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Abstract: The recent advancements in artificial intelligence have brought about significant changes
in education. In the context of intelligent campus development, target detection technology plays a
pivotal role in applications such as campus environment monitoring and the facilitation of classroom
behavior surveillance. However, traditional object detection methods face challenges in open and dy-
namic campus scenarios where unexpected objects and behaviors arise. Open-World Object Detection
(OWOD) addresses this issue by enabling detectors to gradually learn and recognize unknown objects.
Nevertheless, existing OWOD methods introduce two major uncertainties that limit the detection
performance: the unknown discovery uncertainty from the manual generation of pseudo-labels
for unknown objects and the known discrimination uncertainty from perturbations that unknown
training introduces to the known class features. In this paper, we introduce a Parallel OWOD Frame-
work with Uncertainty Mitigation to alleviate the unknown discovery uncertainty and the known
discrimination uncertainty within the OWOD task. To address the unknown discovery uncertainty,
we propose an objectness-driven discovery module to focus on capturing the generalized objectness
shared among various known classes, driving the framework to discover more potential objects
that are distinct from the background, including unknown objects. To mitigate the discrimination
uncertainty, we decouple the learning processes for known and unknown classes through a parallel
structure to reduce the mutual influence at the feature level and design a collaborative open-world
classifier to achieve high-performance collaborative detection of both known and unknown classes.
Our framework provides educators with a powerful tool for effective campus monitoring and class-
room management. Experimental results on standard benchmarks demonstrate the framework’s
superior performance compared to state-of-the-art methods, showcasing its transformative potential
in intelligent educational environments.

Keywords: intelligent campus monitoring; uncertainty mitigation; objectness-driven object discovery;
parallel network; open-world object detection; artificial intelligence

1. Introduction

The continuous advancement of deep learning [1–4] technology has enabled the
widespread application of artificial intelligence (AI) in multiple domains [5–7], with the
field of education as a notably impacted area. Object detection [8–12] stands out as one of
the key technologies driving this transformation in education, which plays a significant
role in shaping intelligent campus and can be harnessed for various purposes, including
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campus monitoring and class behavior detection. Zhou et al. [8] design an object detection
algorithm to detect the raising hand action in real classroom scenarios. Zhao et al. [9]
propose CNPH-Net with a multiscale feature extraction module to enhance the capability
of small object detection in classroom scenarios. Xu et al. [13] applied object detection
and gaze-tracking technology to analyze the students’ attention in the classroom. These
methods are all based on traditional closed-set object detection techniques, meaning that
the models can only detect objects that are already present in the training set. However, due
to the openness and diversity of objects in real campus and classroom scenarios, instances
of objects and behaviors not included in the training datasets may arise. Traditional object
detection methods are ill-equipped to detect such unexpected objects, making it challenging
to meet the demands of real-world campus monitoring.

To address the challenges of detection in open environments, such as campuses and
classrooms, a new object detection task, Open-World Object Detection (OWOD) [14], is pro-
posed to focus on the detection of objects in real-world open environments. This problem
requires detection models not only to detect known objects but also to discover and incre-
mentally learn about previously unseen unknown objects during the training phase. In the
classroom and similar education scenarios, the OWOD models are required to discover and
locate unknown targets and behaviors, and subsequently engage in incremental learning,
which helps to facilitate intelligent monitoring of the teaching process.

Previous OWOD works mainly realized unknown class detection by designing com-
plex unknown proposal generation mechanisms. The ORE method [14] incorporates an
unknown object-aware Region Proposal Network (RPN), selecting top-k region propos-
als sorted by the objectness of the RPN from background as unknown objects, thereby
endowing the model with the ability to detect unknown objects. Zhao et al. [15] further
introduces an auxiliary proposal advisor that combines an unknown-aware RPN with the
selective search method to generate more accurate pseudo-labels for unknown categories.
Building on the recent success of closed-set detector D-DETR [16], OW-DETR [17] proposes
an unknown pseudo-labeling method that selects query boxes with high attention scores
which not match with the ground truth of known class.

