformer-based language model
with disentangled attention [45] to capture these features and construct comprehensive
representations for BCSD tasks.

The first step in the process is raw feature extraction. We extract the basic blocks from
the provided binaries and employ IDA Pro [46], a disassembly tool, to convert machine
code into microcode instruction sequences for these basic blocks. It is worth noting that
alternative disassembly tools and intermediate representations also work.

3.1.1. Basic Block Model

To automatically generate semantic features for each basic block, we employ a basic
block model based on DeBEATa [45] to capture the semantics of the instruction sequences
in basic blocks. DeBERTa [45] is a member of the BERT family [44] and distinguishes itself
from the conventional BERT model by employing disentangled attentions within each
transformer encoder layer. Compared with BERT [44] and RoBERTa [47], DeBERTa utilizes
disentangled attentions to effectively capture both the relative relations between positions
and the content being analyzed, which helps our model better understand the connections
between instructions in the basic blocks. Figure 4 illustrates the architecture of our basic
block model, which is composed of stacked DeBERTa encoders to build embeddings. For
each input sequence, we consider it as a language sentence and tokenize it into token
objects. These tokens are then mapped to corresponding token embeddings. Subsequently,
we feed these token embeddings into the stack of the DeBERTa encoder to generate hidden
states, with the last hidden states representing the instruction semantics. Finally, we use
a mean pooling on the last hidden states to generate the embedding of the basic blocks.
During training, we feed the last hidden states into various training task heads to optimize
our model.

3.1.2. Pre-Training Tasks

To facilitate the large-scale training of our model, we employ two self-supervised
pre-training tasks: the Masked Language Model (MLM) [44] and the Root Operand
Model (ROM).

Masked Language Model. The MLM task involves completing fill-in-the-blank tasks,
enabling the model to learn how to predict masked tokens based on the surrounding
context tokens. By performing the MLM task, the model gains a deeper understanding of
the relations between instructions and positions. In MLM training, given a token sequence
X = {xi|i ∈ (0, n)}, 15% of the tokens in each input sequence are randomly masked.
Among the masked tokens, 80% of them are replaced with a special [MASK] token, 10% of
them are replaced with other tokens, and the remaining 10% remain unchanged. This is
carried out to create a masked sequence denoted as X̃. We then input X̃ into the basic block
model and feed the output into an MLM head to reconstruct X by predicting the masked
tokens x̃ conditioned on X̃. The loss function for the MLM task is defined as follows:

LMLM(θ1, θ2) = − log p{θ1,θ2}(X|X̃) (1)

Here , θ1 and θ2 correspond to the parameters of the basic block model and the MLM head,
respectively. The pre-training task is considered complete when the training loss decreases
to a stable interval, indicating convergence.
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Figure 4. The architecture of the basic block model.

Root Operand Model. The ROM task aims at summarizing the root semantics of each
operand, allowing the model to mitigate missing semantics for Out-of-Vocabulary words.
OOV words are those that are absent from the language model’s vocabulary. These are
the words that are unknown to the model and bring challenges to semantic extraction.
Through the ROM task, we enable the model to comprehend the intrinsic semantics of
operands. When dealing with OOV operands, the model replace OOV operands with their
root operands rather than completely losing their semantics. In ROM training, given a
token sequence X = {xi|i ∈ (0, n)}, we generate its root operand sequence denoted as
Xr . We then input X into the basic block model and feed the output into an ROM head to
predict their root operand xr. The loss function for the ROM task is defined as follows:

LROM(θ1, θ3) = − log p{θ1,θ3}(Xr |X) (2)

Here, θ1 and θ3 correspond to the parameters of the basic block model and the ROM head,
respectively. The pre-training task is considered complete when the training loss decreases
to a stable interval, indicating convergence.

The pre-training loss function of the block semantic model is the combination of loss
functions:

L = LMLM + LROM (3)

3.2. Contrastive Training Framework

To fine-tune our basic block model, we propose a contrastive training framework,
which is to generate diverse and high-quality samples for large-batch training. We first
utilize the block augmentation model to generate diverse and high-quality positive samples
and negative samples, and then construct large contrastive batches for the fine-tuning task
Block Similarity Model (BSM) using the NT-Xent loss objective function to optimize the
model parameters, ensuring that similar basic block embeddings are closer together.

