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Abstract: Human–computer interaction (HCI) plays a significant role in modern education, and
emotion recognition is essential in the field of HCI. The potential of emotion recognition in education
remains to be explored. Confusion is the primary cognitive emotion during learning and significantly
affects student engagement. Recent studies show that electroencephalogram (EEG) signals, obtained
through electrodes placed on the scalp, are valuable for studying brain activity and identifying
emotions. In this paper, we propose a fusion framework for confusion analysis in learning based on
EEG signals, combining feature extraction and temporal self-attention. This framework capitalizes
on the strengths of traditional feature extraction and deep-learning techniques, integrating local
time-frequency features and global representation capabilities. We acquire localized time-frequency
features by partitioning EEG samples into time slices and extracting Power Spectral Density (PSD)
features. We introduce the Transformer architecture to capture the comprehensive EEG characteristics
and utilize a multi-head self-attention mechanism to extract the global dependencies among the time
slices. Subsequently, we employ a classification module based on a fully connected layer to classify
confusion emotions accurately. To assess the effectiveness of our method in the educational cognitive
domain, we conduct thorough experiments on a public dataset CAL, designed for confusion analysis
during the learning process. In both subject-dependent and subject-independent experiments, our
method attained an accuracy/F1 score of 90.94%/0.94 and 66.08%/0.65 for the binary classification
task and an accuracy/F1 score of 87.59%/0.87 and 41.28%/0.41 for the four-class classification
task. It demonstrated superior performance and stronger generalization capabilities than traditional
machine learning classifiers and end-to-end methods. The evidence demonstrates that our proposed
framework is effective and feasible in recognizing cognitive emotions.

Keywords: human–computer interaction; electroencephalographic; emotion recognition; confusion
analysis; self-attention

1. Introduction

In modern education, human–computer interaction (HCI) plays a crucial role, with
emotion recognition being particularly significant in the field of HCI. By accurately identify-
ing and understanding students’ emotional states, educational systems can better respond
to their needs and provide personalized support. Emotion recognition technology can
assist educators in determining whether students are experiencing confusion, frustration,
or focus during the learning process, enabling timely adoption of appropriate teaching
strategies and supportive measures [1–3]. Therefore, the importance of emotion recognition
in HCI and education is self-evident. It optimizes the teaching process, enhances learning
outcomes, and provides students with more personalized support and guidance. Confusion
is more common than other emotions in the learning process [4–6]. Although confusion is
an unpleasant emotion, addressing confusion during controllable periods has been shown
to be beneficial for learning [7–9], as it promotes active student engagement in learning
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activities. However, research on learning confusion is still in its early stages and requires
further exploration.

Electroencephalography (EEG) is considered a physiological indicator of the aggre-
gated electrical activity of neurons in the human brain’s cortex. EEG is employed to record
such activities and, compared to non-physiological indicators like facial expressions and
gestures, offers a relatively objective assessment of emotions, making it a reliable tool for
emotion recognition [10].

Traditionally, the classification of EEG signals relies on manual feature extractors
and machine learning classifiers [11], such as Naive Bayes, SVM, and Random Forest.
Although deep-learning architectures are a more recent introduction, they have consistently
improved performance [12]. Convolutional Neural Networks (CNNs) and Long Short-
Term Memory Networks (LSTMs) are the primary architectures employed [13]. However,
employing CNNs for feature extraction primarily focuses on local aspects, hindering
temporal information perception. Although LSTM-based approaches exhibit commendable
performance, they also struggle with global temporal representation. Various attempts with
end-to-end hybrid networks [14] have been made. However, these endeavors have resulted
in models with excessively intricate architectures, leading to sluggish convergence rates or
even failures to converge. Furthermore, end-to-end methodologies lack the advantages of
conventional feature extraction methods in representing EEG signals. The Transformer [15]
has showcased its formidable capabilities in natural language processing (NLP), owing to
its significant advantage in comprehending global semantics. However, its application in
EEG systems is still an area that requires further exploration.

