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Abstract: The use of deep learning methods to extract buildings from remote sensing images is a
key contemporary research focus, and traditional deep convolutional networks continue to exhibit
limitations in this regard. This study introduces a novel multi-feature fusion network (MFFNet),
with the aim of enhancing the accuracy of building extraction from high-resolution remote sensing
images of various sources. MFFNet improves feature capture for building targets by integrating
deep semantic information from various attention mechanisms with multi-scale spatial information
from a spatial pyramid module, significantly enhancing the results of building extraction. The
performance of MFFNet was tested on three datasets: the self-constructed Jilin-1 building dataset, the
Massachusetts building dataset, and the WHU building dataset. Notably, experimental results from
the Jilin-1 building dataset demonstrated that MFFNet achieved an average intersection over union
(MIoU) of 89.69%, an accuracy of 97.05%, a recall rate of 94.25%, a precision of 94.66%, and an F1
score of 94.82%. Comparisons with the other two public datasets also showed MFFNet’s significant
advantages over traditional deep convolutional networks. These results confirm the superiority of
MFFNet in extracting buildings from different high-resolution remote sensing data compared to other
network models.

Keywords: high-resolution; multi-feature fusion network; building extraction; deep learning

1. Introduction

Building extraction using high-resolution remote sensing images is a current focus
in research. High-resolution remote sensing imaging can achieve commendable results in
geographical mapping, coastline extraction, land classification, and geological disaster mon-
itoring. Shao, Z. et al. summarized the latest advancements in extracting urban impervious
surfaces using high-resolution remote sensing images and provided recommendations for
high-resolution imagery [1]. Cheng, D. et al. applied deep convolutional neural networks to
the land–sea segmentation problem in high-resolution remote sensing images, significantly
improving the segmentation results [2]. Investigating land use monitoring, Zhang, B. et al.
achieved favorable outcomes using a framework based on conditional random fields and
fine-tuned CNNs [3]. Park, N.W. et al. also employed high-resolution remote sensing
images to assess landslide susceptibility [4]. High-resolution remote sensing datasets have
become widely used in the remote sensing field and can primarily be categorized into
drone remote sensing and satellite remote sensing varieties. Both types of high-resolution
remote sensing images offer satisfactory display results. The aerial imagery is clearer since
drone remote sensing images can be captured more flexibly, effectively avoiding weather
impacts. Researchers such as Qiu, Y. et al. and Wang, H. et al. have preferred using high-
resolution drone remote sensing images to build extraction [5,6]. In practical applications,
issues regarding UAV remote sensing coverage and aerial photography costs must still be
resolved. Satellite remote sensing images provide large-area coverage, enabling long-term
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monitoring of large territories in the process of urbanization. However, the quality of the
images is still insufficient compared with aerial images. Since the two data sources are
inconsistent, some methods of building extraction are difficult to simultaneously consider.

The extraction of buildings from remote sensing images was initially based on the
features of the buildings. Sirmaçek, B. et al. utilized the color, shape, texture, and shadow
of buildings for extraction [7]. This method primarily relies on the features of facilities
for extraction, making it inefficient and imprecise. As such, it requires personnel with
extensive professional knowledge. In the early 21st century, the concept of machine learning
was introduced into remote sensing. Chen, R. et al. significantly improved the results
of building extraction by designing unique feature maps and using random forest and
support vector machine algorithms [8]. Using the random forest algorithm, Du, S.H. et al.
achieved the semantic segmentation of buildings by combining features such as the image’s
spectrum, texture, geometry, and spatial distribution [9]. Although traditional machine
learning methods have improved segmentation accuracy, the manual selection of essential
features remains an inevitable challenge [10].

Deep learning models have addressed the issue of feature selection inherent in tra-
ditional machine learning, and many researchers are keen on using deep convolutional
networks for building extraction. Huang, L. et al. designed a deep convolutional network
based on an attention mechanism [11]. They significantly improved the rough-edge segmen-
tation of buildings in high-resolution remote sensing images drawn from the WHU dataset.
Wang, Y. et al. added a spatial attention mechanism to the intermediate layers of the deep
convolutional network and adopted a residual structure to deepen the network [12]. This
method achieved higher accuracy on the WHU and INRIA datasets than other mainstream
networks. Liu, J. et al. proposed an efficient deep convolutional network with fewer
parameters for building extraction and this model achieved commendable results on the
Massachusetts and Potsdam datasets [13]. The segmentation accuracy of traditional deep
convolutional networks for high-resolution remote sensing images of buildings needs to be
further improved, and the details of the segmentation results are not sufficient. To address
this, we designed a small-sample deep convolutional network tailored for high-resolution
remote sensing imagery, achieving the precise extraction of buildings from high-resolution
remote sensing images from different sources. To validate our model’s adaptability to
various high-resolution remote sensing images, we conducted tests on a self-built Jilin-1
dataset and two publicly available high-resolution remote sensing datasets.

The main contributions of this paper are as follows: we introduced semantic segmen-
tation models related to remote sensing applications in the Related Work section. Based
on the advantages of these models, we designed a multi-feature fusion net (MFFNet) and
tested it against traditional convolutional networks for assessing three different datasets.
Whether in terms of MIoU, accuracy, or F1 score, MFFNet outperformed other models. In
the discussion section, we elaborated on the advantages and disadvantages of MFFNet com-
pared to other traditional models and contrasted it with ViT (visual transformer) models.
Through comparisons between different models, we validated the superiority of MFFNet.

