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Abstract: Logistics has long been important in an industrial society. Compared with the traditional
structure of distribution, which requires freight to be delivered mostly to warehouses or retail stores,
customers now often prefer packages to be delivered to their residences, especially after the deliv-
ery challenges during the COVID-19 pandemic. The delivery of parcels to urban residential areas
increases the challenge due to the amount of delivery volume, tight delivery schedules, and con-
tinuously changing delivery conditions. Last-mile delivery tries to address the challenges, taking
advantage of the available automation, sensor and communication technologies, and people’s at-
titudes toward parcel delivery for the benefit of all stakeholders. Various approaches to last-mile
delivery have been proposed and analyzed in the literature. This paper reviews the recent literature
on vehicle routing for last-mile delivery. The review identified four major categories: crowdshipping,
parcel lockers, delivery by sidekicks, and delivery to optional points. The nature of the problems is
discussed in five aspects: fleet capacity, time window, fleet option, dynamism of input, and stochastic
parameters. The review identifies the achievements and limitations of the research in the areas and
proposes a future research agenda.

Keywords: last-mile delivery; vehicle routing; occasional driver; parcel locker; sidekick; optional
points of delivery; optimization

1. Introduction

Logistics has long been important in an industrial society. It is ironic, however, that the
advancement of information technology, which allows fast and almost no-cost transmittal
of information, increased the complexity and importance of logistics. Compared with
the traditional structure of distribution, which requires freight to be delivered mostly to
warehouses or retail stores, customers now often prefer packages to be delivered to their
residences or even to public places without designated mailing addresses for certain types
of product based on the Global Positioning System (GPS). Additionally, the COVID-19
pandemic made people more accustomed to package delivery at their designated locations.
The shift in people’s habits and expectations resulted in a substantial increase in the demand
for delivery services. Also, the emergence and rapid expansion of e-retail companies, such
as Amazon, eBay, Alibaba, Walmart+, and Shop BBC, have changed customer attitudes to
delivery.

The delivery of parcels to urban residential areas increases the challenge due to the
amount of delivery volume, tight delivery schedules, and continuously changing delivery
conditions, as discussed in the last-mile delivery (LMD) literature. Naturally, LMD tries to
take advantage of the available technologies and people’s attitudes toward parcel delivery,
both on the supply and demand sides, for the benefit of all stakeholders. The prosperity
of the pickup and delivery services by occasional drivers is seen in the cases of Uber and
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Lyft. Sometimes, a logistics company delivers to one of its designated places or parcel
locker locations. At the same time, LMD utilizes the help of customers on the demand side;
customers are flexible and allow optional delivery locations, one of which will be chosen
by the logistics company during delivery planning. Automation certainly helps delivery,
and drones have already been commercialized. Sooner or later, autonomous vehicles on
the land and water will also be used [1,2]. Amazon commercialized its patented flying
warehouses, which also carry small drones [3]. Multiple delivery modes can surely be
combined for a delivery job.

LMD is the final stage of the parcel delivery process when a customer order is trans-
ported from a fulfillment center to a destination, often a residential address [4]. LMD
studies discuss diverse issues of delivery [5], including pricing, delivery mode, and se-
curity concerns [6]. These studies also investigate innovative solutions, infrastructure
setup, staffing, and fleet design in recent years [5,7]. The application of computational
intelligence [8], new solution methods [9,10], and the environmental side effects of VRP
and LMD [11] are also widely discussed in the literature. Optimization models to employ
various types of vehicle in LMD are discussed in [5,12,13].

Researchers have been studying vehicle routing problems (VRPs) to design optimal
delivery or pickup routes from one or multiple depots to a number of geographically
scattered destinations subject to practical constraints [14,15], playing important roles in
logistics [16,17]. Responding to diverse requirements such as working hour limit, fleet
capacity, nature of deliverables, and environmental requirements, various VRP models
have been discussed, including green VRP and electric VRP. Details of G-VRP [18,19] and
E-VRP [20–22] are discussed in many VRP review papers.

Many vehicle routing issues in LMD have long been considered implicitly in con-
ventional VRP [23–25]. Due to the recent changes in social life, customer behavior, pan-
demic limitations, increased delivery volume, time pressure, and workforce limitations,
e-commerce has widely been accepted by both industry and customers, and the research
on vehicle routing for LMD has been pervasively investigated [7,26].

Many papers discuss the vehicle routing issues on LMD considering the new infras-
tructure of the information and automation technologies [10]. However, the literature
shows a lack of a comprehensive survey to categorize and characterize the papers. This
research summarizes the current problems discussed in LMD vehicle routing. The results
of this study can be used to identify the research gaps in LMD vehicle routing and develop
future research agendas. In the literature, the same solution procedures of the conventional
VRP models are used for the LMD optimization as well. This review paper does not explore
details of the solution methods, except listing them for each paper in the summary tables.
In-depth discussions of the solution procedures in VRP can be found in the literature
including [27–30].

The distinctive characteristics of vehicle routing in LMD in urban areas include more
uncertainties and higher dynamicity compared with conventional VRP. The information
update occurs more frequently, asking for more frequent real-time adjustments of the
delivery plan. It also gives a larger number of visits per route, and the parking lot space
and service time at the destination are sometimes considered. The time windows are tighter.
The allowed route of a vehicle can be different for different vehicles, e.g., the size of a truck
to make a right turn or its weight.

Additionally, vehicle routing in LMD considers the involvement of individuals, for
both the supply and demand sides. For the supply side, we can use occasional drives
(outsourcing), which makes the operation more efficient at peak times. Considerations of
occasional drivers add new issues of the supplier’s time window, zoning, and matching
of drivers and customers. For the demand side, customers are willing to provide optional
delivery points and use regional parcel lockers.

The common characteristics of conventional VRP and LMD include vehicle capacity
and fleet options. Also, both the conventional VRP and vehicle routing in LMD problems
can utilize modern technology for sidekicks.
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This review paper is constructed as follows. Section 2 explains the review methodology.
Section 3 describes the framework used for the survey. The framework groups LMD study
into four categories based on the focus of the problems: delivery with occasional drivers,
delivery to parcel lockers, delivery by sidekicks, and delivery to optional points. Section 4
presents the research on LMD routing in these four subsections. Section 5 concludes
the paper by summarizing the study’s implications and presenting an agenda for future
research.