However, in these OWOD works, two major uncertainties that limit the detection
performance are commonly observed: the unknown discovery uncertainty and the known
discrimination uncertainty. The unknown discovery uncertainty indicates the uncertain
bias from the manual generation of pseudo-labels for unknown objects. In the previous
OWOD works, the unknown regions were largely derived from high-score region proposals
generated by RPN, which may potentially cover some background areas that introduce
great uncertain bias. The known discrimination uncertainty arises from the uncertain
perturbations that the learning of unknown classes introduces to the features of known
class discrimination. The differentiation among known classes primarily relies on discrimi-
native features, whereas the learning of unknown classes guides the model to extract more
generic features among objects, which are only distinguished from the background. There-
fore, while granting the model the ability to detect unknown classes, previous methods
often resulted in an uncertain perturbation in the discrimination performance of known
classes. These two kinds of uncertainty have impeded further improvements in detection
performance in open-world scenarios, making it challenging to apply them to real-world
environments like campus.

In this paper, we introduce a Parallel OWOD Framework to mitigate the unknown
discovery uncertainty and the known discrimination uncertainty within the OWOD task.
Specifically, the framework employs a parallel architecture to decouple the process of
learning unknown classes from the detection of known classes, thereby preventing the
influence of uncertain features learned through unknown guidance on the known classes.
Through the parallel architecture, our framework successfully mitigates the known dis-
crimination uncertainty during open-world training. To alleviate the unknown discovery
uncertainty, we have designed and added an objectness-driven discovery module to replace
the uncertain unknown object selection, driving the model to focus on the objectness of
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various objects derived from the deterministic supervision of known classes. Therefore, the
Objectness-Driven Discovery Module can learn objectness scores from stable supervision
of known classes. For all objects, including both known and unknown classes, their object-
ness scores are expected to be significantly higher than those of the background regions.
Consequently, the objectness-driven discovery module is capable of identifying potential
objects with objectness more certainly from the background, including unknown objects.
Furthermore, the output from the objectness-driven discovery module and a close-world
known object detector is subsequently reconciled via a collaborative open-world classifier,
which eliminates redundant unknown detection instances and facilitates collaborative
learning of known and unknown classes. As shown in Figure 1, this framework may
provide a powerful tool for educators and administrators to effectively monitor campus
and manage classroom behaviors.

Figure 1. Introduction of our parallel OWOD framework. Our framework will provide a powerful
tool for educators and administrators to effectively campus monitoring. The framework effectually
mitigates the unknown discovery uncertainty and the known discrimination uncertainty in the
OWOD task.

We summarize our contributions as follows:
(1) We propose a Parallel OWOD Framework comprised of two different detectors to

mitigate the unknown discovery uncertainty and the known discrimination uncertainty
within OWOD, which can be used for effective management and monitoring of campus to
ensure a conducive and productive learning atmosphere.

(2) An objectness-driven discovery module is trained to guide the model to focus on
the objectness of various objects derived from deterministic supervision of known classes,
which could help alleviate the unknown discovery uncertainty.

(3) A known object detector and a collaborative open-world classifier are designed to
accomplish the collaborative learning of known and unknown classes, helping mitigate the
known discrimination uncertainty.

(4) Experiments on common benchmarks demonstrate that our framework shows
superior results compared to state-of-the-art methods.

The upcoming sections of this article will delve into our parallel open-world object
detection framework designed for campus monitoring, with a specific focus on uncertainty
mitigation. Section 2 offers a review of existing methods for object detection in campus
scenarios, open-set object detection, and open-world object detection. Following that,
Section 3 details our proposed parallel open-world object detection framework, including
its components and training process. In Section 4, we present the experimental evaluation of
the proposed framework on standard benchmarks, as well as an ablation study, a parameter
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analysis, and a visualization of the results. Finally, Section 5 summarizes our findings,
outlines limitations, and explores potential avenues for future research.

2. Related Work

The continual progress in deep learning technologies has extensively applied AI across
diverse domains, such as autonomous driving [18–20], medicine [21–23], and intelligent
education. In the field of intelligent education, artificial intelligence plays a pivotal role in
predicting students’ performance [24,25], comprehending how students learn [26], detecting
their behaviors [27], and fulfilling a series of other educational requirements. Notably, the
development of object detection technology has elevated intelligent campus monitoring to
a notable research and application domain within the field of intelligent education. In order
to achieve intelligent campus monitoring, previous efforts were primarily based on the
application of traditional closed-set object detection techniques in educational settings such
as classrooms. On the other hand, to handle the challenge in the real-world object detection
that an object detector may encounter several unknown objects which not appear in the
training process, previous approaches have explored open-set and open-world settings. In
this section, we discuss related work on object detection in campus scenarios, as well as
work related to open-set and open-world target detection.