2. Related Work
2.1. Development of DCNNs

In the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), AlexNet
triumphed with an error rate significantly lower than that of other competing models,
marking the rise of deep learning in image classification [14]. Subsequently, deeper convo-
lutional neural networks, such as VGG [15], shone brightly in the visual domain. However,
in traditional deep neural networks, increasing the depth of the network might lead to
issues such as vanishing gradients and exploding gradients, making the training of the
network challenging. GoogLeNet introduced the inception block to widen the network,
ensuring more comprehensive information extraction and significantly improving classifi-
cation accuracy [16]. The idea behind the inception block shifted researchers’ focus from
increasing network depth to achieving better results, although deeper networks remain
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the primary method of obtaining deep features. Nevertheless, in deeper structures, as
information propagates across multiple layers, gradients might diminish over time, leading
to minuscule updates in network weights and resulting in a decline in network perfor-
mance. ResNet effectively addressed this issue with the design of residual blocks [17].
ResNet introduced the concept of residual blocks to tackle the degradation problem in deep
neural networks, enabling the network to efficiently learn deep feature representations.
This innovation has significantly impacted the successful application of deep learning in
fields such as computer vision.

To address the shortcomings of traditional computer vision methods in pixel-level
segmentation tasks, earlier researchers drew inspiration from the characteristics of clas-
sification networks. In 2015, Long, J. et al. first introduced the FCN (fully convolutional
network) concept for per-pixel classification tasks [18]. FCN eliminated the fully connected
layers found in classification networks, extending the convolutional neural network to han-
dle input images of any size and output pixel-level segmentation results. The introduction
of FCN marked a breakthrough in deep learning in semantic segmentation. It realized
end-to-end feature learning and segmentation, greatly simplifying the entire process. FCN
has been widely applied in various domains, including medical image segmentation,
autonomous driving, and satellite image analysis [19].

End-to-end semantic segmentation networks have been widely adopted, and these
methods have evolved from the foundational FCN. This includes prominent networks such
as SegNet [20], UNet [21], the Deeplab [22,23] series, and PSPNet [24]. SegNet introduced
the encoder–decoder structure and employed skip connections and hierarchical softmax
for pixel classification, aiming to retain more detailed information. UNet, with its encoder–
decoder and skip connection architecture, improved classification accuracy when applied
to small datasets, leading to its widespread use in scientific research. Subsequent variations,
including UNet++ and others, have also become classic models in semantic segmentation.
However, the UNet series is not without its limitations. As training iterations increase, the
network may experience degradation, and UNet struggles to achieve satisfactory results
when segmenting complex categories. Addressing the challenges of complex segmentation
categories, both DeeplabV3+ and PSPNet introduced a pyramid structure to handle features
of different scales. This design aims to capture contextual information from various scales,
better addressing different object sizes and details within images. In summary, these
networks, primarily designed for semantic segmentation, have been widely recognized
and accepted across various domains.

2.2. DCNN in the Remote Sensing Domain

In recent years, an increasing number of deep learning methods have been applied
to remote sensing image segmentation. Although the evolution of deep convolutional
networks in remote sensing has been rapid, most of these models are variants of traditional
segmentation networks. Li, X. et al. found that small objects tend to be overlooked when
applying Deeplabv3+ to drone datasets. As a result, they proposed EMNet, which is
based on edge feature fusion and multi-level upsampling [25]. Wang, X. et al. achieved
promising results when applied to high-resolution remote sensing images using a joint
model constructed from improved UNet and SegNet [26]. Daudt, R.C. et al. employed a
structure similar to FCN with skip connections, merging the image representation infor-
mation and global information of the network, and achieving more accurate segmentation
precision [27]. Multi-level cascaded networks have also been widely adopted. Chen, Z.
et al. introduced a method similar to Adaboost, cascading multiple lightweight UNets. The
results demonstrated higher accuracy than those obtained with a single UNet [28].

In addition to improvements in some standard networks, the attention mechanism of
DCNN has also caught the attention of researchers. Such methods utilize transformations
of different scales to extract multi-scale features of segmentation targets. Chen, H. et al.
enhanced the UNet structure by adding a SE (squeeze-and-excitation) module [29], allowing
the network to focus more on the most crucial feature maps in the upsampling section,
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thereby improving landslide detection results [30]. Yu, Y. et al. also used the channel
attention mechanism to achieve impressive results in building extraction [31]. Eftekhari,
A. et al. incorporated both channel and spatial attention mechanisms into the network to
address the issues of inadequate boundary and detail extraction in building detection from
drone remote sensing images [32]. In summary, DCNN and its variants have been widely
accepted by scholars in the remote sensing domain [33].

To recap and summarize, the current methods deployed to enhance segmentation
accuracy in the remote sensing domain are as follows:

(i) Employing skip connections to link the encoder and decoder modules of the network,
effectively merging global and local features.

(ii) Adopting the spatial pyramid approach, capturing semantic information of different
scales through receptive fields of varying sizes, as seen in modules such as ASPP
(atrous spatial pyramid pooling) and SPP (spatial pyramid pooling).