In light of the limitations of end-to-end network models, as well as the disadvan-
tages of CNN and LSTM, and considering the advantages of traditional feature extraction
methods and the Transformer network structure, this paper proposes a fusion framework
combining feature extraction and self-attention mechanism. Precisely, The EEG signals are
first sliced, and frequency-domain features are extracted. These features are then tokenized
into temporal tokens. Subsequently, the self-attention mechanism of the Transformer en-
coder layer is employed to capture temporal correlations. Finally, the extracted features
are integrated using a fully connected layer to derive classification results, subsequently
subjected to confusion analysis. We summarize the contributions of this paper as follows:

1. We present a fusion framework that integrates the strengths of traditional feature
extraction and deep learning to analyze confusion during the learning process. This
framework enables targeted guidance by assessing the cognitive level of students.

2. By harnessing the robust capabilities of the multi-head self-attention mechanism,
we capture global contextual representations of long EEG segments, which proves
beneficial for predicting confusion emotions.

3. In both subject-dependent and subject-independent experiments, we compare our
framework with traditional machine learning classifiers and end-to-end methods. The
experimental results demonstrate the superiority of our framework.

The rest of this paper is organized as follows: Section 2 presents the related work
about the topic. Section 3 describes the methods. Section 4 presents the experiments and
discusses the results. Section 5 describes the conclusion and future research directions.

2. Related Work

Confusion in learning refers to feeling perplexed or uncertain while absorbing knowl-
edge or solving problems. Given its shared attributes with emotions, it is a nascent study
area, primarily exploring confusion’s classification as an emotion or affective state. Con-
fusion is deemed a cognitive emotion, indicating a state of cognitive imbalance [9,16].
Individuals are encouraged to introspect and deliberate upon the material to redress this
imbalance and facilitate progress, enabling a more profound comprehension. Consequently,
when confused, individuals tend to activate profound cognitive processes to pursue en-
hanced learning outcomes. The investigation into confusion within the learning context
remains in its preliminary stages.
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Using EEG to recognize human emotions during various activities, including learning,
is an area currently being explored. Recent research has focused on using electroencephalog-
raphy to study cognitive states and emotions for educational purposes. These studies focus
on attention or engagement [17,18], cognitive load, and some basic emotions such as happi-
ness and fear. For example, researchers [19] used an EEG-based brain-computer interface
(BCI) to record EEG in the FP1 region to track changes in attention. By utilizing visual and
auditory cues, such as rhythmic hand raising, adaptive proxy robots can help students shift
their attention when their attention falls below a preset threshold. The research results
indicate that this BCI can improve learning performance.

Most traditional EEG-based classification methods rely on two steps: feature extrac-
tion and classification, and emotion classification is no exception. Many researchers have
focused on exploring effective EEG features for classification, and the advancement of ma-
chine learning methods and technologies has significantly contributed to the development
of these traditional methods. There have been attempts using the Common Spatial Pattern
(CSP) algorithm [20], such as the FBCSP algorithm [21], which filters signals through filter
banks, computes CSP energy features for each signal output through time filters, and then
selects and classifies these features. Despite enhancements to the original CSP method,
these techniques solely focus on analyzing the CSP energy dimension, disregarding the
incorporation of temporal contextual information. Kaneshiro et al. [11] proposed Principal
Component Analysis (PCA), extracting feature vectors of specific sizes from minimally
preprocessed EEG signals, followed by training a classifier based on Linear Discriminant
Analysis (LDA). Karimi-Rouzbahani et al. [22] explored the discriminative power of many
statistical and mathematical features, and their experiments on three datasets showed that
multi-valued features like wavelet coefficients and the theta frequency band performed
better. Zheng et al. [23] investigated the pivotal frequency bands and channels of multi-
channel EEG data in emotion recognition. Jensen & Tesche [24] and Bashivan et al. [25]
demonstrated through experiments that cortical oscillatory activity associated with memory
operations primarily exists in the theta (4–7 Hz), alpha (8–13 Hz), and beta (13–30 Hz) fre-
quency bands. The studies above utilize traditional machine learning classifiers to explore
critical frequency bands and channels; nevertheless, traditional machine learning classi-
fiers do not demonstrate any performance advantages. In addition, separately optimizing
feature extraction and classifier could potentially result in suboptimal global optimization.