2.1. Object Detection in Campus Scenarios

With the advancement of deep learning, object classification and detection techniques
have found application in various domains [28,29]. Existing object detection approaches in
campus scenarios often involve the direct application of traditional closed-set detection
models to the classroom environment. Ref. [9] proposes a single-stage object detector called
CBPH-Net and designs a feature extraction module to capture more channel information
and relevant features to enhance the multiscale recognition capability in classrooms. Ref. [8]
proposes an automatic hand-raiser recognition algorithm to show who raises their hands
in real classroom scenarios, which is of great importance for further analyzing the learn-
ing states of individuals. Ref. [13] proposes a fusion model based on gaze tracking and
object detection to intelligently analyze the students’ attention in the classroom from the
first-person perspective and promote teachers’ precise teaching and students’ personalized
learning. Although these methods successfully apply object detection to campus scenarios,
they lack the capability to detect and learn from unknown targets, rendering them inad-
equate for meeting the detection requirements within the open environments of campus
and classrooms.

2.2. Open-Set Object Detection

In the open-set setting, the incomplete information extracted from the training set
causes the model couldn’t classify the unknown categories that are not encountered during
the training phase. Based on several assumptions, a number of previous works [30–35]
attempted to step into open-set tasks. A metric learning framework [36] and a model
with OpenMax classifier [37] have been proposed to address open-set classification. Some
works also exploited self-supervised learning [38] and unsupervised learning [39] to handle
open-set classification tasks. Open-set object detection protocol was first proposed in [40],
followed by works [41–43] that improved detection performance by measuring object
uncertainties. OpenDet [44] designed a manual unknown-discover strategy based on
feature density to enhance the identification of unknown proposals.

2.3. Open-World Object Detection

Compared with open-set tasks, open-world tasks are more demanding since these
tasks require not only identifying unknown classes, but also learning incrementally based
on newly obtained category data. Open-world tasks go beyond open-set by requiring
incremental learning based on newly obtained category data. Bendale et al. [45] proposed
the first open-world classification model, and Xu et al. [46] introduced a meta-learning
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method for identifying unknown classes. Previous works [36,47,48] explored more complex
scenarios, e.g., long-tail distribution [49], few-shot learning [50] and zero-shot learning [51]
on the open-world classification, respectively.

ORE, the first OWOD method proposed by Joseph et al. [14] designed a specific RPN,
selecting top-k region proposals sorted by the objectness of the RPN from the background
to discover unknown objects. SA proposed by Yang et al. [52] defined semantic centroids
in feature space to exploit embedded semantic topology. Wu et al. [53] designed a two-
stage detector distinguishing diverse classes on the basis of clustering and similarity
to handle the raised Unknown-Classified OWOD problem. Zhao et al. [15] proposed
a model coupling an auxiliary proposal advisor and a class-specific expelling classifier
to improve the detection performance of unknown classes. Inspired by the powerful
presentation ability of transformer [54], Gupta et al. [17] first extended transformer to
OWOD problem and proposed a transformer-based open-world detector OW-DETR, which
combines an attention-driven pseudo-labeling scheme for selecting unknown query boxes
and an objectness branch to effectively separate foreground objects and background.

Previous methods used complex strategies to generate pseudo-labels for unknown
classes but introduced excessive uncertainties, harming the learning of unknown objects
and influencing the known classification as well. In contrast, our method only explores
the unknown information from the known instances through a reasonable decoupling
framework, which improves the detection performance of the unknown objects while
maintaining that of the known objects.

3. Method

In this section, we introduce our parallel OWOD framework which is designed to miti-
gate the detection uncertainties of known and unknown objects in open environments such
as campuses and classrooms, with the primary objective of facilitating campus monitoring.
We begin by analyzing the task of open-world object detection in Section 3.1. Subsequently,
we provide a comprehensive overview of the proposed framework’s structure in Section 3.2.
Finally, Section 3.3 outlines the training process of our framework.

