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Abstract: Vehicle trajectory prediction is an important research basis for the decision making and
path planning of the intelligent and connected vehicle. In the connected vehicle environment,
vehicles share information and drive cooperatively, and the intelligent and connected vehicles are
able to obtain more accurate and rich perception information, which provides a data basis for
accurate prediction of vehicle trajectories. However, attaining accurate and effective vehicle trajectory
predictions poses technical challenges due to insufficient extraction of vehicular spatial–temporal
interaction features. In this paper, we propose a vehicle trajectory prediction model based on graph
convolutional neural network (GCN) in a connected vehicle environment. Specifically, using the
driving scene information obtained by the intelligent and connected vehicle, the spatial graph and
temporal graph are constructed based on the spatial interaction coefficient (SIC) and self-attention
mechanism, respectively. Then, the graph data are entered into the interaction extraction module, and
the spatial interaction features and temporal interaction features are extracted separately using the
graph convolutional networks, which are fused to obtain the spatial–temporal interaction information.
Finally, the interaction features are learned based on the convolutional neural networks to output
the future trajectory information of all vehicles in the scene by one forward operation rather than a
step-by-step process. The ablation experiment results show that the method proposed in this study to
model the spatiotemporal interaction among vehicles based on SIC and self-attention mechanism
reduces the prediction error by 5% and 12%, respectively. The results from the model comparison
experiment show that the proposed method engenders an 8% improvement in prediction accuracy
over the state-of-the-art solution, providing technical and theoretical support for trajectory prediction
research of intelligent and connected vehicles.

Keywords: intelligent and connected vehicle; trajectory prediction; graph convolutional network;
spatial interaction coefficient; self-attention mechanism; spatial-temporal interaction

1. Introduction

Intelligent and connected vehicles (ICVs) are equipped with cameras, lidar, and
other on-board sensors as well as controllers, actuators, and other devices, integrating
modern network communication technology which can fulfil the functions of environment
perception, intelligent decision making, and cooperative control [1]. As the bridge between
environment perception and decision making, the accuracy and rationality of trajectory
prediction results directly affect the rationality and safety of subsequent decision making
and path planning of ICVs. However, due to the complex interactions among vehicles, the
generation of accurate and efficient predictions with respect to the vehicle trajectories in
the future has become a recognized problem and challenge in both academia and industry.

In response to the above problem, researchers have conducted in-depth studies,
and the existing vehicle trajectory prediction methods can be roughly grouped into four
categories [2]: (1) physics-based methods; (2) classic machine-learning-based methods;
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(3) deep-learning-based methods; (4) reinforcement-learning-based methods. However, the
physics-based vehicle trajectory prediction methods [3,4] are only applicable to short-term
trajectory predictions with a prediction horizon of no more than 1s, and cannot effectively
complete the medium- and long-term prediction tasks; classic machine-learning-based
methods [5,6], on the other hand, are mostly only applicable to simpler driving scenes,
and have poor trajectory prediction effects in complex driving scenes. Reinforcement-
learning-based methods [7,8] require higher computational and time costs compared to
other prediction methods.

Vehicle trajectory prediction methods based on deep learning consider not only
physics-related factors but also interaction-related factors and are able to adapt to more
complex traffic scenes. Thus, deep-learning-based [9–12] vehicle trajectory prediction
methods have been gaining popularity in recent years. Early prediction models based on re-
current neural networks (RNNs) only use a single RNN module, as available literature [13]
uses a module based on a three-layer long short-term memory (LSTM) stack to extract
feature information for the prediction of the future trajectory of the vehicle. Subsequent
scholars have mostly used multiple RNN modules with different functions. For example,
the first LSTM-based module in the literature [14] was used to identify driving intentions,
which were then fed into the second LSTM-based module along with vehicle longitudinal
feature parameters for trajectory prediction. Inspired by the great success of convolutional
neural networks (CNNs) in the field of computer vision in recent years, researchers have
tried to apply CNNs to the field of vehicle trajectory prediction. CS-LSTM [15] introduces
convolutional layers to replace the fully connected layers in the Social-LSTM network [16]
to extract the vehicle spatial interaction information stored in the social tensor, which
further improves the accuracy of prediction. The MANTRA algorithm [17] uses CNN-
based memory enhancement networks to process historical trajectories and semantic map
information to understand and learn scene pictures and scene features. The emergence of
transformers (TFs) [18] has encouraged scholars to focus on attention mechanisms (AMs).
The ST-attention module [19] introduces the AM into the prediction network to extract
temporal affinity, i.e., the importance weights of historical trajectory information at dif-
ferent moments. Available literature [20] extracts vehicle and road information based on
multi-head attention to output the probability distribution of future vehicle trajectories.