Compared to traditional methods, end-to-end deep networks eliminate the need for
manual feature extraction. For most EEG applications, it has been observed that shallow
models yield good results, while deep models might lead to performance
degradation [12,13]. Especially for classification based on CNNs, despite the shallow archi-
tectures of CNNs with few parameters, they have been widely utilized: DeepConvNet [12],
EEGNet [26], ResNet [27], and other variants [28]. However, due to the limitations imposed
by kernel size, CNNs can learn features with local receptive fields. However, they cannot
capture the crucial long-term dependencies for time series analysis. Furthermore, Recurrent
neural networks(RNNs) and long short-term memory(LSTM) are introduced to capture the
temporal features of EEG classification [29,30]. However, these models cannot be trained
in parallel, and the dependencies calculated by hidden states quickly vanish after a few
time steps, making it challenging to capture global temporal dependencies. Moreover,
end-to-end methods insist on utilizing deep networks to learn from raw signals, often
overlooking the advantages of manual feature extraction, and complex networks can lead
to difficulties in model convergence.

3. Methods

Transformer [15] is an emerging neural network architecture that originated in machine
translation tasks. In recent years, it has gained remarkable prominence in natural language
processing. However, its application to emotion recognition based on EEG data remains
an area requiring further research. In this paper, we combine feature extraction with
Transformer for EEG classification. Drawing on the idea of Transformer, we first extract
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local temporal and frequency features and then adopt the self-attention mechanism to
capture global temporal features.

The overview of the proposed framework is depicted in Figure 1. It comprises three
modules: preprocessing, multi-head self-attention, and a fully connected classifier. In
the preprocessing module, the noise and artifacts of EEG signals are filtered out. Then,
the temporal and frequency-domain information, encapsulating crucial local features,
is extracted. Next, the multi-head self-attention module extracts long-term features by
learning the global correlations between different temporal positions. Finally, utilizing
the features extracted in the previous steps, which encapsulate spatial, frequency, and
temporal information, a classifier composed of fully connected layers is adopted to output
the classification results.
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Figure 1. Overview of the proposed framework.

3.1. Preprocessing

Since the majority of EEG signals are concentrated within the range of 1 Hz to 50 Hz,
a bandpass filter with a range of 1 Hz to 50 Hz was selected. This filtering procedure
serves a dual purpose, eliminating low-frequency baseline drift, electrocardiographic (ECG)
interference, and other high-frequency noise while effectively removing the most prominent
power line interference (typically 50 Hz in China). Furthermore, EEG signals overlap with
the electrooculogram (EOG) and electromyogram (EMG) signals in the frequency band.
Therefore, relying solely on a single bandpass filter is insufficient to eliminate interference
from EOG and EMG. This study adopted the fast, independent component analysis (fast
ICA) to eliminate artifacts from EOG and EMG.

EEG comprises multiple time series corresponding to different spatial positions on the
cerebral cortex where different electrodes are located on the collection device. Like audio
signals, frequency-domain features are the most salient features. Thus, the spectrogram
of the signals is typically employed for analysis. In frequency-domain analysis methods,
Power Spectral Density (PSD) analysis is a typically adopted method, and most previous
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studies have used this method to investigate epilepsy and hypnosis [31,32]. This method
extracts frequency features that effectively detect cognitive and motor tasks [33]. Moreover,
the PSD method consistently exhibits the highest robustness and effectiveness in extracting
distinctive spectral patterns to differentiate motor imagery EEG signals accurately [34].