3.1. Problem Analysis

In the setting of open-world object detection, the whole training process is separated
into T tasks. At any task t ∈ {1, ..., T}, we consider the set of known classes as Kt and
the set of unknown classes as U t, where Kt ∩ U t = ∅. During the training phase at task t,
the annotations of known classes Kt are accessible to ensure the model has the capacity to

classify the known instances into correct classes accurately, i.e., an instance x(K
t)

i of class

c ∈ Kt is annotated as y(Kt)
i = [l(K

t)
i , b(K

t)
i ], where l(K

t)
i = c ∈ Kt denotes corresponding

label and b(K
t)

i = [x, y, w, h] denotes the coordinates of corresponding bounding box. In
contrast, the unknown classes U t appear during the training phase without annotations but

are required to be classified as an unknown denoted by label l(K
t)

i = c ∈ Kt when inferring.
For incremental learning, part of the unknown classes Ū t ∈ U t are labeled and update

the known classes as Kt+1 = Kt ∪ Ū t and unknown classes as U t+1 = U t\Ū t at task
t + 1. The model adaptively updates itself with new knowledge and identifies current
known classes Kt+1 accurately while classifying current unknown classes U t+1. This cycle
continues over the life of the object detector.

3.2. Parallel OWOD Framework with Uncertainty Mitigation

Our parallel OWOD framework is based on the state-of-the-art object detection model
D-DETR [16]. As illustrated in Figure 2, our framework comprises an objectness-driven
discovery module, a known object detector, and a collaborative open-world classifier. The
framework utilizes a parallel architecture to decouple the learning processes to address
the challenges of uncertainties within OWOD. The objectness-driven discovery module
converts all known objects into the same class and guides the model to focus on the object-
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ness derived from the supervision of different objects, thereby alleviating the unknown
discovery uncertainty. The objectness-driven discovery module effectively aids in the dis-
covery of more potential objects distinct from the background including unknown objects.
The known object detector retains the fundamental approach of D-DETR to ensure precise
detection performance for known classes. Detection of known and unknown classes is
carried out separately by different sub-modules within the parallel architecture, which
ensures that the learning of known and unknown classes does not interfere with each other,
effectively alleviating the known discrimination uncertainty.

Figure 2. Architecture of our parallel OWOD framework. The parallel OWOD framework comprises an
objectness-driven discovery module, a known object detector, and a collaborative open-world classifier.

During the inference phase, the image is separately processed by both the objectness-
driven discovery module and the known object detector. The outputs are then integrated
through the collaborative open-world classifier, facilitating cooperative learning for both
known and unknown classes. The framework ultimately leads to strong detection perfor-
mance for both known and unknown classes.

3.2.1. Objectness-Driven Discovery Module

To address the challenge posed by the unknown discovery uncertainty introduced from
the strategy of unknown pseudo-labeling, we introduced an objectness-driven discovery
method to learn the unknown objects certainly from the deterministic supervision of
known classes.

Since both unknown and known classes inherently share the common characteristic
of being “generalized objects”, we can learn objectness from known classes to guide the
learning of unknown classes. We simply convert all known object classes to a generalized
class and only distinguish them from background regions without objects, extracting
generalized features from all known classes while attenuating discriminative features to
enhance the model’s potential for object discovery. Through this approach, the detector can
not only detect known objects but also discover other unknown objects with universities
that are similar to known ones. Compared to previous methods for unknown object
discovery, our objectness-driven discovery module extracts stable objectness from the
supervised information of known classes, rather than manually selecting potential regions
for unknown objects from the background. Therefore, our framework effectively reduces
the uncertainties and enhances the detection performance of unknown objects.

Specifically, during the training phase of the detector, the instances of all known classes
except the background region are converted to a universal class “generalized object”. Given
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the i-th instance of known classes x(K
t)

i with its annotations y(Kt)
i , the supervision label

used for classification regularization could be denoted as ỹi:

ỹi = y(G t)
i = [l(G

t), b(K
t)

i ] (1)

where y(G t)
i denotes the generalized annotation of the instance after convert, and l(G

t) = o
denotes the universal label “generalized object” of every known instance. The classification
regularization for the objectness-driven discovery module can be presented as follows:˜̀cls

universal = −∑
i

ỹi log x(K
t)

i

= −∑
i

y(G t)
i log x(K

t)
i

(2)

where ˜̀cls
universal is the loss of classification regularization calculated by the universal label

for the objectness-driven discovery module.
Through the objectness-driven discovery module, our framework is capable of iden-

tifying generalized objects possessing the attribute of “being an object” in the input
image, including numerous unknown objects that have never been encountered in the
training phase.