2. Review Methodology

We reviewed 38 survey papers on VRP to gain a comprehensive understanding of
the routing problems and the position of LMD in the VRP area. We incorporated 26
of the survey papers to establish the scope of our survey, to ensure the inclusion of a
comprehensive range of relevant study areas and minimize the possibility of overlooking
pertinent research findings (Figure 1).
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Figure 1. Applied methodology for this review.

The related keywords and phrases offered by the review papers were used as a base-
line to find the routing papers in the LMD area. Considering the wide range of vehicle
routing problems, we employed the 14 keywords and their combinations derived from
surveys [10,26,31–34]: last-mile delivery (LMD), vehicle routing problem (VRP), drone,
crowdshipping, crowdsourcing, parcel delivery, human-driven delivery, autonomous de-
livery, city logistics, smart cities, sidekick fleet, occasional driver, delivery option, traveling
salesman. The review papers led us to find the different aspects of LMD that are not
discussed in the literature. We found that routing in LMD is an important area that is not
discussed in a comprehensive way. After searching the available inventories of Business
Source Premier, Google Scholar, Science Direct, Emerald Insight, Scopus, and Web of Sci-
ence, we found more than 500 papers, which showed us the important characteristics of
LMD problems. Based on the initial analysis of abstracts and conclusions, we opted for
166 papers among initial inventories that were mostly concentrated on routing and opti-
mization models in different LMD configurations. After a thorough investigation of their
modeling and related considerations of the papers we chose 136 papers and constructed the
characteristics of the LMD problems and their common specifications, which were entitled
as the nature of the LMD problems.

3. Framework of the Literature Survey

The VRP seeks to find the best fleet and its routes to deliver parcels to customers.
The conventional VRP models mostly consider the routes as a closed loop, in which the
fleet returns to its depot after delivery, as shown in Figure 2. These models also consider
relatively homogenous fleets run by professional operators.
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Compared with them, the vehicle routing in LMD considers more diverse issues in
city logistics, reflecting the new needs and conditions given to it. To better respond to these
issues, LMD planning mostly begins with segmentation or grouping of delivery points. It is
then followed by parcel packaging to ensure safe and convenient handling. Subsequently,
the delivery fleet is chosen along with its delivery paths. The details of these steps vary
depending on the conditions of the delivery requests and the available resources. The
following sections provide the categories and nature of the LMD problems considered in
the literature.

3.1. Categories of LMD Problems

Due to technological advancements and the effects of pandemics on LMD, much
research has been reported on vehicle routing in LMD during the last eight years. Most
of the literature on LMD can be grouped into these four categories based on the focus of
the problems:
1. Delivery with occasional drivers (crowdshipping): The logistics companies use occa-

sionally available non-professional drivers in addition to their own fleet for parcel
delivery.

2. Delivery to parcel locker: Customers’ parcels are delivered to specific locations with
many lockers, and the customers retrieve their parcels from assigned lockers.

3. Delivery using sidekicks: The delivery uses a main vehicle and one or more sidekick
vehicles. The main vehicle brings parcels and sidekicks to intermediate places, whose
locations are determined by each delivery plan, and the sidekicks deliver the parcels
from the main vehicle to customers’ locations.

4. Delivery to optional points: A customer offers multiple delivery locations, and the
delivery system delivers the parcel to the best location.

Some papers simultaneously consider two of the above categories. For example,
occasional drivers are considered as the sidekicks [35]. Also, crowdshipping and delivery
options are considered together in [36]. Some researchers consider different goals using the
same approaches. Refs. [37,38] employ drones to reduce emissions in green VRP, and [39]
uses drones for cost optimization and delivery time reduction.

3.2. Nature of LMD Problems

Each delivery plan is subject to the different operation conditions given by customers,
managerial options, uncertainties, and technical conditions such as real-time demand
change, traffic congestion, time window, fleet accessibility, and service times at the points
of delivery. The literature often considers these five aspects of the nature of problems as
more important:
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1. Fleet capacity: Capacitated VRP (CVRP) optimizes routes considering vehicle capacity
limits such as weight, volume, and number of parcels [40,41]. Sometimes, however,
these limits can be ignored for mail delivery, where the parcel volumes are so small
compared with fleet capacity, and perishable item delivery, when vehicles cannot wait
for the full load of items [42]. The pickup and delivery problems widely discussed in
many conventional VRPs [43] and also in LMD [44,45] are modeled as a problem with
vehicle capacity limit.

2. Time window: Time windows require deliveries to be made within specified time
horizons [41,46]. LMD additionally considers the time windows of driver availability.
Various types of window in a logistics network have been discussed in literature [47].

3. Fleet option: The research considers multiple types of fleet, including a heteroge-
neous fleet, which involves a fleet of vehicles with different capacities [48]; electric
vehicles, which need additional time for charging [49]; and autonomous vehicles [50].
Various autonomous vehicles allow us diverse options for delivery network design.
Autonomous vehicles for delivery are discussed in survey papers [1,10,51].

4. Dynamic input: Dynamic VRP (DVRP) considers the changeability of variables (e.g.,
a customer’s change of order quantity) during delivery [41,52].

5. Stochastic parameter: Stochastic VRP (SVRP) considers the randomness or uncertainty
of the parameters [41,53].

In the discussion of each paper, these aspects are mentioned only when the paper
explicitly considers them.

4. Literature on LMD Vehicle Routing

We grouped the literature on LMD vehicle routing into the following four categories:

4.1. Occasional Drivers (Crowdshipping)

As modern society continues to adapt to the shared economy, occasional drivers (ODs)
are likely to play more important roles in future delivery systems. In crowdshipping,
individual ODs act as operators in the sharing economy [54]. They make their resources
(vehicles and time) available to assist the LMD. Based on the advancement of social media,
people had already begun using the concept of crowdshipping to have their friends deliver
parcels [55]. It is believed that numerous companies have already been adopting crowd-
shipping as their foundational business model since 2011. Crowdshipping was popularized
by Amazon from 2015 [56]. Crowdshipping takes advantage of ODs, who are sometimes
more cost-efficient than company-owned fleets [57]. It especially helps delivery during
peak times.

Some research regards crowdshipping as a part of an open VRP, in which the drivers
are not required to return to the depot [58,59]. However, crowdshipping considers more
issues that are not considered important in the traditional open VRP. While a traditional
VRP considers the time windows of customers, LMD considers the time windows of the
ODs’ availability as well. Also, the segmentation process of LMD considers that some ODs
cannot access some customers’ sites due to the vehicle characteristics or driver’s preferences.
In the literature, the terms crowdshipping, cargo hitching [60], crowd logistics [61], passing-
by vehicles [62], crowdsourcing [63], and collaborative logistics [55] refer to delivery by
occasional drivers.