(iii) Integrating attention mechanisms, allowing the network to fuse information across
multiple scales.

(iv) Enhancing the model using multi-level cascading methods. However, this is achieved
under the cascade of various networks and does not necessarily indicate an enhance-
ment in the segmentation accuracy of a single network.

2.3. Datasets

In order to verify the effectiveness of our deep convolutional network on different
high-resolution remote sensing images, we used three high-resolution remote sensing
datasets for the experiments. One was the Jilin-1 satellite high-resolution remote sensing
dataset we produced, and the images were derived from Jilin-1 satellite remote sensing
images; another was the Massachusetts building remote sensing dataset derived from aerial
images; and the last set was the fusion of drone and satellite high-resolution large-scale
remote sensing WHU datasets.

2.3.1. Jilin-1 Dataset

The Jilin-1 dataset is a satellite dataset that we constructed ourselves. Jilin-1 satellite
remote sensing images possess characteristics such as high resolution and wide swath,
being capable of obtaining high-definition remote sensing imagery with a panchromatic
resolution better than 0.75 m, a multispectral resolution better than 3 m, and a swath width
exceeding 40 km. Compared to drone remote sensing images, the Jilin-1 high-resolution
remote sensing images can rapidly capture large-area land object information.

The study area for the dataset was designated as the Chang’an District of Xi’an City,
China (Figure 1). This region boasts a thriving economy, a high degree of urbanization,
and diverse building types. Regarding area delineation, we aimed to select regions where
buildings are relatively concentrated, particularly in the urban city center. The chosen date
for the imagery was 13 July 2023, a day with clear weather, which minimizes the impact of
weather conditions on image quality.

We fused the panchromatic and multispectral images of the study area to obtain
remote sensing images with a spatial resolution of 0.75 m. The images had three channels:
red, green, and blue. In addition, with pixel values ranging from 0 to 255. We selected
16 areas with a high concentration of buildings to annotate the samples, ensuring a diverse
range of building types and avoiding areas with too few building categories. We used a
sliding window approach to segment the images and labels into samples of size 256 × 256.
All samples were then divided into training, validation, and testing sets at a ratio of 8:1:1.
This resulted in 4005 training images, 500 validation images, and 502 testing images.

Our dataset presents challenges for segmentation networks. The Jilin-1 remote sensing
images are captured at a certain tilt angle, resulting in large shadow areas obscuring
buildings. Additionally, the side contours of buildings are clearly visible. Drawing from
the annotation standards of other public datasets and real-world cases, our annotation
process disregarded shadow obstructions. At the same time, we considered precise side
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contours to be part of the building. The segmentation considered the entire building in the
2D image, as opposed to just the rooftop area. Furthermore, factors such as atmospheric
radiation impacted the imaging of Jilin-1.
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2.3.2. Massachusetts Building Dataset

The public Massachusetts building dataset is used by a large number of scholars [34,35].
The Massachusetts buildings dataset consists of 151 aerial images of the Boston area. Each
image is 1500 × 1500 pixels and covers an area of 2.25 square kilometers. The entire dataset
covers approximately 340 square kilometers. The image is clearly captured, with some
shadow-related obstruction. The data are divided into a training set of 137 images, a test
set of 10 images, and a validation set of 4 images. In order to prevent the GPU memory
from overflowing during the training process, the Massachusetts building dataset was
sliced. We used sliding windows to cut the training, verification, and test sets into multiple
512 × 512 images.

2.3.3. WHU Building Dataset

The WHU building dataset is a large-scale remote sensing dataset comprising both
drone and satellite image datasets [36]. The drone dataset consists of over 220,000 individual
buildings from Christchurch, New Zealand. These buildings were extracted from drone
images with a spatial resolution of 0.075 m, covering an area of 450 km2. Most aerial images
(including 187,000 buildings) were downsampled to a ground resolution of 0.3 m and then
cropped into 8189 tiles of 512 × 512 pixels each.

The satellite image dataset is made up of two subsets. One subset was collected
from cities worldwide and various remote sensing resources, including QuickBird, the
Worldview series, IKONOS, ZY-3, and more. The other satellite building subset comprises
six adjacent satellite images, covering 550 square kilometers in East Asia with a ground res-
olution of 2.7 m. The satellite image dataset was also cropped into tiles of 512 × 512 pixels.
Without further processing, we directly used the cropped datasets from WHU, which were
already divided into training, validation, and testing sets.
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3. Model and Evaluation Metrics
3.1. MFFNet

We designed the multi-feature fusion net (MFFNet), a network structure capable of fus-
ing multiple features. The fused features include the representational information extracted
from shallow convolutional blocks, the semantic information from deep convolutional
blocks, and the semantic information extracted from various attention mechanisms and
spatial pyramid modules. The representative information retains the geometric shape of
the segmentation target, while the semantic information retains information such as the
target’s spatial position. The detailed model diagram is shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20 
 

resolution of 2.7 m. The satellite image dataset was also cropped into tiles of 512 × 512 
pixels. Without further processing, we directly used the cropped datasets from WHU, 
which were already divided into training, validation, and testing sets. 