Although the abovementioned vehicle trajectory prediction methods based on RNN,
CNN, and AM have achieved good prediction accuracy and promoted the development of
the field of vehicle trajectory prediction to a certain extent, most of them extract the spatial
interaction features among vehicles based on Euclidean data, while, in fact, the spatial
interaction relations among vehicles are non-Euclidean [21]; this leads to the above methods
having important limitations. As an efficient method to process non-Euclidean data, graph
neural networks (GNNs) can avoid this problem by applying the algorithmic principle. The
GRIP model [22] converts the raw vehicle data into graph data and then extracts the spatial–
temporal interaction features in the graph data based on the convolution operation, further
improving the accuracy of vehicle trajectory prediction. A further example is afforded by
the GSTCN algorithm [21], which uses the reciprocal of the distance between two vehicles
to construct the weighted adjacency matrix based on prior knowledge, and then learns
the spatial–temporal interaction relations among vehicles based on graph convolutional
networks (GCNs).

However, GNN-based prediction methods still have the problem of inadequate spatial–
temporal interaction modeling. Specifically, most of these methods only construct spatial
graphs based on the raw vehicle position coordinate data, without making full use of
other parameters of the vehicle. Moreover, they model temporal dependencies based on
the extracted spatial interaction information which, to some extent, destroys the original
temporal interaction structure and eventually leads to inadequate extraction of spatial–
temporal interaction relations.

To solve the above problems, this paper proposes a new trajectory prediction model
called VTP-GCN. First, we comprehensively consider the historical coordinates and vehicle
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movement velocity information of the vehicles, propose the concept of spatial interaction
coefficient (SIC) to characterize the intensity of spatial interaction between two vehicles,
and optimize the weighted adjacency matrix of the existing spatial graph based on this
coefficient. Meanwhile, to ensure the integrity of the temporal interaction structure entered
into the temporal interaction extraction module, we construct a temporal graph based on
the vehicle historical parameters rather than the extracted intra-spatial interaction features
and utilize the self-attention mechanism to automatically capture and learn the interaction
weights in the temporal weighted adjacency matrix. The interaction features hidden in
the spatial and temporal graphs are extracted separately using GCN and then the two are
fused to obtain the spatial–temporal interaction features of vehicles in the driving scene.
In the trajectory prediction module, the spatial–temporal interaction features are used as
input based on a fully convolutional operation to generate the trajectory positions of the
vehicles in the next 5 s with only one forward step needed.

The main contributions of our work are as follows.

• A new vehicle trajectory prediction framework, VTP-GCN, is proposed to model
the spatial–temporal interaction behavior and output the future motion trajectories
of vehicles based on GCN and fully convolutional layers, with the data from the
comparative experiments showing that this method is effective in improving the
accuracy of vehicle trajectory prediction.

• The concept of spatial interaction coefficient is proposed to mark the intensity of spatial
interaction between two vehicles, with the results from the ablation test showing that
the weighted adjacency matrix based on the spatial interaction coefficient can better
model the spatial interaction behavior among vehicles and the corresponding model
has a better prediction performance.

• A temporal graph construction method based on the self-attention mechanism is
proposed to model the temporal interaction of vehicles at different historical moments,
with the ablation test results showing that the relevant model is associated with smaller
prediction errors than those associated with the reciprocal of the time interval.

The rest of this paper is arranged as follows. Section 2 describes the research problem
object of this paper. Section 3 introduces the VTP-GCN model in detail. Section 4 presents
the experiment results and discusses the trajectory prediction effect of VTP-GCN. Section 5
concludes this paper.

2. Problem Description

Reasonable and accurate trajectory prediction results can help ICVs understand the
current driving scene, perceive driving risks in advance, and then make effective decisions
and plans. In this paper, we assumed that the position coordinates and velocity information
of vehicles in the scene had been obtained through the networked environment. We denote
the feature information X of vehicles in the scene over a past time horizon th as:

X = [P1, P2, · · ·, Pth ] (1)

Pt = [(x1
t , y1

t , v1
t ), (x2

t , y2
t , v2

t ), · · ·, (xN
t , yN

t , vN
t )] (2)

where Pt is the feature information of all vehicles in the scene at the time t, N is the number
of vehicles in the scene, x and y are the position coordinates of the vehicle, and v is the
velocity of the vehicle. We denote the predicted trajectories in the future time horizon tf as:

Y = [P̂th+1, P̂th+2, · · ·, P̂th+t f ] (3)

where,
P̂th+t′ = [(x̂1

th+t′ , ŷ1
th+t′), (x̂2

th+t′ , ŷ2
th+t′), · · ·, (x̂N

th+t′ , ŷN
th+t′)] (4)

are the predicted vehicles coordinates at the time th + t’.
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Therefore, the vehicle trajectory prediction in this paper can be summarized as: enter
the historical feature information X into the prediction model and hope that the model can
generate the future position coordinates Y of the vehicles in the scene.