In Figure 3, crowdshipping groups the customers based on their locations and time
requirements, and assigns them to available drivers (matching). Grouping is based on
either the driver’s destinations [61,64] or customers’ neighborhoods [65,66]. Scheduling
and matching in crowdshipping involve many challenges [67]. Most research shows that
occasional drivers have their own destinations, except for [58]. Different matching mecha-
nisms, such as pure self-scheduling, hybrid and centralized scheduling, route matching,
and bulletin-board type matching, are being used by different platform companies [68].
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Table 1 shows the identified publications on crowdshipping. The nature of problems,
important considerations, and solution methods are summarized in the table. Crowd-
shipping naturally chooses a vehicle from available ODs and company fleets (the third
nature of the LMD problems). Although all of the natures of LMD problems can be seen in
crowdshipping, because of the complexity of the problems, most of the literature considers
at most two of them and uses heuristic algorithms for problem-solving and data analytics.
In crowdshipping research, occasional drivers have their own vehicles. Vehicle loading
capacity (90% of the papers), travel distance, driver’s work time, or number of deliveries
are commonly considered. Also, various types of time window are considered in the papers,
underlining the significance of meeting delivery deadlines. Some papers include waiting
time in the customer’s desired timespan and penalties for late arrivals. The dynamicity
consideration of the variables and parameters is mostly limited to online orders (20% of the
papers), and the stochastic nature of the problem (20% of the papers) is confined to travel
times and fluctuating customer demands [69,70].

Among the papers in Table 1, just two of them use transactional data to evaluate their
model, while most of them use simulated data. Various solution methods, ranging from
metaheuristics to machine learning techniques, are used across the studies to deal with the
complexities of ODs’ logistics. Some contradictory observations are seen in the literature.
While some papers advocate crowdshipping for emission reduction [66,71,72], some others
argue that crowdshipping does not reduce environmental pollution [73].

Table 1. Literature on delivery with occasional drivers (crowdshipping).

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[35] - Capacitated

- Mixed-integer nonlinear
model

- ODs can only work in the
second echelon

- ODs can just deliver one
request

- Limited capacity and
mileage for ODs

- Own fleet can go on
limited routes

Minimize travelling
costs of trucks, city
freighters, and the
employed ODs

- 1 depot, 2 satellites,
12 customers

- 1 depot, 2–4 satellites,
21–50 customers

Heuristic
(adaptive large
neighborhood)

[46] - Time
windowed

- Multi depot
- Limited vehicle speed

Minimize
distribution cost
using company’s
truck or ODs

- 4 company’s truck and
4 ODs

Simulation
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Table 1. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[58] - Capacitated
- Stochastic

- Each demand can be
delivered in more than
one parcel

- Stochastic assignment
acceptance

- Limited route duration

Minimize the fixed
and variable
compensations paid
to ODs

- Considers 100 customers
in 10 clusters

- At most 4 vehicles for
each cluster

Heuristic
(combined with
B&P)

[61] - Capacitated

- Limited capacity for own
fleet

- Unlimited capacity for
ODs

- Limited distance
variation for ODs

- ODs can perform one
delivery.

Minimize total costs
of vehicles and ODs’
payments

- Different numbers of 13,
25, 50, or 100 ODs

Metaheuristic
(Iterated local
search & parallel
cooperation)

[62]

- Capacitated
- Time

windowed
- Stochastic

(fuzzy)

- Heterogeneous vehicles
- Different sensitivity of

customers following a
fuzzy trend

- Considering carbon
emissions

- Limited mass of ODs
deliveries

maximize the
number of customers
served and usage
rate of PD and
minimize operational
cost and unfairness
of PD routes.

- -

Heuristic
(variable
neighborhood
search)

[63]
- Capacitated
- Time

windowed

- Both pickup and delivery
requests

- Waiting during time
window just for own
vehicles, not for ODs

- Sub-tours are not
allowed.

Minimize the cost of
trucks, OD’s
compensation, and
late delivery penalty

- 30 customers, 8 ODs,
2 trucks

- 100 customers, 15 ODs,
2 trucks

Two-Step exact
solution method
(B&B +
SPDPSTW)

[64] - Capacitated
- Stochastic

- Limited capacity of own
fleet

- Sub-tours are not allowed
- ODs are free to reject

delivery assignments
- Compensation calculated

as stochastic
willingness/acceptance

Minimize total costs
of vehicles and ODs’
payments

- 15 customers
Heuristic
(bi-level
stochastic model)

[65] - Capacitated
- Mixed-integer model
- Limited stop and

duration of ODs

Minimize total costs
of vehicles and ODs’
payments

- 25–100 customers,
25–100 ODs

Heuristic
(adaptive
neighborhood)

[66] - Capacitated

- Heterogeneous capacity
- Limited distance for own

fleet
- Different types of route

with different velocities
are available.

- Different training costs
and compensation

- Environmental penalty
for different velocities

Minimize the
consumed energy,
environmental
penalty, and total
cost, and maximize
the delivery velocity

- 5 customers, 4 trucks,
3 OD’s, 4 types of route

Linearized
model and exact
methods for
problem-solving

[67]
- Time

windowed
- Dynamicity

- Online dynamic
demands with expected
time windows

- Homogeneous vehicles
- Considering the time

effect as an amplifying
cost element

Minimize the
distribution cost of
regular vehicles, ODs
compensation and
penalty

- 5, 15, 25, 100,
200 customers

Heuristic
(Iterative
variable
neighborhood)
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Table 1. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[69]

- Stochastic
- Capacitated
- Time

windowed
- Multiple fleet

options

- Using cargo bikes or ODs
to deliver parcels with
limited capacities

- Customers follow
stochastic trends

- Earliest and latest arrival
time considered.

- The stochastic requests
are assigned to ODs
based on distance,
capacity, and time
window constraints

Minimize the total
travel cost and
minimize rejections

- With 150, 350, 550
customers and 20 ODs

Heuristic (Monte
Carlo
simulation &
large
neighborhood
search)

[70] - Capacitated
- Dynamicity

- ODs have limited
capacities

- Limited detour is
allowed for ODs

- Online orders follow
dynamic trend

Minimize total costs
of vehicles and ODs’
payments

- -
Simulation
(Auction-based
matching)

[74]

- Capacitated
- Time

windowed
- Stochastic

- Uncertain travel time
- Penalty for probable

missed delivery
- Limited capacity for own

fleet & ODs
- Limited numbers of

departures for ODs
- ODs can perform

multiple deliveries

Minimize total costs
of vehicles and ODs’
payments

- Numbers of Customer:
- Small (5, 10, 15)
- Big (25, 35, 50)

Heuristic
(Bender’s
two-stage
decomposition
strategy)

[75] - Capacitated
- Stochastic

- Customer demands
and/or customer
presence are stochastic.