3.2.1. Block Augmentation Model

To automatically generate diverse samples for given basic blocks, we use a block
augmentation model to randomly construct similar basic blocks and dissimilar basic blocks.
We first label our similar basic blocks and dissimilar basic blocks, and then perform block
augmentation on the given anchor samples to generate their training samples.
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Similar Basic Block Labeling. In binary files, basic blocks do not have names (like
function names) to indicate whether or not two basic blocks are similar. Manual labeling
basic block similarities requires a significant amount of time and effort, so we propose a
method based on Debugging with Attributed Record Formats (DWARF) information for
automatically labeling basic block similarities. DWARF is a debugging file format used
by many compilers and debuggers to support source-level debugging [48], designed to
describe compiled procedural languages such as C and C++. The DWARF provides informa-
tion to indicate the source files and lines of basic blocks, which helps us to identify the basic
block similarity. As shown in Figure 5, the basic block Block1 is from the binary vmlinux
compiled with optimization option O2 on the x86-64 architecture. Its DWARF information
indicates Block1 compiled from lines 172–173 of the source code file lsm_audit.c. The
basic block Block2 shares the same source code lines with Block1, so they are similar basic
blocks with similar semantics.

mov
movzx
mov
mov
movzx
mov

rax,  [ad+0x8]
edx, [rsi]
[rax+0x14], dx
rax, [ad+0x8]
edx, [rsi+0x2]
[rax+0x12], dx

LDR
LDRH
STRH
LDR
LDRH
STRH

X1,  [ad, #8]
W2, [nexthdr]
W2, [X1, #0x14]
X1,  [ad, #8]
W0, [nexthdr, #2]
W0, [X1, #0x12]

 vmlinux O2
x86-64

 vmlinux O1
arm-64

DWARF Information:
linux-source-5.4.0/security/lsm_audit.c
Line 172-173

DWARF  Information:
linux-source-5.4.0/security/lsm_audit.c
Line 172-173

Source Code:
ad->u.net->sport = sh->source;
ad->u.net->dport = sh->dest;

ADD
CMP
B.NE

W21, W21, #1
W4,   W21
loc_FFC0100BFB08

vmlinux O1
arm-64

Source Code:
for (n = 0; n < view->n; ++n) 

DWARF  Information:
linux-source-5.4.0/kernel/ptrace.c
Line 897

Similar Dissimilar

Dissimilar

Block1 Block2 Block3

Figure 5. Basic block dataset generation based on DWARF information.

Dissimilar Basic Block Labeling. One problem arises when dealing with dissimilar
basic blocks: two basic blocks from different source code have a probability of being
semantically similar. In other words, different source code lines are a necessary but not
sufficient condition for dissimilar basic blocks. Incorrectly labeled data will poison the
dataset and impact the accuracy of the trained model. To address this problem, we use
strict rules to identify dissimilar basic block pairs. Given two basic blocks, we label them as
dissimilar pairs if they come from different source codes and their I/O emulation results
are different. We use Unicorn, a multi-architecture CPU emulator framework, to emulate
instructions of basic blocks. Given two basic blocks from the same architectures (e.g., Block2
and Block3 in Figure 5), we randomly generate their initial emulation environments (i.e.,
registers and stacks). For the same initial environments, the emulations of two blocks
get different final environments, which indicates they have different operations on data,
reflecting semantic differences in the binary code. Thus, we label Block2 and Block3
as dissimilar basic block pairs. Since Block2 and Block3 are dissimilar, considering the
similarity between Block1 and Block2, it can be inferred that Block1 and Block3 are also
dissimilar. One emulation result may be accidental equivalence, so we emulate blocks
multiple times with different emulation environments.