3.2.2. Known Object Detector

To mitigate the known discrimination uncertainty, a known object detector built upon
the D-DETR [16] is employed to operate in parallel with the objectness-driven discovery
module to accurately detect known classes. In order to preserve the precise detection
performance of known category objects in the framework. The Known Object Detector is
designed to learn discriminative features that are as relevant as possible to the categories,
enabling it to distinguish between different known categories effectively.

Specifically, during the training phase of the known object detector, we treat the known
proposals as their origin label. The supervision label used for classification regularization
of known proposal i could be denoted as yi:

yi = y(Kt)
i

(3)

The classification regularization for the known object detector can be presented
as follows:

`cls
known = −∑

i
yi log x(K

t)
i

= −∑
i

y
(Kt

i )
i log x(K

t)
i

(4)

where `cls
known is the loss of classification regularization for the known object detector, and

y(Kt)i denotes original label of proposal i.
At each task, the known object detector is independently trained. During testing, the

bounding boxes and logits produced by the Known Object Detector are input into the
Collaborative open-world Classifier to facilitate the fusion of results with the detection of
unknown categories.

3.2.3. Collaborative Open-World Classifier

To accomplish the collaborative learning of known classes and unknown classes, we
introduce a collaborative open-world classifier to integrate the output of the two detectors
of our framework and eliminate the impact of learning unknown classes on the detection
performance of known classes.

Considering that the generalized objects logits predicted by the objectness-driven
discovery module may overlap with the output of the known object detector with high
probability, the collaborative open-world classifier first filters the generalized objects logits



Appl. Sci. 2023, 13, 12806 8 of 16

by calculating an Intersection over Union(IoU) matrix P = {pmn} between the generalized
object boxes of the objectness-driven discovery module BG =

{
bG

m
}

and the known object
boxes BK =

{
bK

n
}

. The calculation of matrix P could be formulated as follows:

pij = IoU(bG
m, bK

n ) (5)

where bG
m denotes each generalized object box in BU and bK

n denotes each known object
box in BK. Subsequently, any generalized bounding box is labeled as a known class if it
satisfies that its IOU with any predicted bounding box of a known class exceeds a threshold
Pt. Conversely, the remaining generalized bounding boxes are categorized as unknown
class targets. The filter process of the generalized object box could be presented as follows:

BU =
{

bG
m|∀n, pmn ≤ Pt

}
(6)

The final output Bout of the collaborative open-world classifier is formed by merging
the filtered unknown class predicted boxes with the original known class predicted boxes:

Bout = BU ∪ BK (7)

The objective of the collaborative open-world classifier is to achieve collaborative
detection of both known and unknown class targets by extracting unknown class targets
with the attribute of “object” from the generalized objects outputted by the objectness-
driven discovery module, excluding objects belonging to the known class.

3.3. Training Process

In accordance with the OWOD setup, the training of our framework consists of two
stages: the initial training stage of the task 1 and the incremental learning stage. During the
initial training of the task 1, the known object detector and the objectness-driven discovery
module are trained separately. The training loss for the known object detector `known is the
same as that of D-DETR [16] and can be represented as:

`known = `cls
known + `

reg
known (8)

where `
reg
known represents the loss for bounding box regression of the known object detector.

The objectness-driven discovery module is trained using labels that have undergone the
objectness-driven discovery training, and its loss ˜̀universal can be represented as:

˜̀
universal = ˜̀cls

universal + `
reg
universal (9)

where `
reg
universal represents the loss for bounding box regression calculated by the universal

label of the objectness-driven discovery module.
In this way, our objectness-driven discovery module learns to detect generalized

objects regardless of their class. The loss curve during the initial training of the task 1 of the
known object detector and the objectness-driven discovery module is shown in Figure 3a.

During the Incremental Learning stage, for training efficiency, only the known object
detector is actively trained, and the parameters of the objectness-driven discovery module
are frozen. The training process of the known object detector for incremental learning is
similar to the task 1, and it employs the data replay method used in OW-DETR [17] to
overcome catastrophic forgetting. This strategy allows the model to retain knowledge of
previously learned categories while adapting to new data and categories introduced during
the incremental learning phase. The loss curve during incremental learning from task 2 to
task 4 of the known object detector is shown in Figure 3b.