- Vehicles are capacitated.
- Detour could occur if

they reached the vehicle’s
capacity

Minimize total costs
of vehicles and ODs’
payments

- 1 depot and 10, 30, 70,
150, or 300 customers

Reinforcement
learning (B&C
and integer
L-shaped)

[76] - Capacitated
- Dynamicity

- Some limited detour for
ODs.

- Both pickup and Delivery
requests

- Dynamic demand during
each day

Minimize mean
differences of
estimated and actual
arrival time

- 100 or 1000 locations
(delivery nodes)

Heuristic
(Two-step
Look-ahead
Algorithm)

[77]
- Capacitated
- Time

windowed

- Limited conservations
- Limited number of

depots

Minimize the cost of
vehicle, diesel,
emission, and ODs
payment, minimize
the emission

- 5, 19, 15 customers Simulation

[78]
- Capacitated
- Time

windowed

- Limited transshipment
nodes

- Capacitated ODs
- Necessity of usage of

ODs/own fleet for
specified customers

Minimize total costs
of vehicles and ODs’
payments

- 400 nodes (customer
locations)

Heuristic-
generated
data

[79]
- Capacitated
- Time

windowed

- Limited hours of driving
- Different shipments for

different product groups
- Heterogeneous capacity

Minimizing the total
cost of shipments

- 25 or 50 customers with
total demand of 190 or
388

Metaheuristics

[80]
- Capacitated
- Time

windowed

- Limited number of
departures from each
depot

- Limited number of
ODs/own fleet

Minimize total costs
of vehicles and ODs’
payments

- 5 to 400 customers
Heuristic (greedy
randomized)
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Table 1. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[81]
- Capacitated
- Time

windowed

- Mixed-integer linear
model

- Limited capacity &
mileage

Minimize start-up
and travel costs for
vehicles and ODs
order cost

- 1 depot and
100 customers

Heuristic
(adaptive ant
col.)

[82]
- Capacitated
- Time

windowed

- Limited transshipment
nodes

- Heterogeneous vehicles

Minimize total costs
of vehicles and ODs’
payments

- Customers range 5 to 100
- No. of ODs from 3 to 10

Heuristic
(variable
neighborhood)

[83]
- Capacitated
- Time

windowed

- Own fleet should come
back.

- Each customer should be
met only once.

- Heterogeneous vehicles

Minimize the costs
(fixed and variable
costs of ODs and
vehicles)

- 30 customers
Heuristic
(Multitasking
Algorithm)

[84] - Dynamicity
- Effect of driver’s training
- Dynamic nature of road

and customer demand

Maximize ODs
reward (defined
based on travel
distance)

- 20 customers
Machine
Learning

[85] - Capacitated

- Mixed-integer linear
model

- Both pickup and delivery
- Limited capacity &

mileage
- Each OD can serve one

customer

Minimize total costs
of vehicles and ODs’
payments

- 50 to 199 Customers
- 28 traveling distance

cases
Heuristic (SA)

[86] - Capacitated

- Commuters using public
transportation are
considered ODs.

- ODs’ willingness is
affected by
compensation.

- Each parcel should be
delivered by one OD

- Transshipment locations
are parcel lockers near
railways

- No capacity limitation on
lockers

- Delivery time limited to
do in daytimes

Minimize total
operation and
compensation cost as
well as emission
produced

- 100 to 2000 parcels
- 1 to 20 areas (parcel

locker locations)
- 5 vehicles and 100 ODs.

Heuristic, based
on real data in
Singapore

[87] - Capacitated

- Limited capacity & work
duration

- Sub-tours are not allowed
- ODs can just win one

bidding a day

Minimize vehicles
routing and winning
bids costs

- 57 customers in
27 locations

- 8 ODs

Heuristic, real
data from an
Oman bookstore

[88]

- Capacitated
- Time

windowed
- Dynamicity

- ODs dynamically join as
an available fleet

- There are some backup
fleets to use, as IDs may
not be available

- Each OD can deliver one
parcel

- ODs have limited driving
time

- Parcels should be
delivered upon a specific
time schedule

Minimize total costs
of ODs and backup
vehicles

- 100 nodes
- 100 ODs

Heuristic (3-step
algorithm)
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Table 1. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[89] - Dynamicity
- Capacitated

- A group of customers is
considered a bundle
which can be selected by
ODs to deliver

- Two grouping
approaches: clustering,
corridor creation

- ODs dynamically appear
at regular time intervals

- Both ODs and fleet have
limited capacity

- Company should not use
ODs more than its own
fleet

Minimize total travel
costs of vehicles and
ODs’ bid

- 20 customers, 10 ODs,
5 vehicles

- 40 customers, 20 ODs,
5 vehicles

Metaheuristic
(large
neighborhood
search-based
algorithm)

[90]

- Capacitated
- Time

windowed
- Multiple fleet

options

- The fleet of other logistic
companies is considered
as ODs

- Each vehicle can go on
just one round trip

- Each vehicle has limited
capacity & driving time

- Service time is
considered

Minimize the routing
cost and number of
ODs

- 20 customers
Exact solution
(CPLEX)

4.2. Parcel Lockers

Parcel lockers, also called pickup points [91], offer a promising solution to some
of the challenges posed by LMD for enhanced efficiency, reduced costs, and minimized
environmental side effects [92–94]. In this case, distributors deliver parcels to appropriate
lockers and inform the customers. The parcel locker system does not reveal customers’
addresses. This system also reduces the risk of parcel damage or loss as customers may not
be able to get their products quickly enough [95–97]. Parcel lockers may also help to reduce
emissions [92,98]. While parcel lockers usually lead to lower shipment costs for customers,
people in urban areas are willing to pay more for this service [99,100].

As shown in Figure 4, the lockers are located in places such as public areas, shopping
centers, or residential complexes for customers’ convenience. Customers are assigned to
parcel lockers, and the vehicle routing is planned. After parcel delivery, recipients receive
notifications with locker details and access codes. Recipients visit the locker station and
retrieve packages at their convenience. There are different approaches to setting up parcel
lockers and assigning customers to them. The lockers can be stationary, temporary, or
mobile [101]. The models consider the travel distances of customers as well as those of the
fleet. The sizes or other specific technical requirements of the lockers (e.g., refrigerating,
chemical restrictions) are commonly considered in the literature. Table 2 details the available
literature on the LMD using parcel lockers.