3. The VTP-GCN Model

The overall framework of the trajectory prediction model proposed in this paper is
shown in Figure 1 and mainly includes three parts: the spatial graph and time graph
representation module based on the raw vehicle data, the spatial–temporal interaction
feature extraction module based on GCN, and the trajectory prediction module based on
the fully convolutional operations.
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3.1. Graph Representation Based on Raw Vehicle Motion Data

The complex spatial and temporal dependencies among vehicles in driving scenes are
crucial to vehicle trajectory prediction. In order to effectively extract the vehicle spatial–
temporal interaction information existing in the historical vehicle data, this paper presents
the raw data as Xin_s ∈ RN×C×th and Xin_t ∈ Rth×C×N , respectively, where N represents
the number of the vehicles in the driving scene, and C = 3 represents the number of
features (coordinates and velocity). Then, Xin_s and Xin_t are entered into the spatial graph
representation module and the temporal graph representation module, respectively.

(1) Spatial Graph Representation Learning

The spatial graph is defined as a sparse undirected graph Gspa =
{

Gspa_t
∣∣∀t ∈ {1, 2, · · ·, th}

}
,

where Gspa_t represents the spatial interactions of vehicles at the time t. Supposing that
there are N vehicles in the driving scene, we define Gspa_t as Gspa_t =

{
Vspa_t, Espa_t

}
,

where Vspa_t =
{

υi
t
∣∣∀i ∈ {1, 2, · · ·, N}

}
is the set of vehicles in the scene, and the co-

ordinates (x, y) are the attribute of every vertex representing a vehicle. Meanwhile,
Espa_t =

{
eij

t

∣∣∣∀i, j ∈ {1, 2, · · ·, N}
}

is the set of all edges which indicate whether two ver-
tices are connected, that is, whether there is a spatial interaction between the two vehicles,
with eij

t = 1 if the interaction is present, eij
t = 0 if the interaction is not present. The

spatial interaction range of the two vehicles is shown by the blue dotted line in Figure 2. In
this research, the spatial interaction range is limited to ±L m in the longitudinal direction
and two adjacent lanes in the lateral direction. The gray vehicles in Figure 2 indicate the
predicted vehicles, the yellow vehicles indicate the neighbor vehicles that interact spatially
with the predicted vehicles, and the green vehicles indicate the unrelated vehicles that do
not interact spatially with the predicted vehicles.
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In previous research on vehicle trajectory prediction based on graph neural networks,
in order to simplify calculations, researchers have assumed that each edge has the same
weight when constructing the spatial graph, that is, the intensity of spatial interactions
between the vehicle and its neighboring vehicles are the same. However, this assumption
completely violates the natural driving situation, and the different motion states of different
neighboring vehicles have completely different effects on the vehicle. For example, when a
vehicle is driving on a lane at a certain speed, a neighboring vehicle located 10 m ahead
will interact more strongly with said vehicle than a neighboring vehicle 60 m ahead. At
the same time, neighboring vehicles that are separated from the vehicle in question by the
same distance but travel at different velocities will also have different effects on the vehicle.
Therefore, to mark the intensity of spatial interactions among vehicles, we propose the
concept of spatial interaction coefficient (SIC). Its numerical value is inversely proportional
to the Euclidean distance between two vehicles and directly proportional to the velocity
difference, something which is in line with people’s conventional cognition. Subsequent
ablation experiments have proven that constructing the spatial interaction graph based on
the SIC can help improve the accuracy of vehicle trajectory prediction. We will elaborate
on the specific content in Section 4.4. SIC is calculated with the following formula:

SICij =

{ |vi−vj|
Dij

, i 6= j and dij ≤ L

0 , Otherwise
(5)

where vi is the velocity of vehicle i, Dij is the Euclidean distance between vehicle i and
vehicle j, and dij is the longitudinal distance between the two vehicles. Based on the
SIC, we constructed a weighted adjacency matrix Aspa_t ∈ RN×N to represent the spatial
interdependencies of all vehicles in the scene. Thus, Aspa_t can be obtained by the following
equation:

Aspa_t =


0 SIC1,2 SIC1,3 · · · SIC1,N

SIC2,1 0 SIC2,3 · · · SIC2,N
SIC3,1 SIC3,2 0 · · · SIC3,N

...
...

...
. . .

...
SICN,1 SICN,2 SICN,3 · · · 0

 (6)

We can obtain the adjacency matrix Aspa ∈ RN×N×th of the spatial graph Gs by stacking
Aspa_t at each historical time moment, and obtain the vertex feature matrix Vspa ∈ Rth×N×Cg

of the spatial graph Gs by stacking the Vspa_t, where Cg = 2 represents the position
coordinates (x, y).