After training the two detectors separately, we use the collaborative open classifier to
perform post-processing to obtain the final predicted output of the model. The collaborative
open-world classifier does not partake in training but rather solely contributes to the
inference process of the model.
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Figure 3. The loss curve during the training. (a) The loss curve of the known object detector and the
objectness-driven discovery module during the initial training stage of the task 1. (b) The loss curve
of the known object detector during the incremental learning stage of the task 1, task 2 and task 4.

4. Results

In this section, we perform comprehensive experiments and detailed analyses to
demonstrate the effectiveness of the proposed method for open-world object detection.

4.1. Experiment Settings

Datasets. According to the typical setup of OWOD, all classes from the training set
are grouped in T incremental tasks. Following [14], we set T as 4, and adopt the Pascal-
VOC [55] and MS-COCO [56] dataset. When learning the task 1, we treat classes and
data from Pascal-VOC as the training set, and the remaining 60 classes of MS-COCO are
considered unknown. For subsequent tasks, the class division strategy is exactly the same
as that in ORE. For evaluation, we use the Pascal-VOC test set and MS-COCO validation set.

Implementation details. We implement our method based on closed world detection
model D-DETR [16]. During the training of the known object detector and the objectness-
driven discovery module, the SGD optimizer is used and the batch size is set to 8. The IOU
threshold Pt in the collaborative open-world classifier is set to 0.4. During both the initial
training and the incremental learning stage, the initial learning rate of the known object
detector and the objectness-driven discovery module is set to 2× 10−4. We train the known
object detector for 50 epochs in the initial training stage of the task 1, and train 50 epochs
to learn new known classes during the incremental learning. Additionally, we trained
for 50 epochs in each stage for data replay to address catastrophic forgetting, following a
strategy similar to OW-DETR [17]. About the objectness-driven discovery module, we train
it for 80 epochs only in the initial training stage.

Evaluation metrics. To conduct a fair and comprehensive evaluation of the proposed
method, we first employ widely recognized metrics in object detection, such as mean
Average Precision (mAP) and Recall, as evaluation benchmarks for known and unknown
classes. Additionally, we utilize other common-used open-set evaluation criteria, such as
Wilderness Impact (WI) [40], Unknown Detection Recall (UDR) and Unknown Detection
Precision (UDP) [15].

4.2. State-of-the-Art Comparison

Table 1 shows the comparison of our method respectively with the state-of-the-art
methods according to traditional detection metrics, such as mAP and Recall. Note that
after completing incremental learning of the task 4, all our classes have become known,
and there are no longer any unknown targets in the test set. As a result, metrics related
to unknown targets, such as U-mAP, UDR, UDP WI, etc., are not included. From Table 1,
our method outperforms other state-of-the-art OWOD methods in most cases. Specifically,
the unknown mAP of our method (4.84) is almost 7 times that for the model ORE (0.71)
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with the better known mAP performance, while the unknown class recall of our method
reaches 17.40 and is higher than OW-DETR by 9.75, which is the best method in the
existing works. These phenomena clearly demonstrate the effectiveness of our parallel
decoupling OWOD framework. As novel known classes are added in the subsequent
tasks, the recognition ability of unknown classes decreases, which is consistent with the
performance of ORE. However, our method still outperforms the comparison methods by a
large margin in U-mAP and unknown Recall metrics. And our known mAP performance
on the newly-annotated and previous known classes is maintained. That is to say, our
model is capable of promoting the collaborative learning of both known and unknown
classes with fewer uncertainties.

Table 1. State-of-the-art comparison for OWOD according to traditional detection metrics. “K-”
indicates the known classes, and “U-” represents the unknown classes. Our model achieves superior
performance in terms of traditional evaluation metrics in most cases. Note that U-mAP and U-
Recall are not calculated because all classes are known in the task 4. The bold represents the best
performance on the metric.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

K-mAP U-mAP U-Recall K-mAP U-mAP U-Recall K-mAP U-mAP U-Recall K-mAP
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Faster RCNN [57] 56.94 0 0 41.56 0 0 32.41 0 0 27.03
ORE [14] 56.49 0.71 5.72 39.64 0.14 2.66 20.17 0.12 3.34 25.95
SA [52] 55.56 0.20 1.93 39.02 0.03 0.79 31.54 0.003 0.12 26.42