In this paper, Welch’s method is used to extract the power spectrum features of
EEG signals. The data sequence is applied to data windowing, producing modified peri-
odograms [35]. For the EEG signal x(n) of a certain channel, first divide it into L segments,
with each segment having M sampling points, then the i-th small segment xi(n) can be
denoted as:

xi(n) = x(m + iM), 0 6 m < M, 0 6 i < L (1)

take iD to be the point of start of the i th sequence. Then, L of length 2M represents data
segments that are formed. The resulting output periodograms give:

≈(i)
Pxx( f ) =

1
MU

∣∣∣∣∣M−1

∑
n=0

xi(n)w(n)e−j2π f n

∣∣∣∣∣
2

(2)

Here, in the window function, U gives the normalization factor of the power and is
chosen such that:

U =
1
M

M−1

∑
n=0

w2(n) (3)

where w(n) is the window function. The average of these modified periodograms gives
Welch’s power spectrum as follows:

PW
xx =

1
L

L−1

∑
i=0

≈(i)
Pxx( f ) (4)

EEG signals predominantly reside within the 1 Hz to 50 Hz range, categorized into
five frequency bands, depicted in Table 1. In this paper, the above method is applied to
extract the PSD features of all channels and five frequency bands of EEG signals. Instead of
manually selecting several of the five frequency bands for PSD feature extraction, the key
features are extracted with the powerful ability of the transformer deep-learning network
architecture. We divided each sample into 0.25 s slices. The sum of values within the five
frequency bands is computed for each time slice and used as a separate measurement for
each channel. This approach ensures that the extracted features encompass both frequency-
domain and temporal information. PSD features for each time slice are extracted separately.
This results in a sample with dimensions of [W, B× C], where W is the number of time
slices, B is the number of frequency bands, and C is the number of channels. Figure 1
illustrates the above process.

3.2. Multi-Head Self-Attention

Due to the continuous nature of neural activity, the context-dependent representation
between different time segments would contribute to EEG classification. This module
uses self-attention to learn global temporal information of EEG features. The multi-head
self-attention mechanism enables the model to attend to information from different repre-
sentation subspaces from various channels. Each self-attention head, h ∈ [1, 2, . . . , H], with
H being the total number of heads, relies on Qc (queries), Kc (keys), Vc (values) vectors for
token assessment. Within the features of each time segment, the frequency band features
of different channels are concatenated sequentially. Given this, H is set to the number
of channels, so The time slice representations are projected to latent representations of
Qc, Kc, Vc ∈ R1×B, where c ∈ [1, 2, . . . , C]. The “queries-keys” pair aims to map the key
slices to the query slices based on their in-between representational similarity, calculated
as their scaled dot-product, followed by SoftMax operation [15]. The resultant matrix is
again multiplied with Vc to calculate the representational context as the aggregation of
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the self-attentional interactions. For a set of C slices and a single self-attention head h, the
representational context is calculated as

Head(Qc, Kc, Vc)h = So f tmax(
Qc · KTranspose

c√
B

) ·Vc (5)

Multiple projections of Qc, Kc, and Vc calculate the respective self-attention heads, and
their outputs become concatenated to form the aggregate of multiple heads, as given by

MultiHeadAttention(Q[1,2,...,H]
c , K[1,2,...,H]

c , V[1,2,...,H]
c )

= Concat(Head1, Head2, . . . , HeadH) (6)

In this module, N multi-head self-attention layers are employed. Finally, the output
vector of this module is flattened, and a fully connected layer is utilized as the classifier to
obtain EEG classification results.

Table 1. Five frequency bands of EEG signals.