3. Model and Evaluation Metrics 
3.1. MFFNet 

We designed the multi-feature fusion net (MFFNet), a network structure capable of 
fusing multiple features. The fused features include the representational information ex-
tracted from shallow convolutional blocks, the semantic information from deep convolu-
tional blocks, and the semantic information extracted from various attention mechanisms 
and spatial pyramid modules. The representative information retains the geometric shape 
of the segmentation target, while the semantic information retains information such as the 
target’s spatial position. The detailed model diagram is shown in Figure 2. 

 
Figure 2. MFFNet model architecture. 

The multi-feature fusion net (MFFNet) accepts a three-channel remote sensing image 
as input. MFFNet is composed of an encoder and a decoder. The encoder of MFFNet in-
cludes two parts: the deep semantic information extraction module and the multi-scale 
spatial semantic extraction module. The deep semantic information extraction module can 
extract deep features through multiple convolutional layers and attention mechanisms 
and skip-connects the shallow representational information to the decoder. The multi-
scale spatial semantic extraction module extracts features from images of different scales 
through atrous spatial pyramid pooling (ASPP). The decoder consists of upsampling and 
feature fusion modules, and is used with the primary goal of restoring the size of the seg-
mented image and fusing various feature information from the encoder. 

In the deep semantic information extraction module, after four sets of identical fea-
ture extraction operations, a learnable self-attention feature extraction is performed to en-
hance the effect of deep semantic information extraction. The image size is downsampled 
by 1/2 via max pooling between every two sets of identical feature extraction operations. 
In each set of feature extraction operations, the feature map goes through a convolutional 
layer 1, three residual convolution blocks, and a spatial attention extraction block. 

Figure 2. MFFNet model architecture.

The multi-feature fusion net (MFFNet) accepts a three-channel remote sensing image
as input. MFFNet is composed of an encoder and a decoder. The encoder of MFFNet
includes two parts: the deep semantic information extraction module and the multi-scale
spatial semantic extraction module. The deep semantic information extraction module can
extract deep features through multiple convolutional layers and attention mechanisms and
skip-connects the shallow representational information to the decoder. The multi-scale
spatial semantic extraction module extracts features from images of different scales through
atrous spatial pyramid pooling (ASPP). The decoder consists of upsampling and feature
fusion modules, and is used with the primary goal of restoring the size of the segmented
image and fusing various feature information from the encoder.

In the deep semantic information extraction module, after four sets of identical feature
extraction operations, a learnable self-attention feature extraction is performed to enhance
the effect of deep semantic information extraction. The image size is downsampled by
1/2 via max pooling between every two sets of identical feature extraction operations. In
each set of feature extraction operations, the feature map goes through a convolutional
layer 1, three residual convolution blocks, and a spatial attention extraction block. Convo-
lutional layer 1 includes a 3 × 3 convolution operation, batch normalization, and a ReLU
activation function operation. During the convolution process, the size of the feature map
remains unchanged. Except for the convolutional layer 1 in the first group, which maps
the original three-band image to a 32-channel feature map, the convolutional layer 1 in
other groups doubles the number of feature maps. In the residual convolution block, the
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input feature map is directly added to the feature map obtained after two sets of identical
3 × 3 convolution operations, BathNormalize, and ReLU activation functions. Then, a
ReLU nonlinear activation is performed to obtain the output of the residual convolution
block (Figure 3). Our designed spatial attention extraction block is shown in Figure 4.
First, the input feature map X separately calculates the average and maximum values on
the channel dimension. After concatenating the calculation results, the map undergoes a
3 × 3 convolution operation to change the channel dimension to 1. The sigmoid nonlin-
ear activation function is converted into a weight value, which is then multiplied by the
input feature map to obtain the output result of the spatial attention block (Equation (1)).
The learnable self-attention feature extraction operation contains a self-attention learning
module and residual convolution blocks before and after this module. The self-attention
learning module is shown in Figure 5. First, the batch feature map X goes through q, k, and
v, which are three different 1 × 1 convolutions, to change the scale, obtaining three different
sets of matrices: Wq, Wk, and Wv. These three different matrices can all be regarded as
multi-channel feature maps. The original feature map dimension before the self-attention
learning module is (B,C*H,W). After q processing, the dimensions become (B,H*W,C/8)
for Wq, (B,C/8,H*W) for Wk after k processing, and (B,C,H*W) for Wv after v processing.
Wq and Wk are matrix-multiplied on the channel dimension to obtain the matrix qk. After
the matrix qk goes through the softmax layer to obtain the weight value between the two
feature maps, it is matrix-multiplied with Wv on the channel dimension and returns to
the original batch feature map size to obtain the matrix qkv. Finally, the matrix qkv is
multiplied by the learnable parameter gamma and the product is added to the original
input feature map after the self-attention learning module to obtain the result. The initial
value of the learnable parameter gamma is 1. As training progresses, the gamma parameter
adaptively obtains the optimal gamma value within the learnable range (Equation (2)).

Output = sigmoid(conv3 × 3(concatenate(mean(X), max(X))))× X (1)

where Output is the output feature map, conv3 × 3 is a 3 × 3 convolution, and concatenate
represents splicing in the same dimension.