Most studies in this category emphasize the significance of capacity constraints for
both lockers and fleets [102,103]. On the contrary, the nature of the parcel locker makes the
time windows not as critical as in other cases unless customers specify optional delivery
points along with their desired time windows. Multiple fleet options are not discussed
extensively in the literature, except for [96], which investigates mobile lockers. Autonomous
vehicles and drones can also be considered as fleet options. No research considers the
dynamicity; just [104] assumes the stochastic availability of the ODs, in which a combined
model of OD and parcel locker are defined.
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Figure 4. Delivery with parcel locker in LMD.

The solution methods vary from heuristic methods and mathematical optimization to
simulation-based approaches [92–94]. Different types of specialized locker for hazardous
and perishable items have been suggested [105]. Delivery of a large number of parcels
requires big trucks, and lockers are often located in crowded areas; the planning requires
consideration of time windows to avoid traffic delays.

Table 2. Literature on delivery to parcel lockers.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[91] - Capacitated

- Can opt for parcel lockers
or home delivery

- Minimize the number of
open locker stations and
should cover minimum
deliveries

- Fleets with different
capacities and costs are
considered

- Fuel consumption and
emission is considered

Minimize the number
of locker locations

- 3 vehicle types
- 606 locker locations
- 5–40 vehicles

Statistical
analytics

[92] - Time
windowed

- Parcel locker is an option
for customers

- Route of fleet and
customers are considered

- Which locker station
- Minimize the number of

open locker stations
- Limited traveling

distance for each
customer

- Limited numbers of fleet

Minimize
environmental effect
(based on customer
and vehicle travel
distance)

- 50 or 100 customers
- 5, 10, 15 locker locations

Mixed-integer
solver (Gurobi
application) on
60 benchmarks

[93]
- Time

windowed
- Capacitated

- Parcel locker is an option
for customers

- Minimum travel of fleet
is considered

- Limited capacity of
vehicles and lockers

Minimize total travel
distance of vehicles - 25, 50 and 100 customers Heuristic (SA)
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Table 2. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[94] - Capacitated

- Considers automated
parcel lockers (APLs)

- Capacity of parcel lockers
- Lockers are activated

based on the needed
coverage area

- Specified distance range

Minimize customer
assignment cost and
locker setup,
decomposition, &
working cost

- Yearly APL demand:
13 K to 28 K

- No. of lockers: 52 to 122

Agent-based
simulation model

[96] - Capacitated

- Mobility is considered as
a different option for
locations of lockers

- Total travel distances of
flees and customers

- Maximum coverage
desired by limited
numbers of mobile parcel
lockers with specific
capacities

- Problem defined as
facility location problem

Maximum coverage,
minimum overlap,
and minimum idle
capacity

- 10 smart parcel lockers
- population size: 50, 100,

or 150

Heuristic
(Taguchi Method
and
GA)

[98] - Capacitated

- Parcel locker as a delivery
point of customers for
different sellers (open
parcel lockers)

- Home deliveries are not
available

- Total travel distances of
fleet from different sellers
and customers are
considered as effecting
factor of emission

Minimize travel
distance and
emission

- 3 types of vehicle
- Four lockers in two cities

Statistical
analytics

[100]
- Time

windowed
- Capacitated

- Concurrent consideration
of home delivery or
locker delivery

- Grouping locker areas
based on postal zones

- Limited time spans for
delivery

- Volume limits on each
locker

- Limited travel distance
for customers

- Cost of active locker
positions is considered

Minimize the cost
and emission - -

Generic VRP
solvers

[102]
- Capacitated
- Time

windowed

- Parcel locker is an option
for customers.

- Limited capacity for
lockers and fleet

- Limiting not to have sub
tours

Minimize total travel
distance by trucks
and customers, and
locker opening cost

- 20, 40, 60, 100 customers
- lockers are 1/10 of

customers

Branch-and-cut
algorithm

[103] - Capacitated

- Lockers as intermediate
depots

- Traveling distance for
fleet

- Compensates customers
for travel

- Considers capacity for
fleet and lockers

- There are some
predetermined lockers

Minimize the
transportation cost
and compensation to
customers

- 4 lockers and 6 customers Heuristic (SA)
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Table 2. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[104]

- Capacitated
- Stochastic (just

for specific
customers)

- Use of customers who
come to location of
lockers as ODs for home
delivery requests

- Compensates customers
if they act as ODs

- Limited capacity for the
lockers, fleet, and ODs

- Sub-tours are not allowed

Minimize the cost of
locker supply, OD
compensation, and
routing

- 40 to 106 customers
- 3 to 5 lockers

Exact solve with
CPLEX

[106] - Capacitated

- Waiting time for the
customers

- Effect of naval services
and ferries

- Specified capacity for
lockers

Minimize parcel
waiting time

- 30 customers
- 1 locker

Heuristic (GA)

[107]
- Capacitated
- time

windowed

- Parcel locker is an option
for customers

- Home delivery is limited
to time windows

- Multi-size lockers
- Compensates customers

for travel
- Putting multiple parcels

in one locker

Minimize the travel
distance cost and
compensation to
customers

- 25, 50, 75 customers
- 5 stations with different

slots

Heuristic
(adaptive large
neighborhood
search)

[108]

- Capacitated
- Time

windowed
- Multiple fleet

options

- Considers mobility of
parcel lockers

- Using an autonomous
vehicle or a human

- Limited customer travel
distance

- Limited capacities for
vehicles

- Minimum overlap
between vehicle waiting
time and customer
expected time span

- Parking space limitation

Minimize fixed &
variable costs of
lockers, and fixed
and swapping costs
of drives

- 5, 15, 30, 50 customers
- 15 locker locations
- 6 types of locker

Holistic MIP
Tabu search

[109] - Capacitated

- Total travel distances of
fleet and customers

- Limited and multiple
fleets with small and
medium capacities

- Customer grouping
based on lockers’
locations.