Block Augmentation. We perform block augmentation on given anchor samples in
the following four aspects: source code, compiler, optimization options, and architecture.
Algorithm 1 shows the details of our block augmentation model.
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Algorithm 1: Block Augmentation Algorithm
Input: A basic block B, the number of positive samples Npos, and the number of

negative samples Nneg.
Output: The positive sample set Spos and the negative sample set Sneg.

1 Function Augmentation (block B, flag isPositive, num N)
2 Sret ← { } ;
3 while True do
4 if isPositive then
5 BlockSource← GetBlockSource( f );
6 else
7 BlockSource← DiffBlockSource();

8 compiler ← SelectCompiler();
9 opt← SelectOpt();

10 arch← SelectArch();
11 B′ ← ConstructBlock(BlockSource, arch, opt, compiler) ;
12 if not isPositive and Emulation(B) == Emulation(B′) then
13 continue ;

14 if isPositive and GetMetaData(B) == GetMetaData(B′) then
15 continue ;

16 Sret ← Sret ∪ {B′} ;
17 if len(Sret) >= N then
18 break ;

19 return Sret ;

20 isPositive← True ;
21 Spos ← Augmentation(B, isPositive, Npos) ;
22 isPositive← False ;
23 Sneg ← Augmentation(B, isPositive, Nneg) ;
24 Output Spos, Sneg;

To generate positive and negative samples for a given basic block B, we employ the
Augmentation function. The parameters of Augmentation determine the quantity of posi-
tive and negative samples generated. When generating positive samples, our objective is
to produce basic blocks that share the same semantics as basic block B, while exhibiting
distinct instruction sequences. To this end, we maintain the source code lines without
alteration (as shown in Line 5 of Algorithm 1), and introduce variations in the compiler,
optimization techniques, and architecture employed, ensuring that the augmented basic
block differs from the original basic block B. Consequently, the augmented basic blocks
possess identical semantics to basic block B, but display different instructions. These aug-
mented basic blocks pose challenges for the representation generation model, contributing
significantly to the loss calculations during model training and resulting in accelerated
convergence. When generating negative samples, we randomly pick basic blocks with
distinct source code lines and I/O emulation results in comparison to the anchor basic block
B. Subsequently, Npos + Nneg + 1 contrastive samples are constructed for model training.

3.2.2. Training Objective

The objective of the fine-tuning task Block Similarity Model (BSM) is to make similar
basic block embeddings closer together. Here, we use the NT-Xent loss objective function
to optimize the model parameters. Given a large batch of samples, we embed them into a
hyper-sphere and use cosine distance to measure their similarity scores.

Figure 6 provides an illustrative example of large batch contrastive training. During the
training phase, the objective is to maximize the cosine similarity scores between embeddings
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from similar function samples and simultaneously minimize the cosine similarity scores
between embeddings from dissimilar function pairs. The batch is arranged in the order
of the anchor sample, positive samples, and negative samples. We utilize the normalized
temperature-scaled cross-entropy loss (NT-Xent) [31] as the training objective to compute
the loss.

N = 1 + Npos + Nneg

L = −
Npos

∑
i=1

Npos

∑
j=1

log
exp(1[k 6=i] cos(ei, ej)/τ)

∑N
k=N−Nneg

exp(cos(ei, ek)/τ)

(4)

Here, Npos and Nneg are the numbers of positive and negative samples, respectively. The
function cos(·) denotes the cosine similarity score calculation, while 1 is an indicator
function that indicates 1 when its condition is true and 0 otherwise. In the NT-Xent
loss function, the number of samples N consists of one anchor sample, Npos positive
samples, and Nneg negative samples. In loss L, the numerator of the fraction computes the
exponential of the similarities between different positive sample embeddings ei and ej. The
denominator sums up the exponentials of the cosine similarities between positive sample
embeddings ei and negative sample embeddings ek, where k ranges from N − Nneg to N.
The hyper-parameter τ plays a crucial role in controlling the temperature to help the model
learn from hard negatives. We compute the gradient based on the loss L and use the Adam
optimizer to optimize the model parameters.

Positive Samples

Negative Samples

�

Figure 6. An illustration of contrastive training.