Attention = gamma × so f tmax
(

Wq ×
(

Wk
)T

)
× Wv + X (2)

where Attention represents the output feature map, gamma is a learnable parameter, X
represents the input feature map, and Wq, Wv, and Wk are conditional feature maps
generated through deformation.
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The multi-scale spatial semantic extraction module differs from the deep semantic
information extraction module in that the latter does not downsample and will not cause
changes in the feature map size. The deep semantic information extraction module branches
the feature map before the spatial attention block of the first operation of the multi-scale
spatial semantic extraction module, obtaining a feature map parallel to the deep semantic
information extraction module. This feature map will go through two consecutive residual
convolution blocks and then be connected to an atrous spatial pyramid pooling (ASPP)
block. The specific structure of ASPP blocks is shown in Figure 6. The feature map entering
ASPP blocks will undergo five parallel operations. These five operations are a 1 × 1
convolution, three 3 × 3 convolutions with dilation rates of 6, 12, and 18, respectively, and
a global average pooling followed by a 1 × 1 convolution and upsampling. The results of
these five parallel operations are concatenated and then passed through a 3 × 3 convolution,
after which they are subjected to batch normalization and a ReLU activation function.
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The decoder part of MFFNet consists of an upsampling layer, convolutional layer,
multi-feature concatenation layer, and segmentation output layer. The upsampling layer,
convolutional layer, and multi-feature concatenation layer together form a group. To in-
tegrate multi-scale features, it is ensured that the number of groups in the decoder is the
same as in the encoder. The upsampling layer in the decoder uses a 2 × 2 transposed
convolution, followed by batch normalization and a ReLU activation function. The convo-
lutional layer includes a 3 × 3 convolution operation, batch normalization, and a ReLU
activation function. Before ReLU activation, a dropout layer with a rate of 0.5 is added
to prevent overfitting. After this convolutional layer, the image size remains unchanged,
but the number of feature map channels is reduced to half of the input. The multi-feature
concatenation layer concatenates the feature map from the corresponding spatial attention
extraction block in the encoder with the feature map after upsampling and convolution.
Notably, the fourth group of the multi-feature concatenation layer concatenates the feature
map extracted from the encoder of the corresponding size, the feature map after multi-scale
spatial semantic extraction, and the feature map after upsampling and convolution. After
undergoing four similar group operations, two sets of 3 × 3 convolutions, batch normaliza-
tion, and ReLU activations are applied. The original feature map number is compressed
to one-third in the first convolutional layer. The second convolutional layer changes the
output feature map number to the number of categories during pixel-level classification.
After these two convolutions, the softmax layer is used to obtain the segmentation result,
which is then compared with the actual annotated data to calculate the loss value via the
loss function.

3.2. Evaluation Metrics

For a comprehensive evaluation of model performance, we employed six commonly
used metrics in semantic segmentation: MIOU (mean intersection over union), PA (pixel
accuracy), precision, recall, F1-score, and kappa. The calculation of these six metrics is
aided by the binary confusion matrix (Figure 7). First, we consider buildings as positive and
the background as negative. TP (true positive) represents samples predicted to be positive
and labeled as positive. FN (false negative) represents samples predicted as negative but
labeled positive. FP (false positive) represents samples predicted as positive but labeled
as negative. TN (true negative) represents samples predicted as negative and labeled as
negative. In the metric calculation process, both buildings and backgrounds are considered
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positive instances and negative instances, respectively, and their average values are used
to determine MIOU, precision, recall, and F1-score. However, for the accuracy and kappa
metrics, the results remain consistent regardless of whether a particular target is considered
a positive or negative instance, as determined via the inherent calculation equation.
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The detailed evaluation index is described as follows:

IoU =
TP

TP + FN + FP
(3)

MIoU =
1
N ∑(IoUclass) (4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 − score =
2 × Precision × Recall

Precision + Recall
(8)

Po =
TP + TN

TP + TN + FP + FN
(9)

Pe =
(TP + FN)× (TP + FP) + (FN + TN)× (FP + TN)

(TP + TN + FP + FN)2 (10)

Kappa =
Po − Pe
1 − Pe

(11)

where TP represents samples predicted as positive and labeled as positive, FN represents
samples predicted as negative but labeled as positive, FP represents samples predicted
as positive but labeled as negative, and TN represents samples predicted as negative and
labeled as negative. IoUclass represents the IoU of each type.
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MIoU reflects the ratio of the pixel intersection to the union between the predicted
results and the actual annotations, indicating the degree of pixel overlap between the
predictions and the ground truth. Accuracy measures the proportion of pixels correctly
classified by the model in pixel-level classification tasks; precision quantifies the number of
samples correctly classified into the positive category in pixel-level classification tasks; and
recall assesses the model’s capability to identify positive category samples in pixel-level
classification tasks. To provide a comprehensive evaluation of both precision and recall, the
F1-score is employed to harmonize the significance of precision and recall; and kappa is a
metric used to evaluate the consistency of pixel-level classification tasks. Considering the
influence of random allocation, besides the mentioned evaluation using the above metrics,
the final imaging results of the output images are also considered. Given that there might
be a small number of mislabeled pixels during sample annotation, the display of imaging
results can help us to evaluate a model’s ability to resist noise.