Minimize travel
distance cost from
depots to virtual
centers and distance
cost to serve
customers

- 65 customer zones
- 2 depots
- 19 lockers

Metaheuristic
(customer
clustering & TSP
solving)

4.3. Sidekicks

Delivery by sidekicks in LMD is based on drones and real-time navigation technol-
ogy [110]. Sidekick delivery uses main vehicles, usually trucks, which carry sidekicks and
parcels to local areas, where the sidekicks complete delivery. Drones, or Unmanned Aerial
Vehicles (UAVs) [51], have evolved from military applications tracing back to the 1930s. As
their costs have substantially decreased, they have become readily available to the public
and logistics companies in the last 10 years [111].

Sidekicks are often aerial drones with different capabilities and limitations in their car-
rying capacity, charging time, and coverage area. Sidekick delivery has many other names,
such as drone-assisted delivery [112,113], multi-modal delivery [13], carrier-vehicle [12],
joint-delivery systems [114], two-echelon delivery [115], and automated delivery robots [116].
Fleet synchronization and collaborative operations between main vehicles and drones
are important. Among the 10 categories of two-echelon VRPs in [117], synchronization
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between two echelons applies to the sidekick delivery. In urban areas, other options, such
as bikes and postal couriers, can also be sidekicks.

As shown in Figure 5, there are two different types of route in a sidekick delivery
system. To plan the delivery with sidekicks, delivery nodes (customer locations and inter-
mediate depots) are selected along with the routes of the main vehicles and sidekicks. For
the delivery, the main vehicle departs from the main depot toward a series of intermediate
depots (ID). Sidekicks then depart from the main vehicle at an intermediate depot to deliver
the parcels to customers based on the pre-defined collaboration mode. There are three
modes of vehicle–sidekick collaborations.
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- Mode 1: The main vehicle stays at an intermediate depot until the sidekicks finish
their deliveries and return to it [112,115].

- Mode 2: Sidekicks leave the main vehicle at an intermediate depot and join the main
vehicle at another intermediate depot. They return to the main depot together [39,118].

- Mode 3: Sidekicks leave the main vehicle at an intermediate depot for delivery and
return to the main depot by themselves [113].

In the above cases, the main vehicle may deliver parcels by itself or just act as a carrier.
The literature on sidekicks in Table 3 shares common characteristics and notable

differences in the nature of problems. Drones and main vehicles are commonly capacitated
except for [119]. The battery life of the drones is also considered as a capacity limit in
two references of [120,121]. Some papers on sidekick delivery consider time windows of the
main vehicles and sidekicks for the collaboration between fleets [118,122–124]. Autonomous
drones are the most common sidekicks, while [119] consider boats as sidekicks. The main
vehicles are mostly human operated, except for [116,121]. Autonomous vehicles have the
advantages of reduced labor cost and delivery time, increased work safety, and higher
accessibility. No paper in this survey considers the dynamic and stochastic natures of
the problems. The solution methods in sidekick deliveries vary widely, including mixed-
integer programming (MIP) and heuristic search algorithms such as clustering-based
genetic algorithms and adaptive large neighborhood algorithms.
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Table 3. Literature on delivery using sidekicks.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[38] - Capacitated

- Grouping the customers,
then using a drone to
reach them

- Trucks as conveyors of
drones

- Drones’ capacity affects
customer grouping

- Drones perform limited
travel based on their
charge

Minimize cost of
distance traveled and
waiting time of the
main vehicle (AV)

- 100 or 500 customers
- 10–100 drones
- 8 delivery scenarios

Heuristic (greedy
algorithm)

[39] - Capacitated

- Main vehicle can deliver
products

- Main vehicles and
sidekicks should join
before returning to the
depot

- Two types of sidekick
evaluated

Minimize the total
truck arrival time

- 8 customer nodes
- 1–2 trucks

Mixed-integer
problem (MIP)

[50] - Capacitated

- Customers clustered to
intermediate depots

- Two-echelon VRP: a van
as main and drone as
sidekick

- Different vans can go to
each intermediate depot

- Sidekicks should join vans
to come back to depot

Minimize total cost of
travel and emission

- No. of main vehicles: 2, 4,
5, 10

Heuristic (GA
and particle
swarm)

[112] - Capacitated

- Main vehicles and
sidekicks should join
before returning to the
depot

- Sidekicks can join the
main vehicle in different
intermediate depots

- Setup time and retrieval
time are considered.

- Some customers’
locations are defined as
intermediate depots

Minimize the return
time to depot

- 72 problem sets with 10
or 20 customers.

Heuristic (5-step
algorithm)

[113] - Capacitated

- Main vehicles and
sidekicks come back
independently.

- Both trucks and sidekicks
can deliver parcels

- Sidekicks should meet a
truck for each delivery
and can ride them in
some parts of the path

- Intermediate depots can
be met many times by
trucks or sidekicks

- Minimized the latest
return to the depot

Minimize the largest
return time

- 2 trucks, 1 drone,
10 customers

Mixed-integer
problem (MIP)
using some
algorithm for
upper bounding

[115] - Capacitated

- There are limited main
vehicles and sidekicks

- Each intermediate depot
is considered as a
micro-hub

- Capacity of vans and
drones, as well as battery
life limitations for drones,
are considered

- Each drone joins back to
the van at the same
location after delivery

Minimize delivery
(volume) and
emission (weight &
speed) costs

- -

Heuristic
(cluster-based
artificial
immune)
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Table 3. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[116] - Capacitated

- All vehicles are
considered autonomous

- Intermediate locations
are fixed

- Relative effects of
distance and
compartments

Minimize the cost of
customer serving

- 4 depots
- 100 customers

Statistical
analytics on real
data

[118]
- Time

windowed
- Capacitated

- Parcels will be delivered
to/from mobile points
(intermediate depots)

- Bidirectional delivery
(delivery and pick up)

- A single parcel can be
carried by drones

- Runs executed within the
required time

Minimize total
delivery costs

- 10 customers
- 1–3 main vehicles
- 1 or 3 mobile points

Heuristic
(dedicated GA)

[119]
- Capacitated
- Multiple fleet

options

- Ship/plane as main
vehicle and boat/drone
as sidekick

- Drones can carry one or
more parcels but have
limited travel lengths

- Main vehicles have no
capacity limit

- Main vehicles only serve
as drone carriers

Minimize the total
travel time of main
vehicles and drones

- 10 to 200 customers
B&B and cone
heuristic
algorithm

[120] - Capacitated

- Drones deliver parcels
with limited flight length

- Intermediate depots
should be in one of the
customers’ locations, and
drones can join trucks in
various locations