4. Evaluation

In this section, we evaluate BlockMatch and answer the following research questions:

• RQ.1 Given two basic blocks, can BlockMatch identify similar basic block pairs?
• RQ.2 Given a basic block, can BlockMatch retrieve similar basic blocks from a group

of functions?
• RQ.3 How much does each component contribute to the performance of BlockMatch?

4.1. Implementation and Setup

We developed the BlockMatch using PyTorch 1.13.0 [49], where the implementation
of DeBERTa is based on Transformers [50]. We carefully determine the values of key hyper-
parameters to strike a balance between efficiency and performance. In the representation
generation model, we use a six-layer DeBERTa model with eight attention heads, where
generated embeddings are 256 dimension numeric vectors. In the contrastive training
framework, we set the number of positive samples, denoted as Npos, to 10. Similarly, we
assign a value of 20 to the number of negative samples, represented by Nneg. Additionally,
we set the hyper-parameter τ to 0.1 in the NT-Xent loss function. Our experiments are
conducted on a desktop computer running Windows 10, equipped with an Intel Core
i9-10920X CPU, 64GB RAM, and an NVIDIA RTX 3090 GPU.
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4.1.1. Baselines

For the purpose of comparison, we select the following state-of-the-art approaches as
baselines. We download their original implementations for evaluation:

• PalmTree [23]: This method represents one of the state-of-the-art BCSD approaches. It
leverages pre-trained models based on BERT [44] to generate semantic embeddings
for binary code. We download its source code from the available link, https://github.
com/palmtreemodel/PalmTree (accessed on 8 June 2022).

• SAFE [25]: This method employs a word2vec model [51] along with a recurrent neural
network to generate function embeddings for BCSD tasks. We download its source
code from GitHub, https://github.com/facebookresearch/SAFEtorch (accessed on
16 August 2023).

4.1.2. Benchmarks

Our dataset is used to evaluate the performance of BlockMatch and baselines at the
basic block level. We construct the dataset using six projects, i.e., GoAhead-5.2.0 [52],
CoreUtils-8.30 [53], OpenSSL-1.1.1l [54], DiffUtils-3.5 [55], Linux-5.4.0 [56], and
SQLite-3 [57], where SQLite-3, Linux, GoAhead, and OpenSSL are widely used in various
software, and CoreUtils and DiffUtils are popularly used as benchmarks in the current
BCSD research [10,23,41]. We compile them using two compilers (GCC and Clang) with six
optimization levels (O0, O1, O2, O3, and Os, Ofast) on the x86-64 architecture. The dataset
includes a total of 3,367,762 basic blocks.

To evaluate the performance of BlockMatch on previously unseen projects, we adopt
a leave-one-out strategy. Specifically, we randomly select one project to be excluded from
the training phase. The functions from the rest of the projects are then divided into three
distinct datasets of basic blocks for training, validation, and testing based on 10-fold cross-
validation. During the pre-training phase, we conduct unsupervised pre-training on the
MLM and ROM tasks using all of basic blocks from the training dataset. Pre-training is
considered complete when the loss stabilizes and converges. During the fine-tuning phase,
we use the Block Argumentation Model to generate contrastive samples for the basic blocks
in the training set and perform self-supervised fine-tuning using BSM tasks. During the
evaluation process, we utilize the testing dataset to conduct two different tasks including:
cross optimization levels (XO) and cross compilers (XC). By incorporating these subsets into
our evaluation phase, we can comprehensively evaluate the performance of BlockMatch
across various scenarios.

4.1.3. Metrics

We use the following metrics to measure the performance of BlockMatch and baselines:

• ROC, short for Receiver Operating Characteristic, is a commonly used evaluation
measure in various fields. It provides a comprehensive analysis of the trade-off
between the true positive rate (TPR) and the false positive rate (FPR) at various
decision thresholds. An ROC curve is a convenient visual metric for evaluating
classification models. Better performance is indicated when the ROC curve is closer to
the left-hand and top border.