4. Results
4.1. Experimental Environment and Configuration

During the experiment, in addition to the proposed model, we also compared four
segmentation models commonly used in remote sensing: UNet, UNet++, PSPNet, and
DeepLabV3+. PSPNet and DeepLabV3+ use Resnet50 as the feature extraction module in
their encoder parts to achieve better segmentation results. Throughout the experimental
process, we trained the models using the training set of each dataset. Within a fixed number
of iterations, we identified the best MioU index through the validation set to save the model
parameters. Ultimately, we tested the trained models on the test set and compared the
evaluation metrics across different models. Moreover, during the training process, each
image had a 70% probability of undergoing horizontal and vertical flipping and random
90◦ rotations to perform data augmentation on the training set. No additional processing
was conducted for testing and validation.

We use the PyTorch framework to implement our model. The version number of
PyTorch is 1.13.1. The initial learning rate is 0.0001, and the models are trained within
100 epochs. The learning rate drops to 0.00002 after 50 cycles. The optimizer we use is
Adam, and the loss function is cross-entropy loss. In addition, all programs use a consistent
random seed number 707.

In terms of hardware, we use a single CPU (12th Gen Intel(R) Core(TM) i5-12400F)
and two GPUs (GeForce RTX 3060 12 G) to accelerate training. Our memory is 32 G, and
the hard drive capacity is 1.5 T.

4.2. Experimental Results
4.2.1. Jilin-1 Dataset

We visualized the results after segmentation, as shown in Figure 8. We displayed eight
sets of typical images to observe the segmentation differences among various models. The
red rectangular boxes highlight the areas we focused on for comparison. Sets 1, 2, 3, and
6 demonstrate that the edges of the segmentation targets subjected to MFFNet are regular
and continuous. In contrast, networks such as UNet, UNet++, PSPNet, and DeepLabV3+
tend to misclassify or omit boundaries, resulting in irregular geometries at the edges. Sets 4
and 7 show that when segmenting buildings of different sizes, MFFNet can better delineate
smaller structures than other networks, which often confuse multiple small targets. Set
8 reveals that MFFNet still achieves commendable results when segmenting very small
targets in a satellite image. This indicates that MFFNet can achieve excellent segmentation
results for buildings of various sizes and accurately delineate the edges of structures.
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We evaluated the segmentation results of various networks using the assessment
metrics. MFFNet outperforms the comparison networks in MIoU, achieving an MIoU of
89.69%, which is 3.03%, 3.58%, 4.63%, and 2.72% higher than those values obtained via
UNet++, UNet, PSPNet, and DeepLabV3+, respectively. The accuracy value reaches 97.05%,
which surpasses UNet++, UNet, PSPNet, and DeepLabV3+ by 1.59%, 1.39%, 1.65%, and
0.93%, respectively. The precision, recall, and F1-score values reached 94.66%, 94.25%, and
94.82%, respectively, all of which are superior to the values of the comparison networks.
As illustrated in Table 1, MFFNet achieves the best results across all evaluation metrics,
including the Kappa metric. MFFNet exhibits exemplary segmentation performance when
applied to the Jilin-1 building dataset.

Table 1. Segmentation Results on the Jilin-1 Dataset.

Model MIoU Accuracy Precision Recall F1-Score Kappa

UNet++ 86.66% 95.46% 92.91% 92.70% 92.85% 90.21%
UNet 86.51% 95.66% 92.81% 92.53% 92.68% 90.05%

PSPNet 85.06% 95.40% 91.26% 92.16% 91.81% 89.06%
DeepLabV3+ 86.97% 96.12% 93.01% 92.74% 92.99% 90.48%

MFFNet 89.69% 97.05% 94.66% 94.25% 94.82% 92.63%
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4.2.2. Massachusetts Building Dataset

We observed that some conventional networks, when applied to the Massachusetts
building dataset, tend to inaccurately segment boundaries, as illustrated in groups 1, 2,
and 5 (Figure 9). Traditional segmentation models often merge small buildings, whereas
MFFNet mitigates this issue. For buildings located in shadowed areas, MFFNet also
achieves effective segmentation, as shown in groups 3 and 7. The fourth and sixth groups
of images collectively attest to MFFNet’s proficiency in delineating the edges of buildings,
even for smaller targets. The eighth group demonstrates that UNet and UNet++ are
prone to misclassifying terrain with similar characteristics to buildings, while PSPNet,
DeepLabV3+, and MFFNet can avoid this phenomenon. These sets of images indicate that
MFFNet is capable of independently segmenting each small building in densely populated
areas, and MFFNet can alleviate the impact of complex environments, such as shadows, on
building segmentation.
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senting a set of images segmented by different models. The green rectangles highlight areas of
particular interest.

As shown in Table 2, our model achieved the best results and far outperformed other
models. MFFNet’s MIoU and accuracy reached 81.76% and 94.00% on the Massachusetts
building dataset, respectively. It was 1.12% and 0.4% higher than UNet++’s MIoU and
accuracy, 1.4% and 0.52% higher than UNet’s MIoU and accuracy, 5.57% and 1.95% higher
than PSPNet’s MIoU and accuracy, and 1.95% higher than DeepLabV3+. The MIoU and
accuracy were 3.68% and 1.26% higher. In addition, MFFNet’s precision, recall rate, F1-
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score, and kappa indicators were also higher than those of the other models, which were
94.66%, 94.25%, 94.82%, and 92.63%, respectively.

Table 2. Segmentation Results on the Massachusetts Dataset.