- Trucks also deliver
parcels

- The truck and drones
leave and return to the
depot together

- No charging time by
swapping batteries

Minimize the tour
costs of trucks and
drones

- 100 nodes
- 1–2 depots

Heuristic (two
steps of
clustering and
local search
/dynamic
programming

[121] - Capacitated

- Drones (UAVs) can
deliver one parcel

- Flying length of drones is
limited by the speed and
parcel’s weight

- Autonomous trucks
(UGVs) also deliver
parcels

- Waiting time is
considered for both
trucks and drones

Minimize the total
travel time of UGV &
UAV

- 10, 50, 100 nodes

Heuristic
(two-stages of set
covering and
allocations)

[122]
- Capacitated
- Time

windowed

- Main vehicles are mobile
during the departure and
return of drones

- Either main vehicle or
drone can deliver parcels

- Both types of vehicle
should reach destinations
at specific durations

- Service time is considered
- Waiting times are

considered for both types

Minimize operation
and waiting time
costs for both vans &
UAVs

- 100 customers
Heuristic
(adaptive large
neighborhood)
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Table 3. Cont.

Ref. Problem Nature Important Considerations Objective(s) Sample Size Solution
Method

[123]
- Capacitated
- Time

windowed

- Both trucks and drones
deliver parcels

- Trucks have limited
capacities

- There are some depots as
the start-points

- Drones can join trucks in
various locations

- Trucks may wait for
drones to reach them, but
the reverse case is not
allowed

- Drones may
independently return to
the main depot after the
last delivery.

- Battery limitation is
considered for drones

Minimize travel costs
for trucks & UAVs

- 50, 100, 150,
200 customers

Heuristic
(adaptive
neighborhood)

[124]
- Capacitated
- Time

windowed

- Both trucks and drones
can deliver parcels

- Trucks and drones leave
and return to the depot
together

- Both travel and waiting
costs are considered

Minimize the
transportation
and waiting costs,
minimize latest
return time

- 10–100 customers
- 600–25 k deliverables by

drone

Heuristic
(non-dominated
sorting GA)

[125] - Capacitated

- Drone may serve
multiple targets per trip

- Battery capacity is
defined based on the load
and speed of drones

- Trucks just act as carriers
- Tradeoff between the

speed and fuel
consumption is
considered

Minimize total route
time

- 25, 50 customers
- 25, 50 depots

Flexible heuristic

4.4. Optional Points

Delivery to optional points quickly became popular in LMD as customers wanted
timely and reliable deliveries. Customers provide multiple optional delivery points for
pickup along with delivery time windows, and then the delivery plan chooses one of
them. This delivery mode can reduce the number of visit locations, mitigate costly de-
tours, and ultimately enhance customer satisfaction while simultaneously minimizing the
environmental impact and overall distribution costs [126–129].

Delivery to an optional point is also named as covering options [130], covering lo-
cations [131], different delivery locations [127], and delivery options [132]. In general, as
shown in Figure 6, customers specify their preferred delivery points. They can prioritize
these points along with their possible time windows. Then, the delivery system determines
the optimal route along with appropriate delivery nodes for customers, considering both
customer preferences and the objectives of the delivery system.

Table 4 summarizes the literature on optional delivery points. While earlier research
does not consider customers’ preferences on delivery points [133], more recent papers
offer customers a broader array of location choices and consider customers’ preferences
over the delivery points for route planning [129,132]. All papers in the table consider the
capacity limit of the fleet. Many references introduce time-windowed constraints (80% of
the papers) and consider additional service times at the delivery point to account for the
temporal aspects of the deliveries. Multiple fleet options are not widely considered except
in two papers [36,131]. Due to the complexity of the solution procedure, the dynamic
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nature of the problem and unpredictability of the influencing factors are not studied in
the literature.
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Table 4. Literature on delivery to optional points.

Ref. Problem Nature Important Considerations Objectives Sample Size Solution
Method

[36]

- Time window
- Capacitated
- Multiple fleet

options

- Both vehicles and ODs
can be used for deliveries

- ODs just take parcels for
home delivery

- ODs and vehicles have
limited capacity but can
take more than one parcel
based on their capacities

- ODs should pick up the
parcels from lockers,
depots, or both before
going to delivery

- Time windows are
considered for home
deliveries

- Service time is
considered

Minimize the
transportation cost
and ODs payment

- 25 customers with
3 alternative nodes, and
25 ODs

Heuristic
(adaptive large
neighborhood
search)

[126]
- Time

windowed
- Capacitated

- Each vehicle can deliver
multiple parcels with
limited capacity and time
for each day

- Optional points have
location-dependent costs

- Lockers, as optional
points, have limited
capacities

- Service time is
considered

Minimize the fixed &
variable costs of
vehicles, and location
cost

- 8 stations for 892 urban
customers

- 18 stations for 1101 rural
customers

Heuristic
(adaptive large
neighborhood
search)

[127]
- Time

windowed
- Capacitated

- Customers can give
multiple locations with
priorities

- Each location is available
in a specific time window

- Each vehicle delivers just
a parcel and returns to
depot

Minimize the cost as
operation cost and
customer priorities

- 10, 25, 50, 100 customers
- 3 options for each

customer

Comparative ad
hoc heuristic
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Table 4. Cont.

Ref. Problem Nature Important Considerations Objectives Sample Size Solution
Method

[128] - Capacitated

- All options for delivery
are automatic lockers

- Lockers have limited
capacities, but vehicles
are big enough not to
consider the capacity
limit

- All vehicles should go
out and come back to the
depot in a specific time
span. The assigned
parcels to each locker
should be carried by at
most one truck

- Service time is
considered for unloading
at each locker

Minimize the fixed &
variable costs of
vehicles, and delivery
penalty

- 500, 1000, 1500 parcels
- 20, 40, 50 lockers

Heuristic (Tabu
search & large
neighborhood
search)

[129] - Capacitated

- Delivery options are
self-pickup from lockers
or home delivery

- Customers’ priorities are
considered

- Some lockers may be
activated for delivery
with some charges

- Vehicles and locker
stations have limited
capacities

Minimize the fixed &
variable costs of
vehicles, maximize
revenue

- 4 to 22 customers

Heuristic
(MCDM &
tailored
mathematics)

[130] - Capacitated

- Delivery to the nearest
locker or customer’s
home

- Home deliveries will be
made from lockers with
bikes

- It is a combination of two
separate problems:
delivery to parcel locker
and sidekick delivery

- There are limited
numbers of bikes and
trucks

Minimize the
traveling and
connection costs

- -

Heuristic
(adaptive large
neighborhood
search)

[132]
- Time

windowed
- Capacitated

- Service time is
considered, as it affects
delivery costs

- Direct delivery or pickup
facility are the two
options

- Direct delivery charges
for customers

- Parcels are delivered to
home during a time
window or sent to a
pickup facility out of
those times

- Vehicles are limited by
capacities and travel
distances

Minimize the travel,
vertical, service, and
penalty costs

- 8–100 customers
- 4–30 vehicles
- 3–15 lockers

Heuristic
(crowding
differential
evolution)
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Table 4. Cont.