• AUC stands for Area Under the ROC Curve. It represents the probability that a
randomly chosen positive sample will have a higher predicted probability than a
randomly chosen negative sample. A high AUC suggests the evaluated model achieves
a high TPR with a low FPR. A perfect classifier will have an AUC value of 1, indicating
a clear separation between the similar samples and dissimilar samples.

• Recall@K is a ratio of the number of correctly retrieved similar basic blocks in
the top-K candidate basic blocks to the total number of similar basic blocks in the
dataset. A higher recall@K value indicates that the model has successfully retrieved
a larger proportion of similar basic blocks within the top K candidates, indicating
better performance.

https://github.com/palmtreemodel/PalmTree
https://github.com/palmtreemodel/PalmTree
https://github.com/facebookresearch/SAFEtorch
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• MRR stands for Mean Reciprocal Rank, which measures the average reciprocal rank
of the first similar basic block for the given candidates. It is calculated as the inverse
of the rank of the first similar basic block, with a value of 1 indicating that the first
result is correct.

In our experiments, given a basic block, we use models to find basic blocks that are
similar to the given one from a function composed of a large number of basic blocks. Here,
we place greater emphasis on the relevance and recalls of the top-k candidates to the given
basic block, so we use recall@K and precision@K instead of recall or precision.

4.2. One-to-One Basic Block Matching

We conduct performance evaluations for BlockMatch and other baseline methods
targeting one-to-one basic block matching. Given two basic blocks, the evaluated models
give their similarity scores. Note that source code lines are only utilized for the ground
truth construction, not for prediction.

The ROC curves of BlockMatch and other comparative approaches across different
optimizations and compilers are displayed in Figures 7 and 8. The following findings
can be derived from the results: (1) BlockMatch outperforms SAFE and PalmTree across
different compilers and optimization options. For example, as illustrated in Figure 7f,
BlockMatch achieves an AUC of 0.984, superseding SAFE and PalmTree, which achieve
0.931 and 0.889, respectively. (2) In the cross-compiler scenario, BlockMatch demonstrates
strong robustness across different compilers (Clang and GCC). On the contrary, PalmTree
and SAFE are prone to underperform due to compiler differences. (3) For unseen projects
in the training phase, BlockMatch maintains a promising AUC of 0.920 (DiffUtils) in the
cross-compiler scenario, which is comparable to the average AUC (0.942) of trained projects.
(4) Compared with SAFE and PalmTree, BlockMatch achieves more stable performance.
With the help of a contrastive training framework, BlockMatch has a better capability to
distinguish basic block similarity.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE                 AUC=0.933
PalmTree          AUC=0.882
BlockMatch       AUC=0.976

(a) goahead

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE                 AUC=0.948
PalmTree          AUC=0.885
BlockMatch       AUC=0.974

(b) diffutils

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE                 AUC=0.980
PalmTree          AUC=0.936
BlockMatch       AUC=0.985

(c) openssl

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE                 AUC=0.949
PalmTree          AUC=0.885
BlockMatch       AUC=0.977

(d) coreutils

Figure 7. Cont.



Appl. Sci. 2023, 13, 12751 13 of 22

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e
SAFE                 AUC=0.927
PalmTree          AUC=0.876
BlockMatch       AUC=0.978

(e) sqlite

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE                 AUC=0.931
PalmTree          AUC=0.889
BlockMatch       AUC=0.984

(f) linux

Figure 7. Results of basic block similarity detection across optimizations.
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Figure 8. Results of basic block similarity detection across compilers.

4.3. One-to-Many Basic Block Matching

To evaluate the performance of BlockMatch and other baselines in the last-mile prob-
lem of the BCSD tasks regarding matching among numerous basic blocks, we conducted ex-
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periments to retrieve the most similar basic block from the large pool-size set of basic blocks.
We performed BlockMatch and baselines in both cross-compiler and cross-optimization
scenarios to provide a comprehensive evaluation of their performance. Moreover, we
employed multiple pool sizes to gauge BlockMatch’s capability under varying levels of
difficulty and to discuss the effect of pool size on BCSD approaches. In order to determine
the range of pool size values, we conduct a statistical analysis on the distribution of the
number of basic blocks in functions across all projects in the dataset. As shown in Figure 9,
functions with more than 10 basic blocks account for 49.3% of the total, while functions
with more than 1000 basic blocks only constitute 0.01%. Thus, for our experiment, we select
a pool size within or less than 1000.