Model MIoU Accuracy Precision Recall F1-Score Kappa

UNet++ 80.64% 93.60% 87.94% 89.76% 88.79% 86.54%
UNet 80.36% 93.48% 87.50% 89.94% 88.58% 86.32%

PSPNet 76.19% 92.05% 84.70% 87.18% 85.48% 82.74%
DeepLabV3+ 78.08% 92.74% 85.49% 88.92% 86.99% 84.47%

MFFNet 81.76% 94.00% 89.02% 90.11% 89.50% 87.43%

4.2.3. WHU Building Dataset

As shown in Figure 10, with a large amount of sample data, various models achieve
commendable segmentation results in groups 4, 5, and 8. However, MFFNet has a distinct
advantage in terms of capturing the contours of smaller structures. In the annotations of
group 7, none of the five networks accurately segmented the entire tiny house. However,
MFFNet delineated a portion of the house’s area, while the other models categorized it
as background. Simultaneously, UNet++, UNet, PSPNet, and DeepLabV3+ mistakenly
segmented the complex background below as a building. In groups 2, 3, and 6, UNet++,
UNet, PSPNet, and DeepLabV3+ all exhibited varying degrees of misclassification. In
group 1, at the corner of the building, the manual annotation was at a right angle. However,
intuitively, it can be determined that the original image had a certain degree of curvature.
The segmentation results of all five networks seem more in line with reality than the
manual annotation.

Table 3 presents the evaluation metrics for each model on the WHU dataset. The MIoU
of MFFNet stands at 91.82%, with an accuracy of 98.73%, a precision of 95.69%, a recall
rate of 95.50%, an F1-score of 96.22%, and a kappa value of 94.22%. Compared to other
models, MFFNet’s MIoU surpasses UNet++, UNet, PSPNet, and DeepLabV3+ by 0.94%,
1.18%, 2.15%, and 0.70%, respectively. Furthermore, MFFNet’s accuracy exceeds that of
UNet++, UNet, PSPNet, and DeepLabV3+ by margins of 0.19%, 0.23%, 0.51%, and 0.21%,
respectively. It is evident that, while MFFNet’s MIoU and accuracy are marginally superior
to those of other models, the distinctions are not substantial for other evaluation metrics.
When applied to the WHU building dataset, it is apparent that MFFNet’s segmentation
capability is superior to that of traditional remote sensing segmentation models.

Table 3. Segmentation Results on the WHU Dataset.

Model MIoU Accuracy Precision Recall F1-Score Kappa

UNet++ 90.88% 98.54% 95.40% 94.63% 95.82% 93.53%
UNet 90.64% 98.50% 95.23% 94.64% 95.61% 93.38%

PSPNet 89.67% 98.22% 93.66% 95.18% 95.05% 92.74%
DeepLabV3+ 91.12% 98.52% 95.23% 95.09% 95.88% 93.89%

MFFNet 91.82% 98.73% 95.69% 95.50% 96.22% 94.22%
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5. Discussion

Our experiments on three datasets showed that MFFNet delivers impressive results
in the extraction of buildings. There were slight variations in the segmentation results
of MFFNet across these three datasets, which could be attributed to the differences in
building materials and scales in different regions. However, when compared to other
deep convolutional networks on the same dataset, MFFNet consistently achieved the
best segmentation results. This indicates that MFFNet can be effectively used to extract
buildings from high-resolution remote sensing images of various sources.

When working on the Jilin-1 dataset, since this dataset was manually annotated based
on satellite images, some buildings in the images were difficult to identify, leading to
various degrees of mislabeled results or omitted labels becoming mixed into the training,
validation, and test sets. Among the five comparison models, MFFNet achieved the highest
evaluation metrics (as shown in Figure 11), indicating that MFFNet possesses superior noise
resistance. Even when the training, validation, and test sets contain certain noise levels,
MFFNet still delivers superior segmentation results on complex buildings. As illustrated
in group 3 of Figure 8, we highlighted a rectangular area in the original image where the
top of the building was slightly covered by vegetation. MFFNet segmented the target
more accurately than other models. Satellite data cannot provide more apparent detailed
expressions, and other comparison networks tend to mistakenly segment the middle road as
part of the building, whereas MFFNet largely avoids this issue. Additionally, the shooting
angle of satellite remote sensing images is not vertical, resulting in larger shadows of
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buildings. MFFNet can accurately segment buildings under shadows. Due to various
factors affecting satellite remote sensing images, their imaging quality is inferior compared
to drone data, leading to slight noise in the data. The experiments show that MFFNet can
mitigate the impact of noise on segmentation results, making MFFNet highly effective for
extracting buildings from high-resolution satellite remote sensing images.
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As shown in Figure 12, MFFNet achieved the best evaluation metrics in the multi-
model comparison applied to the Massachusetts dataset. The UNet series networks also
commendably performed, with their evaluation metrics consistently surpassing those of
networks characterized by spatial pyramid structures. As can be observed from Figure 9,
networks with spatial pyramid structures tend to produce “sticky” results when segmenting
the Massachusetts building dataset, where buildings are often merged. This phenomenon
might be attributed to the high density and quantity of buildings within the spatial scope
of the Massachusetts dataset. The spatial pyramid structure struggles to capture the in-
formation of these small buildings, whereas the UNet series networks excel at integrating
semantic information from different scales, effectively extracting the buildings. This ca-
pability is one of the reasons why the UNet series networks have garnered widespread
attention among researchers. MFFNet, possessing both the characteristics of the spatial
pyramid structure and the UNet series networks, achieves higher accuracy than the UNet
series networks, making it highly effective for extracting buildings from high-resolution
remote sensing images.