Ref. Problem Nature Important Considerations Objectives Sample Size Solution
Method

[134]
- Time

windowed
- Capacitated

- If a delivery cannot be
made in a defined time
window, it will be
delivered to the other
optional point

- Customer priorities are
considered for delivery
points

- Vehicles and lockers, as
optional points, have
limited capacities

Minimize the overall
cost of selected routes

- 25–50 requests
- Average of 1.5 (2) points

of delivery

Exact solve
(branch price and
cut)

[135]
- Time

windowed
- Capacitated

- Vehicles have limited
volumes

- Deliveries should be
made within the required
time

- Deliveries cannot be split
between two vehicles

- Customers can select to
have home deliveries or
pickup from lockers near
them

- For delivery to lockers,
distributors should pay
penalties

Minimize travel costs
and penalty costs

- No. of items 20–20 k
- No. of points 5–200
- No. of vehicles 2–20

Heuristic (hybrid
CLP/MP)

[136]

- Stochastic
- Capacitated
- Time

windowed

- Two delivery options:
home and locker station.

- Travel time is considered
stochastic

- Vehicles have limited
capacities

- Vehicles are allowed to
use limited daily fuel and
should come back to
depot (GVRP)

- Delivery should be made
in a specific time span

Minimize the cost of
travel time

- 30 to 300 customers
- 30, 60, 90, 120 nodes

Heuristic
(two-stage with
large acceptance
strategy

Most researchers use heuristic and metaheuristic approaches to solve the problems,
except [134], which uses an exact solution approach. While the ideal concept of optional
delivery points would allow customers to use any delivery location, all research assumes
only one home address in addition to the pre-determined locker locations. An incentive
system for the delivery to parcel lockers is suggested for higher customer satisfaction and
reduced delivery costs [103].

5. Implications and Future Research

Last-mile delivery (LMD) is a new request for city logistics that resulted from changes
in people’s way of life and expectations along with the development of supporting tech-
nology of computation, communication, and automation. Continuing or even accelerated
global urbanization requires continuous discussion and innovation on LMD.

5.1. Result Summary

This review research identified the problem nature, important considerations, and
solution methods in the LMD literature under four categories: crowdshipping, parcel
lockers, sidekick delivery, and optional delivery points.

- Crowdshipping utilizes sharing economy platforms for parcel delivery. Occasional
drivers make their resources available for parcel delivery, offering cost-effective LMD
solutions. This paradigm thrives on the efficiency and flexibility of the drivers. De-
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spite the highly dynamic and stochastic nature of the problem, these issues have not
been discussed in depth in the literature. Various matching mechanisms have been
proposed.

- Delivery to parcel lockers offers a promising solution for LMD under urban logistics.
Distributors place customers’ parcels in lockers and notify them for pickup. Parcel
lockers are expected to reduce cost and environmental hazards while enhancing
security and privacy. The assignment of customers to parcel lockers is an important
decision for the network design. Various configurations of lockers are proposed:
stationary, temporary, and mobile lockers. Time window consideration for busy areas
is another emerging aspect of profit generation and customer satisfaction.

- Delivery by using sidekicks is a specialized category within LMD, taking full advan-
tage of automation, data communication, and sensor technologies. Main vehicles
carry sidekicks (mostly aerial drones) and parcels to intermediate locations and de-
ploy sidekicks, getting the benefit of multiple fleet modes. Careful coordination of
vehicles is essential. Fleet capacity, battery life, and coverage limitation are considered
important.

- Delivery to optional points invites customers to participate in the delivery planning;
customers offer alternative drop locations for the shippers to choose from. This option
reduces travel distance and distribution costs while enhancing customer satisfaction.
The time window considerations are necessary but difficult during implementation.
While some research emphasizes a tradeoff between logistics costs and customer
satisfaction from nearby and timely pickup, most studies focus on the logistics costs.

This review research noticed that new VRP problems are being formulated to meet
very practical and non-traditional needs in the logistics markets. They include not only
the development of new communication and automation technology, but also cultural
changes in customers’ expectations and active involvement in the distribution process.
The consideration of people engagement in logistics will continue to be an important
consideration in LMD and conventional VRP as well.

5.2. Opportunities for Future Research

The literature survey suggests the need for the following future research in last-mile
delivery studies.

1. Last-mile delivery deals with the B2C (business to customer) model of business, which
involves a high level of dynamism: frequent updates of the problem environment,
including customers’ real-time order changes. The urban condition of delivery and
the use of automated systems make the problem highly stochastic. Considerations of
the dynamic and stochastic nature of the problem environments are needed for more
robust logistics planning.

2. Not only autonomous aerial drones and unmanned trucks, but other possible au-
tonomous devices have distinct characteristics of service: speed, size, geographical
barriers, and coverage spans. The reliability of the units and local intelligence to
cope with unexpected circumstances along with the improvement in the technical
characteristics are challenging. The development and creative use of delivery modes
will significantly enhance logistics efficiency, especially for urban logistics.

3. Most studies use simulated data. Rigorous integration of academic models and
transactional data will improve the validity of the LMD models. Data gathering
becomes more challenging, especially to reflect the diverse characteristics of different
areas and people.

4. Comprehensive assessments of the environmental impact of various LMD approaches
in all four categories of LMD configurations are needed to understand their sus-
tainability implications. People understand that vehicles are responsible for a large
portion of pollution. Different delivery approaches may help or harm the environ-
ment. Holistic considerations of pollutants generated by both customers and delivery
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systems as well as pollution from energy production and the consumption life cycle
are warranted.

5. Individuals are willing to help both the supply and demand sides of city logistics
by serving as ODs (occasional driers) and providing optional delivery points. The
development of various business models utilizing individuals and careful operational
planning will improve both customer satisfaction and firms’ profitability.

6. The routing problem in LMD is computationally difficult. Innovative ways of using
big data analytics, AI-based procedures, heuristic/metaheuristic approaches, and
exact solution approaches along with their hybrid methods are warranted.
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