(2) Temporal Graph Representation Learning

Most of the existing studies on GCN-based vehicle trajectory prediction [21,22] use a
single spatial graph to extract spatial and temporal interaction features successively, and
this method based on the extracted spatial interaction information may lead to insufficient
extraction of temporal interaction features. To overcome this problem, we propose the
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construction of the temporal graph based on the raw vehicle data to extract the interaction
relations of vehicles at different historical time instants and, successively, its fusion with
the spatial interaction feature to obtain the spatial–temporal interaction feature. Since
the historical state of the vehicle can affect its future trajectory, and the future trajectory
cannot affect the past historical state of the vehicle, we define the temporal graph as a
spare directed graph Gtmp =

{
Gtmp_i

∣∣∀i ∈ {1, 2, · · ·, N}
}

, where Gtmp_i =
{

Vtmp_i, Etmp_i
}

represents the temporal graph of the ith vehicle, and Vtmp_i =
{

υi
t
∣∣∀t ∈ 1, 2, · · ·th

}
is the set

of all historical time instants. Etmp_i =
{

ei
kq

∣∣∣∀k, q ∈ {1, 2, · · ·, th}
}

is the set of all temporal

edges, where ei
kq = 1 if vi

k is connected to vi
q, that is, the time instant k < q, and ei

kq =0 if vi
k

is not connected to vi
q.

The movement status of a vehicle at different historical moments has different impacts
on its future movement trajectory. How to accurately mark this temporal interaction inten-
sity is crucial to generate accurate predictions of vehicle trajectories. With the proposal of
Transformer networks, the self-attention mechanism has received widespread attention.
With the introduction of the Transformer network, the self-attention mechanism has re-
ceived widespread attention, as it can automatically capture and learn the similarity of
features between different moments. Inspired by this, this study uses the self-attention
mechanism to model the temporal interaction intensity of vehicles at different historical
moments, then constructs the temporal weighted adjacency matrix Atmp_i ∈ Rth×th :

Qtmp_i = φ(Vtmp_i, WQ) (7)

Ktmp_i = φ(Vtmp_i, WK) (8)

Atmp_i = softmax(
Qtmp_iKT

tmp_i√
dk

) (9)

where Qtmp_i and Ktmp_i are the query and key of the self-attention mechanism, respectively,
φ() denotes linear transformation, WQ and WK are the weights of the linear transformation,
and dk is a scaled factor. By stacking Atmp_1, Atmp_2, . . ., Atmp_N , we can obtain the weighted
adjacency matrix of the temporal graph Atmp ∈ Rth×th×N .

3.2. Spatial-Temporal Interaction Feature Extraction

The graph convolutional neural network has proved its effectiveness in extracting
information from graph data in previous research [23–25]. Therefore, this paper builds a
spatial interaction feature extraction module and a temporal interaction feature extraction
module based on GCN. The difference between the 2D convolution and graph convolution
is shown in Figure 3. Both are aggregation operations of neighbor information, but the 2D
convolution processes data with a fixed 2D grid structure, while the graph convolution
processes more general unstructured graph data.
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To obtain the spatial–temporal interaction features, Vspa, Aspa, and Vtemp, Atmp were
fed into the spatial feature extraction module and temporal feature extraction module,
respectively. To speed up the operation of GCN, we symmetrically normalized the weighted
adjacency matrices.

Ãspa = Aspa + Ispa (10)

Ãtmp = Atmp + Itmp (11)

Âspa = Λ−
1
2

spa ÃspaΛ−
1
2

spa (12)

Âtmp = Λ−
1
2

tmp ÃtmpΛ−
1
2

tmp (13)

where Ispa ∈ RN×N and Itmp ∈ Rth×th are identity matrices, and Λspa and Λtmp are diagonal
node degree matrices. Then, spatial and temporal interaction features can be obtained
through the following graph convolution operation:

h(l)spa = σ(Âspah(l−1)
spa W(l)

spa) (14)

h(l)tmp = σ(Âtmph(l−1)
tmp W(l)

tmp) (15)

where W(l)
spa and W(l)

tmp are the matrices of trainable parameters at layer l, σ is an activation

function, and h(l)spa and h(l)tmp are the features matrices of vertices at layer l. The term h(0)spa

is initialized as Vspa, and h(0)tmp is initialized as Vtmp. We denoted the spatial–temporal

interaction feature hs−t ∈ Rth×N×C′ as follows:

hs−t = hspa + htmp (16)

3.3. Vehicle Trajectory Prediction

Previous vehicle trajectory prediction networks, such as CS-LSTM, GRIP, and GSTCN,
use LSTM or GRU-based encoder–decoder structures to encode the interaction information,
and then to predict the future position coordinates of the target vehicles by step-by-step
inference. However, these RNN-based prediction methods parameterize the output with
certain vehicle trajectory prediction errors in the previous prediction time step into the
current prediction time step, leading to a prediction error accumulation problem during
the inference phase. To minimize this problem, we constructed a multi-vehicle trajectory
prediction module based on a fully convolutional operation whose input Hs−t ∈ RC′×N×th

was generated from hs−t by the transposition of dimensions. Through this module, future
trajectories of vehicles can be generated by one forward step, simultaneously avoiding
cumulative error spreading. The operations of the prediction module in the temporal
dimensions are shown in Figure 4.
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Similarly to previous papers [15,21], we assumed that the predicted trajectory coordi-
nates at the time step th + t′ of the vehicle i followed a bivariate Gaussian distribution:

(xi
th+t′ , yi

th+t′) ∼ N (µ̂i
th+t′ , σ̂i

th+t′ , ρ̂i
th+t′) (17)

where µ̂i
th+t′ =

(
µ̂x, µ̂y)i

th+t′ is the mean, σ̂i
th+t′ = (σ̂x, σ̂y)

i
th+t′ is the standard deviation,

and ρ̂i
th+t′ is the correlation. Hence, our prediction module was trained by minimizing the

negative log-likelihood loss:

Loss(W) = −
N

∑
i=1

th+t f

∑
t=th+1

log(P(xi
t, yi

t

∣∣∣µ̂i
t, σ̂i

t , ρ̂i
t)) (18)

where W denotes all trainable parameters in the model.

4. Experimental Evaluation and Analysis
4.1. Evaluation Datasets and Mertics

Our prediction model VTP-GCN was trained and tested on two public vehicle trajec-
tory datasets: I-80 and US-101 in NGSIM [26] which are the most widely used benchmarks
for the task of vehicle trajectory prediction. The datasets both contain 45 min vehicle
states information (coordinates, velocity, acceleration, etc.) in various traffic scenes with a
sampling frequency of 10Hz, and the rich traffic scenes (mild, moderate, and heavy) are
suitable for the training and evaluation of the proposed model. The vehicle trajectory study
areas of I-80 and US-101 are shown in Figure 5.
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For the fairness and effectiveness of the comparison experiments, we followed the
data processing method available in the literature [22]: the raw data were downsampled to
5 Hz, and then the trajectories were divided into segments of 8 s each, the first 3 s of which
were taken as the historical time horizon to model the interaction among vehicles and the
last 5 s were taken as the prediction time horizon to calculate the prediction errors between
the predicted trajectories and ground truth data. For the purpose of this paper, the division
ratio of training set, verification set, and test set was 6:2:2.

In order to compare the prediction accuracy with the previous excellent vehicle trajec-
tory models, we chose the root mean square error (RMSE) between the prediction trajectory



Appl. Sci. 2023, 13, 13192 9 of 16

and the ground truth data as evaluation metrics. The smaller the RMSE, the better the
prediction accuracy. At the time th + t′, the calculation formula of RMSE is:

RMSEth+t′ =

√√√√ 1
N

N

∑
n=i

[(x̂n
th+t′ − xn

th+t′)
2 + (ŷn

th+t′ − yn
th+t′)

2] (19)

where xn
th+t′ and yn

th+t′ are the true position coordinates of a vehicle n at the time th + t′.
Since the output of the VTP-GCN is the trajectory distributions, we report the smallest
RMSE based on 20 random samplings.

4.2. Implementation Details

Our prediction model was run using Python and Pytorch, and the implementation
details are as follows.

(1) Spatial interaction range: we set the longitudinal spatial interaction range within
±100 m, which is similar to that in Ref [21].

(2) Input embedding: we used 1 × 1 convolution to increase the number of channels to
five, an approach which is beneficial to improve the learning ability of the network.

(3) Residual connection: the residual connections were introduced in the interaction
feature extraction module and the trajectory prediction module to avoid the problems
of overfitting and gradient vanishing.

(4) Training process: the VTP-GCN was trained on the NVIDIA GTX3080 GPU. The
batch size and the learning rate were set to 128 and 0.01, respectively. We trained the
prediction module for 250 epochs using a stochastic gradient descent (SGD) optimizer.

(5) Model configuration: to obtain the best prediction accuracy, the number of GCN
layers in the interaction feature extraction module and the number of CNN layers in
the trajectory prediction module were set to different numbers, so as to select the best
model configurations, i.e., two GCN layers and five CNN layers.

4.3. Quantitative Analysis

In order to evaluate the accuracy of our proposed model, some excellent vehicle
trajectory prediction models were selected for quantitative comparison. These were:

(1) CV: this baseline uses a constant velocity Kalman filter to predict the trajectory of a
single vehicle and does not consider the interaction between the predicted vehicle
and the surrounding neighbor vehicles.

(2) V-LSTM: this baseline learns the information hidden in the historical trajectory data
based on an LSTM encoder–decoder, and then generates the trajectory distribu-
tion of the target vehicle. V-LSTM also does not consider the interdependencies
among vehicles.

(3) C-VGMM+VIM [27]: this baseline first estimates the maneuver intentions based on a
hidden markov model (HMM), and then generates the future trajectory based on the
variational gaussian mixture models.