The WHU building dataset comprises high-resolution satellite remote sensing images
and drone high-resolution remote sensing images. Moreover, it is a large-scale remote
sensing dataset. Supported by big data, the segmentation performance of each network is
commendable (as shown in Figure 13). However, MFFNet has a more distinct segmentation
advantage. On the one hand, MFFNet can fuse multiple features, delineating more accurate
building boundaries. Conversely, MFFNet can extract deep features that other models fail
to capture, reducing misclassifications and omissions. It can be said that MFFNet achieves
outstanding segmentation results on large-scale integrated building datasets.
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Our model encounters challenges in comprehensively segmenting small objects in
complex scenes. When applied to the Massachusetts dataset, due to the dense and small-
sized buildings, some small-scale structures are easily overlooked. Similarly, on the WHU
building dataset, fine details of small building contours are often missed. However, MFFNet
still demonstrates superior segmentation performance compared to other networks. Con-
sidering that networks represented by the spatial pyramid structure show significantly
lower segmentation performance on the Massachusetts dataset compared to others, and
also underperform on the other two datasets, we hypothesized that the spatial pyramid
structure might not enhance MFFNet’s segmentation capability. We conducted a new set
of experiments, testing the MFFNet without the multi-scale spatial semantic extraction
module on all three datasets. We found that the network without this module yielded
significantly lower evaluation metrics on small-sample datasets (Table 4) compared to our
MFFNet, but still performed exceptionally well. This indicates that our multi-scale spatial
semantic extraction module is not an arbitrary addition. Rather, it enhances the feature



Appl. Sci. 2023, 13, 13067 18 of 20

fusion capability of MFFNet, especially when applied to small-sample building datasets,
thereby improving segmentation results. On the WHU large building dataset, MFFNet’s
segmentation capability is slightly weaker than the network without the multi-scale mod-
ule, but the minor differences in evaluation metrics are acceptable. Considering that ViT
consistently achieves good results on large datasets, we compared segmentation models
with ViT as the backbone. On small-sample datasets, MFFNet outperformed ViT in several
evaluation metrics. On the WHU large building dataset, ViT’s MIoU was higher than that
of MFFNet by 0.28%, and ViT also slightly exceeded MFFNet in precision, recall, and kappa,
but MFFNet was superior in terms of accuracy and F1-score. Overall, segmentation models
with ViT as the backbone perform better on large datasets compared to traditional convo-
lutional networks such as MFFNet, but MFFNet excels in segmenting small datasets. In
practical work, due to the time and effort required for data annotation, the use of extensive
annotated samples is not the first choice of method and training on small-sample data, as
MFFNet is more reasonable.

Table 4. Segmentation results of MFFNet, MFFNet (without ASPP), and ViT.

Datasets Model MIoU Accuracy Precise Recall F1-Score Kappa

Jilin-1
MFFNet 89.69% 97.05% 94.66% 94.25% 94.82% 92.63%

MFFNet (without ASPP) 88.70% 96.66% 94.14% 93.63% 94.22% 91.90%
ViT 89.27% 95.60% 94.42% 94.10 94.12% 92.62%

Massachusetts
MFFNet 81.76% 94.00% 89.02% 90.11% 89.50% 87.43%

MFFNet (without ASPP) 81.07% 93.69% 88.61% 89.61% 89.04% 86.86%
ViT 79.15% 93.07% 86.78% 88.91% 87.76% 85.35%

WHU
MFFNet 91.82% 98.73% 95.69% 95.50% 96.22% 94.22%

MFFNet (without ASPP) 91.94% 98.78% 95.81% 95.55% 96.42% 94.28%
ViT 92.10% 98.50% 95.71% 95.83% 95.72% 95.18%

6. Conclusions

In this paper, we introduce a novel multi-feature fusion network (MFFNet) that signif-
icantly enhances the accuracy of building extraction from high-resolution remote sensing
images using deep convolutional networks and improves the detail of the extraction results.
The network utilizes an encoder–decoder architecture, merging modules for deep semantic
information extraction with those for multi-scale spatial semantic extraction. It employs
various attention mechanisms and the atrous spatial pyramid pooling (ASPP) module
to effectively capture diverse feature information, enabling precise building extraction.
The experimental results on the Jilin-1 building dataset, Massachusetts building dataset,
and WHU building dataset indicate that MFFNet outperforms other traditional models
in critical evaluation metrics such as mean intersection over union (MIoU), accuracy, and
F1-score. MFFNet’s successful deployment across multiple datasets highlights its excep-
tional performance and utility in extracting buildings from high-resolution remote sensing
images from diverse sources. Notably, in datasets with small samples, MFFNet demon-
strates remarkable noise resistance and accuracy, underscoring its substantial potential
for real-world applications. Despite MFFNet’s significant advancements in processing
high-resolution remote sensing data, it still encounters challenges in handling particularly
complex terrains and urban landscapes, signifying a direction for future enhancement.
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