D-DETR [16] 59.75 0 0 46.08 0 0 38.28 0 0 30.60
OW-DETR [17] 58.78 0.07 7.65 44.11 0.04 5.83 35.96 0.03 5.97 27.94

Ours 59.84 4.84 17.40 46.38 1.60 13.53 38.37 1.45 14.30 32.63

Table 2 further shows the comparison of our method respectively with the state-
of-the-art methods according to common-used open-set evaluation metrics, such as WI,
UDR, and UDP. From Table 2, it is evident that our method achieves similar WI scores to
state-of-the-art methods while obtaining higher UDR and UDP scores. Specifically, our
framework approaches or outperforms existing methods comprehensively in UDR at every
stage, indicating that our framework helps discover more unknown objects. Moreover, our
framework exhibits a significant improvement in UDP, suggesting that our framework has
a more accurate classification capability for the discovered unknown objects.

Table 2. State-of-the-art comparison for OWOD according to open-set metrics. Our model achieves
superior performance in terms of traditional evaluation metrics in most cases. Note that these metrics
are only computed in the first three tasks because all classes are known in the task 4. The bold
represents the best performance on the metric.

Task IDs (→) Task 1 Task 2 Task 3

WI-0.8 UDR UDP WI-0.8 UDR UDP WI-0.8 UDR UDP
(↓) (↑) (↑) (↓) (↑) (↑) (↓) (↑) (↑)

Faster RCNN [57] 0.0645 17.58 0 0.0273 16.32 0 0.0164 24.69 0
ORE [14] 0.0528 18.58 31.28 0.0315 17.30 15.37 0.0209 23.67 14.95
SA [52] 0.0563 8.51 22.73 0.0181 5.74 13.83 0.0136 9.12 1.30

D-DETR [16] 0.0600 20.74 0 0.0245 14.41 0 0.0187 34.48 0
OW-DETR [17] 0.0599 18.31 41.77 0.0319 16.24 35.88 0.0220 21.53 27.72

Ours 0.0553 20.00 86.97 0.0251 19.35 69.89 0.0179 22.59 63.30
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Overall, our method has significantly improved its performance in unknown class
detection, indicating that the objectness-driven discovery module we added has success-
fully suppressed the unknown discovery uncertainty. At the same time, the performance in
known class detection has been more effectively maintained, indicating that our parallel
decoupled architecture effectively suppresses the known discrimination uncertainty.

4.3. Ablation Study

As shown in Table 3, we investigate different components in our proposed framework.
The table respectively lists the performance of our framework without the known object
detector, our model without the objectness-driven discovery module, and the full model.
The findings from the table indicate that the framework without the known object detector
possesses only the capability to detect unknown targets, lacking the ability to discriminate
known classes. The framework without the objectness-driven discovery module fails to
detect unknown objects. In contrast, our framework possesses the combined abilities
of known class discrimination and unknown class detection, achieving state-of-the-art
performance. In conclusion, our full model achieves the best performance, and each
module contributes to the proposed model.

Table 3. Ablation study of our model. “w/o KO detector” indicates our model without the known
object detector. “w/o CTG detector” indicates our model without the objectness-driven discov-
ery module. Our full model achieves the best performance, and each module contributes to the
proposed model.

WI-0.8 K-mAP U-mAP U-Recall

w/o KO detector 0 0 5.74 17.79

w/o CTG detector 0.0553 59.84 0 0

Ours 0.0553 59.84 4.84 17.40

4.4. Parameter Analysis

As shown in Figure 4, we delve into a comprehensive analysis of our model’s behavior
under varying IOU threshold Pt in the collaborative open-world classifier. The performance
of our framework in terms of unknown class mAP and Recall for different Pt values is
shown in Figure 4a, while UDP and UDR metrics are illustrated in Figure 4b. From the
figures, it can be observed that when Pt is set to 0 or 0.2, the framework exhibits lower
UDR, UDP, and U-Recall values. As the value of Pt increases, U-Recall and UDR increase
accordingly. This phenomenon can be attributed to the larger number of retained unknown-
class candidate boxes with high Intersection over Union (IOU) scores. However, it also
implies a higher occurrence of known-class detections being misclassified as unknown-
class, resulting in fluctuations in UmAP and UDP with the increasing value of Pt. In general,
when Pt takes other values, UDR, UDP, and U-Recall exhibit relatively stable performance,
indicating that our method can detect many unknown objects with small overlaps with
known objects, and these detections are less affected by changes in Pt. When Pt is set to 0.4,
the framework achieves its highest U-mAP value of 4.83. Therefore, our method effectively
achieves the detection of unknown categories with good stability and fewer uncertainties.