200 400 600 800 1000
0.000

0.025

0.050

0.075

0.100

0.125

Figure 9. The distribution of the number of basic blocks in functions, where the shaded area represents
functions with more than 10 basic blocks, accounts for 49.3% of the total.

Tables 1 and 2 report the recall@1 and MRR results for each approach across different
compilers and optimization options in multiple pool sizes (10 and 100). BlockMatch
significantly surpasses all baselines in terms of recall@1 and MRR. For example, in the cross-
optimization (XO) experiment with a pool size of 10, BlockMatch yields a recall@1 score of
0.912 and a MRR score of 0.943, increasing the recall@1 by 14.3% and 12.6% as compared to
SAFE and PalmTree. In the cross-compile (XC) experiment (pool size = 100), BlockMatch
outperforms its nearest baseline competitor, PalmTree [23], by 0.407 for recall@1 and by
over 40% for the MRR.

Table 1. BCSD results for multiple scenarios at the basic block level (pool size = 10).

Recall@1 MRR

Models XO XC Average XO XC Average

SAFE 0.798 0.573 0.685 0.861 0.695 0.778
PalmTree 0.810 0.587 0.699 0.862 0.693 0.778

BlockMatch 0.912 0.790 0.851 0.943 0.860 0.901

Table 2. BCSD results for multiple scenarios at the basic block level (pool size = 100).

Recall@1 MRR

Models XO XC Average XO XC Average

SAFE 0.654 0.364 0.509 0.712 0.451 0.581
PalmTree 0.720 0.407 0.564 0.757 0.480 0.619

BlockMatch 0.798 0.588 0.693 0.847 0.673 0.760

The experimental results from Tables 1 and 2 reveal a decline in recall@1 and MRR
for BCSD approaches as the pool size increases. To delve deeper into the impact of pool
size on the performance of BCSD approaches, we conduct experiments with pool sizes
ranging between 1 and 1000. Figure 10 displays the result curves of these experiments
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according to variations in pool size in cross-optimization and cross-compiler experiment
configurations. For ease of observation, we apply a logarithmic x-axis in Figure 10. Across
a range of pool sizes from 1 to 1000, BlockMatch consistently outperforms PalmTree and
SAFE in terms of Recall@1 and MRR. Furthermore, we observe that BlockMatch exhibits
an more significant advantage over the baselines in cross-compiler experiments. This is
attributable to BlockMatch using a contrastive training framework to generate a substantial
amount of high-quality samples for training, thereby enabling our model to effectively
handle hard samples.
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Figure 10. Results of multiple scenarios with different pool size.

4.4. Ablation Study

We conduct experiments on BlockMatch to evaluate the contributions of the con-
trastive training framework and root operand model pre-training task. For observation,
a detailed examination of the specific configurations of BlockMatch variants is provided
in Table 3. In the Table, a checked circle (©) indicates this BlockMatch variant uses the
corresponding technique, whereas a cross (×) denotes that this BlockMatch variant does
not use the corresponding technique.

Table 3. The setting of BlockMatch variants.

BlockMatch BlockMatchtriplet BlockMatchw/o. ROM

Contrastive Training Framework © × ©
Triplet Loss Training × © ×
Root Operand Model © © ×

Masked Language Model © © ©

Contrastive Training Framework. Figure 11 illustrates that BlockMatch outperforms
BlockMatchtriplet in basic block similarity detection evaluations across various compilers
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and optimizations. For example, when the number of basic blocks in the pool increases
to 1000 in the cross-optimization scenario, the recall@1 of BlockMatchtriplet drops to 0.537.
In contrast, BlockMatch maintains a recall@1 of 0.671. This highlights the effectiveness
of our contrastive training framework, which utilizes large-batch hard samples for more
comprehensive model training. Consequently, BlockMatch converges towards optimal
parameters and achieves higher performance.