Bands Frequencies States Examples

delta 1–4 Hz Sleep and dreaming

0.0 0.2 0.4 0.6 0.8 1.0

slow
|
|
|
|
|
|
|
|
|
|
|
|
↓

fast

theta 4–8 Hz
Deep relaxation or
meditative states

0.0 0.2 0.4 0.6 0.8 1.0

alpha 8–14 Hz Resting or relaxed

0.0 0.2 0.4 0.6 0.8 1.0

beta 14–31 Hz Alert, active mind

0.0 0.2 0.4 0.6 0.8 1.0

gamma 31–50 Hz
Intense focus,

problem solving
0.0 0.2 0.4 0.6 0.8 1.0

4. Experiments and Discussions
4.1. Dataset

We utilize a publicly available dataset called CAL, designed explicitly for confusion
analysis in learning. The CAL dataset is first used in [1]. It focuses on cognitive emotions
during the learning process, including four categories (confused, non-confused, guess, and
think-right). Raven’s Progressive Matrices [36] is employed as confusion stimuli to design
the experiment. A total of 25 subjects participated in this experiment. Subjects watch ten
scene pictures, each of which lasts 10 s. Next, they view and perform 48 tests, each lasting a
maximum of 15 s. There are 23 subjects’ data obtained because the unexpected equipment
problem caused a failed collection for two persons. The participants evaluate their level
of confusion for each test item at the end of the trials. OpenBCI is employed as the EEG
collector, which has eight channels (Fp1, Fp2, C3, C4, T5, T6, O1, O2) and a 250 Hz sampling
rate, depicted in Figure 2. Table 2 summarizes the relevant information of the CAL dataset.
Each trial is segmented with a non-overlapped three-second time window. Each segment is
regarded as one data sample during the model training.
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Table 2. Summary of information on the CAL dataset.

Emotion Categories Emotion Stimuli #Subjects #Channels Sampling Rate

confused,
non-confused,

think-right, guess
tests

23
male/female: 12/11 8 250 Hz

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

INION

NASION

Figure 2. The eight channel locations (colored orange) of the CAL dataset, using the international
10–20 system.

4.2. Experiment Settings

We follow the settings outlined in [1] and conduct experiments involving binary
classification (confused and non-confused) and four classification (confused, non-confused,
guess, and think-right). In addition, we consider the following two scenarios to validate
the proposed methods.

(1) subject-dependent: the data are trained across multiple subjects in the subject-dependent
experiments. Specifically, 70% of the EEG data from all experiments for each participant
are allocated as the training set, while the remaining 30% serve as the testing set.

(2) subject-independent: In the subject-independent model, the experiment emphasizes
the differences between different subjects to test the method’s generalization ability.
Specifically, EEG data are divided into a cross-subject validation set with a split of
70%/30%, where the data from 16 subjects is used for training, and the data from the
remaining seven subjects is used for testing.

To evaluate the classification performance of various methods, we consider the out-
comes of conventional machine learning classifiers (Naive Bayes, SVM, and Random Forest)
based on PSD features as presented in [1], as well as end-to-end methods (LSTM [30],
ResNet [37], and EEGNet [26]). Furthermore, we conduct experiments using our approach
without extracting PSD features to explore the benefits of feature extraction.

When extracting the samples of each category, we set a sliding window of 4 s to
segment the data according to the setting in [1,38,39] to increase the sample size, i.e., the
experimental samples of 4 s of EEG data. At the same time, to solve the data imbalance
problem, we set overlapping parts of different lengths: 0.25 s for confused, 0.75 s for
non-confused, 0.5 s for think-right, and 0.75 s for guess.

In this paper, the MNE [40] library in Python is adopted for data preprocessing
operations. Our method is implemented with the PyTorch framework in Python 3.8 with
an NVIDIA Geforce 3090 GPU. Using the same hyperparameter settings, we fix random
seeds to repeat the experiment for different methods. We train the model using Adam
optimizer with a learning rate of 1× e−4. The Adam optimizer combines the benefits of
Momentum and RMSprop and adaptively adjusts the learning rate. 1× e−4 is a common
starting learning rate. During training, batch size and dropout rates are set to 32 and 0.5.
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The batch size is 32, which is a relatively small value to improve the model’s generalization
performance. A dropout rate of 0.5 is chosen, a common regularization technique that can
reduce overfitting.

We set the number of multi-head self-attention layers N to 6, the number of heads H
to the number of channels with a value of 14, and the dimension of the feed Forward layer
to 2048. The number of parameters of the model in this configuration is 1M.

4.3. Analysis of Results

Tables 3 and 4 present the experimental results of different methods in subject-
dependent and subject-independent experiments on the CAL dataset.

Table 3. Subject-dependent experiment of different methods on CAL dataset (Acc/F1 score). “w/”
for “with” and “w/o” for “without”. The best results are highlighted in bold.