4.5. Visualization

Figure 5 displays a visualization comparison between our model and other state-of-
the-art models. It is evident that our model demonstrates the capability to simultaneously
detect both known and unknown objects with a higher degree of accuracy in bounding
box localization and classification labeling. In addition, ORE exhibits an inclination to
over-generate bounding boxes with the goal of localizing more unseen objects. Conversely,
SA tends to under-generate bounding boxes to minimize misclassification. While OW-
DETR is capable of detecting some unknown classes, its precision in detection is relatively
poor, often resulting in misalignment of bounding box positions or misclassifying certain
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portions of known classes as unknown classes. In contrast to these methods, our model
excels in generating appropriate bounding boxes and providing precise predictions.

Figure 4. Parameter analysis of our model. Pt indicates the IOU threshold we use in our model.
(a) The curve of U-mAP and U-Recall with Pt growth. (b) The curve of UDP and UDR with Pt growth.
The larger the Pt is, the better U-Recall and UDR performance the framework achieves. Our model
can consistently detect a rich set of unknown objects with minimal overlap with the known classes.

Figure 5. Visualization comparison of ORE, SA, OW-DETR and ours. Our model demonstrates
the capability to simultaneously detect both known and unknown objects with a higher degree of
accuracy in bounding box localization and classification labeling.

Figure 6 illustrate the visualization of the proposed methodology in the task 1 and the
task 4, respectively. In the context of the task 1, the model demonstrates its capability to
detect known classes and identify unfamiliar instances. In the task 4, our model exhibits its
ability to progressively acquire the semantic class of all instances.

Figure 7 shows some failure cases of our model. Our model easily detects a combina-
tion of multiple objects or a part of a known object as a single object without appropriate
guidance. In addition, there must be many missing-detection situations according to 20%
UDR performance. In the future, we aspire to enhance the detection performance of un-
known classes and address instances of false positives or misses through approaches like
self-supervised learning.
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Figure 6. Visualization of our model in the task 1 and the task 4. After the initial training, our model
recognizes the cake, the skateboard, and the stop sign as unknown. After the incremental learning,
they can be labeled correctly.

Figure 7. Failure cases of our model. (a) The model mistakenly detected the combination of a person
and a surfboard as a bird. (b) Even though people and unknown objects (surfboards) have been
detected, their combination is still mistakenly detected as a boat. (c) Part of this unknown object
(upper right part) is mistakenly detected as a separate unknown object.

5. Conclusions and Future Work

In conclusion, our parallel OWOD framework presented effectively addresses the
challenges of uncertainties in open campus scenarios, enabling the detection of known and
unknown objects. The objectness-driven discovery module alleviates the unknown discov-
ery uncertainty by driving the model to learn the objectness derived from the deterministic
supervision of known classes. The known object detector and the collaborative open-world
classifier mitigate the known discrimination uncertainty and accomplish collaborative de-
tection. This framework has the potential to transform campus monitoring and classroom
behavior detection in intelligent educational settings.

It should be pointed out that there are still limitations of our parallel OWOD frame-
work. While our framework has superior performance compared to state-of-the-art meth-
ods and notably enhances the detection of unknown classes, it still demonstrates apparent
shortcomings in unknown object detection compared to known classes, with one of the
obvious shortcomings lying in a noticeable decrease in precision. To address this issue, a
substantial improvement in the model’s unsupervised learning capabilities by exploring
more effective methods to enhance the model’s ability to detect unknown classes through
learning is essential.

In addition, in the context of future prospects, several promising research directions
emerge for the refinement and extension of the parallel OWOD framework. Subsequent
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investigations may center on augmenting the framework’s adaptability across a spectrum
of diverse campus scenarios, expanding its capability to detect a broader array of unknown
objects, and minimizing the incidence of false positives. Moreover, the exploration of the
framework’s applicability in domains beyond education, such as healthcare, surveillance,
and autonomous systems, represents an intriguing avenue for future exploration. The
development of more efficient training strategies and the exploration of advanced neural
network architectures may also make valuable contributions to the ongoing advancement
of OWOD technology.
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