0 200 400 600 800 1000
Number of Pool size

0.2

0.4

0.6

0.8

1.0
Re

ca
ll@

1

BlockMatchtriplet

BlockMatchw/o. ROM

BlockMatch

(a) Recall@1, XO

0 200 400 600 800 1000
Number of Pool size

0.2

0.4

0.6

0.8

1.0

M
RR

BlockMatchtriplet

BlockMatchw/o. ROM

BlockMatch

(b) MRR, XO

0 200 400 600 800 1000
Number of Pool size

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1

BlockMatchtriplet

BlockMatchw/o. ROM

BlockMatch

(c) Recall@1, XC

0 200 400 600 800 1000
Number of Pool size

0.2

0.4

0.6

0.8

1.0
M

RR

BlockMatchtriplet

BlockMatchw/o. ROM

BlockMatch

(d) MRR, XC

Figure 11. Results of the ablation study.

Root Operand Model. The root operand model is used to help our model compre-
hend the root semantics of unseen operands. The results presented in Figure 11 clearly
demonstrate that BlockMatch consistently outperforms BlockMatchw/o.ROM in terms of
recall@1 and MRR for different pool sizes (ranging from 1 to 1000), particularly in the
cross-compiler scenario. These findings suggest that our root operand model pre-training
task mitigates the impact of OOV operands on our model, which makes our model perform
better on binary code similarity detection.

4.5. Case Study

We conducted a experiment in vulnerability detection to evaluate the effectiveness
of BlockMatch in real-world situations. The experiment utilized BlockMatch to locate the
starting position of the vulnerability CVE-2022-0778 in the suspected vulnerable function,
aiming to improve the efficiency of security researchers when analyzing vulnerabilities.
CVE-2022-0778 is a vulnerability in OpenSSL caused by the improper handling of non-
prime moduli in the BN_mod_sqrt function, which can potentially lead to an infinite loop
and result in a denial of service (DoS) issue. The affected versions range from 1.1.1 to 1.1.1l.

Figure 12a shows a control flow graph of the confirmed vulnerability function (CVE-
2022-0778). According to the symbol tables, we have identified the start position of the
vulnerability as the red block. Figure 12b shows the CFGs of a function affected by
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vulnerability CVE-2022-0778. Identifying the start position of the vulnerability in a function
with hundreds of basic blocks is a time-consuming task, but it is crucial for security
researchers to analyze the vulnerability. The existing function-oriented BCSD tools have
difficulty in solving this last-mile problem. We use our approach, BlockMatch, to quickly
and accurately identify the corresponding blocks in the suspected vulnerable function by
searching for blocks similar to the red block. This helps save a significant amount of time in
vulnerability analysis. We compare our approach with PalmTree and SAFE in this scenario,
and Table 4 shows the results, where candidate-k represents the kth candidate basic block,
ranked in descending order of similarity. Note that we filter out basic blocks with a
similarity lower than 0.9. PalmTree and BlockMatch can both identify the start position
of the vulnerability at k = 1, while SAFE requires k = 4 to identify the start position of the
vulnerability. This indicates that BlockMatch and PalmTree have higher recall compared
to SAFE in identifying the start block of vulnerabilities in functions. Additionally, when
retrieving the top 5 candidates, BlockMatch retrieves one true positive and two false
positives, while PalmTree and SAFE retrieve one true positive and four false positives. This
suggests that BlockMatch has better discrimination ability between similar and dissimilar
basic blocks compared to the other two baselines, which can better alleviate the workload
of security researchers during vulnerability analysis.

(a) BN_mod_sqrt O0 (b) BN_mod_sqrt obfuscated

Figure 12. On the left is the control flow graph of the confirmed vulnerable function (CVE-2022-0778),
with the red block indicating the start position of the vulnerability. On the right is the control flow
graph from the suspected vulnerable function. Through our manual confirmation, the blue block
represents the start position of the vulnerability.
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Table 4. The result of locating the start position of vulnerability CVE-2022-0778 in the suspicious
function’s basic blocks.