(4) MATF [28]: this baseline encodes the historical trajectory data of vehicles and the
information of the driving scene into a multi-agent tensor, and then applies CNNs to
extract spatial interactions, decode, and predict the trajectories of all vehicles based
on LSTM.

(5) CS-LSTM: this baseline uses convolutional social pooling as an improvement to social
pooling layers to robustly learn spatial interdependencies in vehicle motion.

(6) GRIP: this baseline uses GCNs to model the spatial–temporal interactions among vehi-
cles and generate the trajectories of all vehicles based on an LSTM encoder–decoder.

We compared the prediction errors of our model with the above baselines on I-80
and US-101 datasets. The RMSE values are shown in Table 1, and the comparison line
chart is shown in Figure 6. In Table 1, we can see that the RMSE values of the VTP-GCN
model are lower in all prediction horizons, demonstrating the superior spatial–temporal
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interaction feature modeling ability and future trajectory inference ability of our proposed
model. In addition, we found that the baselines (CV, V-LSTM, and C-VGMM-VIM) have
larger prediction errors than the models that consider interdependencies, indicating that
the interaction information is crucial for the accurate prediction of trajectories. The RMSE
values of the models that consider the spatial interactions in the driving scene are reduced,
but the trajectory prediction accuracy is still not as good as that of the models considering
the spatial–temporal interaction information, showing the necessity of temporal interaction
modeling for vehicle trajectory prediction. Although both are vehicle trajectory prediction
models based on spatial–temporal interaction modeling, the VTP-GCN model that we
proposed attained an 8% average accuracy improvement compared with the GRIP model.
That is because we not only improved the modeling of spatial interactions based on
the proposed SIC, but also constructed a temporal graph based on raw vehicle data for
extracting temporal interactions. The above modifications make the spatial–temporal
interaction features obtained by fusion more adequate, while GRIP only extracts interaction
features based on the single spatial graph. Therefore, the more effective spatial–temporal
interaction feature modeling method helps improve the accuracy of vehicle trajectory
prediction.

Table 1. RMSE values for vehicle trajectory prediction using I-80 and US-101 datasets. Data are
converted into meters. The performance of models denoted by * is published in [21,22]. All results
except ours are extracted from previous studies. The smaller the RMSE value, the better the prediction
accuracy.

Prediction
Horizon (s) CV * V-LSTM * C-VGMM-

VIM * MATF * CS-LSTM * GRIP * VTP-GCN
(∆GRIP)

1 0.73 0.68 0.66 0.67 0.62 0.64 0.55 (↓14%)
2 1.78 1.65 1.56 1.51 1.29 1.13 0.99 (↓12%)
3 3.13 2.91 2.75 2.51 2.13 1.80 1.56 (↓13%)
4 4.78 4.46 4.24 3.71 3.20 2.62 2.36 (↓9%)
5 6.68 6.27 5.99 5.12 4.52 3.60 3.59 (↓0%)

Average 3.42 3.30 3.04 2.70 2.35 1.96 1.81 (↓8%)
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4.4. Ablation Study

(1) Spatial Graph with Different Weighted Adjacency Matrices

In this paper, we propose the concept of spatial interaction coefficient and use it as
the kernel function to construct a weighted adjacency matrix of the spatial graph to mark
the intensity of the spatial interactions between two vehicles within the driving scene. To
verify the effectiveness of the above method, the spatial interaction kernel function in the
prediction model was modified to the reciprocal of the Euclidean distance. As shown in
Table 2, the RMSE values of the SIC-based model are smaller than those of the reciprocal-
of-Euclidean-distance-based model at all prediction horizons. Specifically, compared with
VTP-GCN, the average RMSE value of the model based on the reciprocal of the Euclidean
distance is 5% higher, which proves the effectiveness of the proposed spatial interaction
kernel function SIC. The comparison line chart is shown in Figure 7a.

Table 2. Comparison of RMSE values for models with different spatial weighted adjacency matrices.
Data are converted into meters.

Prediction
Horizon (s) 1 2 3 4 5

1
D 0.63(+0.08) 1.08(+0.09) 1.65(+0.09) 2.43(+0.07) 3.73(+0.04)

SIC 0.55 0.99 1.56 2.36 3.59

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17 
 

1
D  

0.63(+0.08) 1.08(+0.09) 1.65(+0.09) 2.43(+0.07) 3.73(+0.04) 

SIC  0.55 0.99 1.56 2.36 3.59 
 

(a) (b) 

Figure 7. Prediction errors of models with different spatial weighted adjacency matrices (a) and 
different temporal weighted adjacency matrices (b). 