Methods Binary Classification Four Classification

Naive Bayes w/ PSD 57.30/0.52 69.72/0.69
SVM w/ PSD 67.43/0.67 48.10/0.33
Random Forest w/ PSD 69.72/0.69 37.72/0.26

EEGNet 72.02/0.71 49.81/0.43
LSTM 73.45/0.73 53.29/0.49
ResNet 80.61/0.80 73.10/0.73

Our method w/o PSD 85.53/0.85 85.99/0.86
Our method 90.49/0.90 87.59/0.87

Table 4. Subject-independent experiment of different methods on CAL dataset (Acc/F1 score). “w/”
for “with” and “w/o” for “without”. The best results are highlighted in bold.

Methods Binary Classification Four Classification

Naive Bayes w/ PSD 60.59/0.55 40.83/0.27
SVM w/ PSD 55.71/0.53 38.05/0.31
Random Forest w/ PSD 55.98/0.52 35.94/0.25

EEGNet 64.46/0.61 39.14/0.20
LSTM 61.25/0.59 40.53/0.24
ResNet 57.95/0.55 40.05/0.23

Our method w/o PSD 65.85/0.63 40.88/0.39
Our method 66.08/0.65 41.28/0.41

The binary classification results of the subject-dependent experiments demonstrate
that our approach significantly improves accuracy by 33.19%, 23.06%, and 20.77%, re-
spectively, compared to conventional machine learning methods (Naive Bayes, SVM, and
Random Forest). Additionally, we can observe that end-to-end deep-learning methods
based on CNN, ResNet, and EEGNet perform well (with accuracies of 80.61% and 72.02%,
respectively), indicating strong feature extraction capabilities of CNN-based methods.
However, due to the limited receptive field of CNN, it struggles to capture global features.
In contrast, the Transformer architecture based on the self-attention mechanism excels
at capturing global information. Experimental results further confirm the advantages of
the Transformer architecture: our method, based on Transformer, achieves an average
accuracy increase of 18.47% and 9.88% compared to the CNN-based EEGNet and ResNet.
Furthermore, we can observe that the end-to-end LSTM network performs impressively in
the binary classification tasks of the subject-dependent experiments, achieving an accuracy
of 73.45%. However, when faced with ultra-long time series data such as physiological
signals, the end-to-end LSTM still loses information during training, leading to the inability
to capture global features. In contrast, our Transformer-based approach can capture global
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temporal context information, resulting in a 17.04% improvement in accuracy compared to
the end-to-end LSTM method.

In the subject-dependent experiments for the four-classification task, our method also
exhibits strong performance with an accuracy of 87.59%. Compared to the best-performing
traditional machine learning method, Naive Bayes, our method achieves an improvement
of 17.87% in accuracy. Additionally, compared to the top-performing end-to-end method,
ResNet, our method shows an accuracy improvement of 14.49%.

Moreover, in subject-independent experiments, our approach achieves the highest
accuracy of 68.08% and 41.74% in binary and four-class classifications, respectively. Com-
pared to other methods, our approach achieves an accuracy improvement of 1.62% in
binary classification and 0.45% in four-class classification.

The F1 score, which is based on precision and recall, is also an important evaluation
metric [41]. We present the F1 score of the binary and four-class classification tasks in
Figures 3 and 4. Our approach achieved F1 scores of 0.90, 0.87, 0.65, and 0.41 in the
experiments. Compared to the best-performing methods, our approach demonstrates
improvements of 0.10, 0.14, 0.04, and 0.10, respectively.
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Figure 4. F1 score of different methods for the subject-independent experiments.
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To evaluate the contribution of the feature extraction, we compare the performance of
directly inputting the raw signal into the Transformer encoding layer without extracting
PSD features. Comparing the last two rows of Tables 3 and 4, it is found that there is
a decrease in performance. These ablation study results indicate PSD’s effectiveness in
representing EEG. The results also demonstrate the effectiveness of the feature extraction
part in our proposed framework.

We also provide the accuracy and loss during the model training process. In Figure 5,
the accuracy and loss curves are plotted to visualize the model’s performance during
training. The accuracy curve shows how well the model can correctly classify the data,
while the loss curve indicates the error the model makes during training. We can see that
both the accuracy and loss are improving as the number of epochs increases. It suggests
that the model is learning and becoming more accurate over time. The convergence
point, reached at around 2000 epochs, indicates that the model has achieved a stable
performance and that further training may not lead to significant improvements. Overall,
the provided accuracy and loss curves demonstrate that the model performs well and
converges satisfactorily after approximately 2000 training epochs.
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Figure 5. Accuracy and loss during the model training process.