Candidate-1 Candidate-2 Candidate-3 Candidate-4 Candidate-5

BlockMatch © × × - -
PalmTree © × × × ×

SAFE × × × © ×

5. Discussion

In this paper, we propose a novel fine-grained BCSD approach, named BlockMatch,
using NLP techniques for basic block matching. The experiments show that BlockMatch
outperforms the state-of-the-art methods PalmTree and SAFE. Here, we discuss the follow-
ing questions:

Why does BlockMatch achieve good performance in basic block matching? The
basic block matching in BCSD tasks belongs to fine-grained tasks. Compared with function-
level BCSD methods, it specifically identifies which basic blocks are similar in binary files,
while also facing a larger number of comparison examples. Experimental results have
shown that the contrastive training framework plays a significant role in achieving high
performance for BlockMatch. The contrastive training framework leverages DWARF debug
information to automatically generate a large number of high-quality contrastive samples,
facilitating the fine-tuning of BlockMatch, which enables BlockMatch to converge faster
and handle hard samples effectively. Table 5 shows the average results of BlockMatch
and other baselines, which demonstrates that BlockMatch generally outperforms PalmTree
and SAFE in basic block similarity detection. Comparative results against other baselines
demonstrate that this improvement is particularly pronounced in cross-compiler scenarios.
For example, in the cross-compilers experiment (pool size = 10), BlockMatch achieves a
recall@ of 0.790, while SAFE and PalmTree achieve recalls of 0.573 and 0.587, respectively.

Table 5. The Average result of BlockMatch and other baselines.

Approaches Pool Size = 10 Pool Size = 100
Recall@1 MRR Recall@1 MRR

BlockMatch 0.851 0.901 0.693 0.760
PalmTree 0.699 0.778 0.564 0.619

SAFE 0.685 0.778 0.509 0.581

Why does BlockMatch show a slight decrease in performance when used for cross-
compiler basic block matching? Based on the results obtained from one-to-one and one-
to-many basic block matching, it is evident that BlockMatch demonstrates slightly lower
performance in cross-compiler basic block matching compared to cross-optimization basic
block matching. Actually, the same issue also occurs in other approaches like SAFE and
PalmTree. Analyzing this issue will help us make further improvements to our approaches
in the future. We compare binary snippets compiled by Clang and GCC using -O0 option
without any compiler optimization intervention and differences in the preferred instructions
they generate. For example, in binary files compiled with GCC, there are numerous
endbr64 instructions. These instructions are part of Intel’s Control-Flow Enforcement
Technology, which provides protection against Return-oriented Programming (ROP) attacks.
However, in binary files compiled with Clang, the frequency of the endbr64 instruction is
much lower. Similar issues have also been mentioned in other literature [58]. When the
differences exceed the tolerance threshold of the model, it leads to the misidentification
of similar basic blocks by the model. Although using a contrastive training framework
can partially mitigate this issue, it is still challenging to completely eliminate the impact of
these differences. We notice that the control flow graphs remain relatively consistent across
different compilers, so we can consider using graph node alignment based on control flow
graphs in future work to help overcome this issue.
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Can BlockMatch work for binary files from other architectures? In this paper, we
primarily focus on evaluating the performance of BlockMatch and other baselines on the
x86 architecture. Since our approach is architecture-agnostic, by training with binary files
from other architectures, it can also be applied to other architectures. This is also a direction
for our future research.

6. Conclusions

In this paper, we propose a novel fine-grained approach based on NLP techniques
and contrastive learning for basic block matching to solve the last-mile problem in BCSD
tasks. To mitigate bias caused by partial samples, we propose a contrastive training
framework to generate high-quality training samples and perform large batch sizes using
NT-Xent loss for model training. To mitigate the impact of OOV operands, we employ a
root operand model pre-training task to help our model learn root semantics for unseen
operands. We implemented the prototype of BlockMatch. Our experimental results show
that BlockMatch surpasses the cutting-edge approaches SAFE and PalmTree in binary code
similarity detection at the basic block level. The ablation study shows our proposed root
operand model and contrastive training framework have positive effects for BlockMatch.
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