(2) Temporal Graph with Different Weighted Adjacency Matrices 
In order to effectively extract the temporal dependencies of the vehicles, we propose 

two methods to construct a weighted adjacency matrix of the temporal graph: one based 
on the reciprocal of the time interval, and one based on the self-attention mechanism. Gen-
erally, we think that the influence of the vehicle historical motion state on its current tra-
jectory will weaken as the time interval increases, so we used the reciprocal of the time 
interval to mark the intensity of temporal interactions. At the same time, the temporal 
dependency of vehicle is unidirectional, that is, the future trajectory of the vehicle cannot 
affect the past movement state of the vehicle. Therefore, the weighted adjacency matrix of 
the temporal graph is defined as: 

1,2 1,3 1,

2,3 2,
_

3,

1 1 10
| | | | | |

1 10 0
| | | |

10 0 0
| |

0 0 0 0

N

N
tmp i

N

T T T

T T

T

 
 Δ Δ Δ 
 
 Δ Δ =  
 

Δ 
 
 
 
 







    


A

 

(20)

where ,k qTΔ  is the difference between the historical time instant k  and q . We describe 
in detail the matrix construction method based on the self-attention mechanism in Section 
3.1. (2), and the RMSE values of the prediction models based on the above two methods 
trained separately are shown in Table 3. The prediction accuracy of the model based on 
the self-attention mechanism is higher than the other. Specifically, compared with VTP-
GCN, the average RMSE value of the model based on the reciprocal of the time interval is 
12% higher, meaning that the temporal interaction strength of the vehicle is not linearly 
related to the time interval, and the method based on self-attention can more fully repre-
sent the intensity of temporal interaction. The comparison line chart of the two methods 
is shown in Figure 7b. 

Figure 7. Prediction errors of models with different spatial weighted adjacency matrices (a) and
different temporal weighted adjacency matrices (b).

(2) Temporal Graph with Different Weighted Adjacency Matrices

In order to effectively extract the temporal dependencies of the vehicles, we propose
two methods to construct a weighted adjacency matrix of the temporal graph: one based
on the reciprocal of the time interval, and one based on the self-attention mechanism.
Generally, we think that the influence of the vehicle historical motion state on its current
trajectory will weaken as the time interval increases, so we used the reciprocal of the time
interval to mark the intensity of temporal interactions. At the same time, the temporal
dependency of vehicle is unidirectional, that is, the future trajectory of the vehicle cannot
affect the past movement state of the vehicle. Therefore, the weighted adjacency matrix of
the temporal graph is defined as:
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Atmp_i =



0 1
|∆T1,2|

1
|∆T1,3| · · ·

1
|∆T1,N |

0 0 1
|∆T2,3|

· · · 1
|∆T2,N |

0 0 0 · · · 1
|∆T3,N |

...
...

...
. . .

...
0 0 0 · · · 0


(20)

where ∆Tk,q is the difference between the historical time instant k and q. We describe in de-
tail the matrix construction method based on the self-attention mechanism in Section 3.1. (2),
and the RMSE values of the prediction models based on the above two methods trained
separately are shown in Table 3. The prediction accuracy of the model based on the self-
attention mechanism is higher than the other. Specifically, compared with VTP-GCN, the
average RMSE value of the model based on the reciprocal of the time interval is 12% higher,
meaning that the temporal interaction strength of the vehicle is not linearly related to
the time interval, and the method based on self-attention can more fully represent the
intensity of temporal interaction. The comparison line chart of the two methods is shown
in Figure 7b.

Table 3. Comparison of RMSE values for models with different temporal weighted adjacency matrices.
Data are converted into meters.

Prediction
Horizon (s) 1 2 3 4 5

Reciprocal of
time interval 0.72(+0.17) 1.23(+0.24) 1.79(+0.23) 2.57(+0.21) 3.80(+0.21)

Self-attention 0.55 0.99 1.56 2.36 3.59

(3) Effectiveness of Feature Extraction Modules

To validate the effectiveness of the two interaction extraction modules in vehicle
trajectory prediction, we trained the two variants of VTP-GCN: VTP-GCN without spatial
interaction extraction (variant I: W/O SGCN) and VTP-GCN without temporal interaction
extraction (variant II: W/O TGCN). We then compared their prediction results with those
from the complete model. The RMSE values of the three models are shown in Table 4. It
can be seen from Table 4 that the prediction performance of variant II is superior to that
of the complete model at the final prediction horizon. However, VTP-GCN exhibits better
prediction accuracy than the two variants at the remaining prediction horizons, exhibiting
the smallest RMSE average. It is worth noting that the increase in the average prediction
error caused by the absence of the spatial interaction extraction module is larger than that
caused by the temporal interaction extraction module, indicating that the spatial interaction
behavior of the vehicle within the driving scene has a greater impact on the future motion
trajectory of the vehicle compared to the temporal interaction. The comparison line chart of
the three methods is shown in Figure 8.

Table 4. Comparison of RMSE values for the variants of VTP-GCN. Data are converted into meters.