The training time of the deep-learning model is also an important parameter. We
compared the convergence time of all methods, as shown in Figure 6. Our study shows
that our method has a significant advantage over the end-to-end deep-learning method in
terms of training time. Our method offers a more efficient model that can save computing
resources and time.

In addition to the faster training time, our method demonstrates better performance.
The combination of faster training time and improved performance makes our method
compelling for cognitive emotion identification. By reducing the computational burden
and achieving better results, our method provides a practical and effective solution for this
task. These advantages can have significant implications for real-world applications where
efficiency and accuracy are crucial.
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4.4. Analysis of Confusion Matrix

We provide the confusion matrices of our approach for binary and four-class classifica-
tion tasks for the subject-dependent and subject-independent experiments, as shown in
Figures 7 and 8, respectively.

Our method performs well in identifying cognitive emotions during the subject-
dependent experiment in binary and four-class setups. In the binary task, the model
exhibits excellent discrimination between confused and non-confused emotions. In the
four-class task, the recognition effect of confused emotions is slightly worse than that of
the other three types of emotions. A total of 13% of the confused sample identified as
think-right, suggesting that similar EEG patterns may be generated when subjects are
confused or think-right. However, the identification performance is relatively poor in
the subject-independent experiment due to the variations among different subjects. It is
evident that in the case of binary classification, the model demonstrates good recognition
of confused emotions among different subjects, but it struggles with identifying non-
confused emotions. The same pattern can be observed in the four-class scenario, where the
recognition performance is relatively better for confused emotions. This suggests that there
is a certain degree of similarity in the EEG of different individuals when they are confused
during learning, while there is a significant difference in the EEG of emotions other than
confusion. These findings illustrate that addressing the differences among subjects poses a
significant challenge.
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Figure 7. Confusion matrix of our method for the subject-dependent experiments.



Appl. Sci. 2023, 13, 12832 12 of 14

Confused Non-Confused
Predicted label

Confused

Non-Confused

Tr
ue

 la
be

l

0.75 0.62

0.25 0.38

0.3

0.4

0.5

0.6

0.7

Confused Non-Confused Think-Right Guess

Predicted label

Confused

Non-Confused

Think-Right

Guess

Tr
ue

 la
be

l

0.55 0.44 0.46 0.44

0.16 0.26 0.24 0.15

0.28 0.27 0.28 0.34

0.01 0.04 0.02 0.07 0.1

0.2

0.3

0.4

0.5

Subject-Independent

Figure 8. Confusion matrix of our method for the subject-independent experiments.

5. Conclusions and Future Work

In this work, we propose a fusion framework to analyze the presence of confusion in
students during the learning process, aiming to expand the research on emotion recognition
in education. This framework combines feature extraction and deep learning for analyzing
confusion during learning. We first extract time-domain features with temporal information
from EEG signals using a time-slicing approach and then utilize a multi-head self-attention
mechanism to capture global-level temporal context representations. Extensive experiments
conducted on the public dataset CAL demonstrate that our approach outperforms state-
of-the-art methods in terms of performance and generalization ability. Furthermore, the
effectiveness of our EEG representation approach can be extended to other physiological
signal representations.

In future work, for the preprocessing module, we plan to extract multiple types of
features to complement PSD features. For the subject-independent experiment, further
research can focus on developing techniques that can effectively deal with the differences
between different subjects to improve the universality and robustness of the model in
identifying different individual cognitive emotions. It may involve collecting more diverse
and representative data from more subjects. In addition, our work has certain limitations,
including the small dataset size, the lack of additional physiological features, and any other
potential constraints that may have influenced the findings. We plan to design experiments
to collect multi-modal data (including EEG, ECG, facial expression, eye movement data,
etc.) to build our dataset and explore emotion recognition in education by fusing multi-
modal data.
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