Prediction Horizon (s) W/O SGCN W/O TGCN VTP-GCN

1 0.62(+0.07) 0.67(+0.12) 0.55
2 1.05(+0.06) 1.16(+0.17) 0.99
3 1.63(+0.07) 1.69(+0.13) 1.56
4 2.48(+0.12) 2.40(+0.04) 2.36
5 3.82(+0.23) 3.49(−0.10) 3.59

Average 1.92(↑6%) 1.88(↑4%) 1.81
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4.5. Qualitative Analysis

The effectiveness of the VTP-GCN proposed in this paper is qualitatively analyzed by
visualizing several representative driving scenes using the datasets I-80 and US-101. As
shown in Figure 9, the coordinates and velocity data of all vehicles in the scene in the past
3 s are entered into VTP-GCN, and then our model generates the trajectories of the vehicles
in the following 5 s.

Figure 9a shows a mild driving scene in which there are no neighboring vehicles
that can interact with the predicted vehicle; the predicted vehicle, therefore, chooses to
go straight at a high speed. The prediction trajectory of our model fits the solid blue
line well, which proves that the proposed model is fully capable of performing vehicle
trajectory prediction tasks in simple scenes. In Figure 9b, the traffic density is moderate and
there are complex interaction behaviors between vehicles. It is noteworthy that a vehicle
in the middle lane will change lanes to the left in search of a better driving experience.
Our VTP-GCN accurately predicted the lane change intention, and the error between the
predicted trajectory and the ground truth is small. Meanwhile, the predicted trajectories of
the rest of the vehicles in this scene are also accurate. In Figure 9c, we show a prediction
result in a heavy traffic scene with 13 vehicles. The observation shows that the vehicles in
the upper lane move faster, while vehicles in the other lanes drive at relatively slow speeds.
Faced with the complex driving scene, our proposed VTP-GCN still predicted the future
trajectories of all vehicles accurately. Through the above analysis, we can conclude that the
VTP-GCN model that we propose in this paper is applicable to most traffic scenes and that
it is able to operate with accuracy and robustness.
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Figure 9. Visualization of predicted trajectories. Green solid lines are the observed history, blue solid
lines are the ground truth in the future, red dashed lines are the predicted trajectories (5 s) generated
by our VTP-GCN. (a) Only one vehicle with temporal dependencies, (b) seven vehicles in a moderate
traffic scene in which a vehicle will engage in lane changing, (c) thirteen vehicles in a heavy traffic
scene with complex spatial–temporal dependencies.

5. Conclusions

In this paper, we propose a novel vehicle trajectory prediction scheme, VTP-GCN, in a
connected vehicle environment. The model extracts spatial–temporal interaction features in
the graph based on GCNs and performs trajectory prediction based on a fully convolutional
operation in the temporal dimension. Based on the publicly available datasets I-80 and
US-101, the following main conclusions are drawn:

• The comparative experiment data show that, compared with the baseline models, the
vehicle trajectory prediction model VTP-GCN based on graph convolutional neural
networks proposed in this manuscript is associated with smaller prediction errors.
Specifically, compared with GRIP, the average RMSE value of VTP-GCN is lower by
8%, effectively improving the prediction effectiveness of the future motion trajectories
of all vehicles in the driving scene.

• We model the spatial–temporal interactions among vehicles based on the SIC and
the self-attention mechanism. The ablation experiment results of spatial interactions
show that the prediction errors of the spatial interaction modeling method based
on the traditional reciprocal Euclidean distance are larger, and its average RMSE
value increases by 5% compared with the method based on the SIC. The results of the
temporal interaction ablation experiment show that the trajectory prediction errors of
the temporal interaction modeling method based on the reciprocal of the time interval
are larger, and its average RMSE value increases by 12% compared with the method
proposed in this study.

• The ablation experiment data on the effectiveness of the feature extraction module
show that the absence of any interaction module will lead to an increase in vehicle
trajectory prediction errors. It is worth noting that the absence of SGCN causes
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the model average prediction error to increase by 6%, while the absence of TGCN
causes the model average prediction error to increase by 4%. Therefore, we speculate
that spatial interaction modeling is of greater importance than temporal interaction
modeling for vehicle trajectory prediction.

In conclusion, the VTP-GCN vehicle trajectory prediction model proposed in this
study can model the spatial–temporal interaction behavior among vehicles based on 3 s of
historical motion state data, and effectively predict the motion trajectories of all vehicles
within the set scene range in the following 5 s. However, the model proposed in this study
operates under ideal conditions, that is, we assume that the historical movement data of all
vehicles in the scene can be accurately obtained, and does not consider the occlusion, noise,
or uncertainty that exist in the networked environment. Therefore, in the subsequent work,
we strive to address the issue. At the same time, we will evaluate our prediction model
using other datasets, e.g., the HighD dataset or Interaction dataset, in which driving scenes
are richer. In addition, we will further enrich the research based on this paper, so that the
prediction model can effectively generate the future motion trajectories of all participants
in the scenes, including pedestrians and two-wheelers.
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