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Abstract: Increasingly prevalent sleep disorders worldwide significantly affect the well-being of
individuals. Sleep disorder can be detected by dividing sleep into different stages. Hence, the accurate
classification of sleep stages is crucial for detecting sleep disorders. The use of machine learning
techniques on physiological signals has shown promising results in the automatic classification of
sleep stages. The integration of information from multichannel physiological signals has shown
to further enhance the accuracy of such classification. Existing literature reviews focus on studies
utilising a single channel of EEG signals for sleep stage classification. However, other review
studies focus on models developed for sleep stage classification, utilising either a single channel
of physiological signals or a combination of various physiological signals. This review focuses on
the classification of sleep stages through the integration of combined multichannel physiological
signals and machine learning methods. We conducted a comprehensive review spanning from the
year 2000 to 2023, aiming to provide a thorough and up-to-date resource for researchers in the field.
We analysed approximately 38 papers investigating sleep stage classification employing various
machine learning techniques integrated with combined signals. In this study, we describe the models
proposed in the existing literature for sleep stage classification, discuss their limitations, and identify
potential areas for future research.
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1. Introduction

Sleep is a fundamental human function that involves a series of changes in the heart,
brain, muscles, eyes, and respiratory activities. Besides aiding in mental and physical health
recovery, sleep contributes to healthy brain functionality during the day [1,2]. However,
drowsiness and sleep disorders, such as sleep apnoea [3] and periodic leg movement [4],
can adversely affect daily activities [5]. Worldwide, more than 400 million adults have
sleep apnoea [6]. A study conducted in the United States found that up to 24% of adults are
affected by sleep issues [7]. In Australia, 33% of the population is affected by insomnia [8].
In addition, the Sleep Heart Health Study found that people who have trouble falling
asleep may be affected by health issues that include neurocognitive deficits, cardiovascular
problems, diabetes, recurrent heart attacks, and stroke [9,10]. Therefore, to protect human
health, it is essential to monitor sleep.

Sleep specialists, who are experts trained in sleep medicine, follow the guidelines
of the American Academy of Sleep Medicine (AASM) [11] to classify sleep into three
primary stages: wake (W), non–rapid eye movement (NREM) sleep encompassing three
substages (N1, N2, and N3), and rapid eye movement (REM) sleep. During the NREM
stage, parasympathetic activity rises, while heart rate (HR), sympathetic activity, blood
pressure, and metabolic rate fall. Neuronal activity is higher during the REM stage than
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during the NREM stage [12,13]. In a typical sleep cycle, 50–60% of sleep is spent in N1 and
N2, which are considered light sleep stages; 15–20% in N3, which is considered a deep
sleep stage; 20–25% in the REM sleep stage; and 5% or less in the W stage [14]. The absence
of certain sleep stages in a typical sleep cycle may suggest the presence of sleep disorders.

The activities mentioned above for sleep stages are recorded by a traditional method
called polysomnography (PSG) [15], which is considered as the gold standard for classify-
ing sleep stages following the guidelines established by AASM. The physiological signals
recorded during PSG include respiratory effort [16], electroencephalogram (EEG) [17], elec-
trocardiogram (ECG) [18], electrooculogram (EOG) [19], and electromyogram (EMG) [20].
Each physiological signal recording is divided by sleep specialists into 30-second segments.
These segments are then classified into W, NREM (including N1, N2, and N3), or REM sleep
stages [21]. This classification is based on visual analysis, which is not only time-consuming
but also error prone. Furthermore, patients need to be connected to sensors and equipment
for extended periods during sleep studies, which can have an impact on the quality of
recorded data [22].

Artificial intelligence (AI) has recently been employed in a wide range of clinical
medical applications, including surgeries [23], classifications of types of seizure [24], and
stage classifications [25]. AI research aims to build intelligent tools that can help medical
specialists make clinical decisions in the medical field [26]. Machine learning (ML) is a
subfield of AI that employs algorithms and approaches to create models that learn from
data and make predictions or decisions based on that learning. The key drawback of these
conventional ML techniques is the need for feature engineering methods to extract features
from input data. The model’s performance may be restricted by the time-consuming
process of designing and selecting relevant features from the input data. However, recently
introduced deep learning (DL) has overcome the limitations of conventional machine
learning algorithms by employing multilayered neural networks to extract and learn key
features from raw data [27].

The utilisation of machine learning (ML) techniques for sleep stage classification
has been extensively examined in literature reviews [25,28–33]. The systematic reviews
in [25,29,31] focus on models of sleep stage classification based on single-channel EEG
signals. The advantages of using single-channel EEG signals include convenience and ease
of use, and they can be adapted for use in the patient’s home using wearable sensors. Other
reviews [28,30,32,33] have focused on models developed using single-channel EEG signals
and a combination of physiological signals to classify sleep stages. The benefits of using a
combination of physiological signals with ML models can increase accuracy because the
model has more information and can extract more discriminated features.

This systematic review focuses on machine learning investigations involving multi-
ple channels of physiological signals, including EEG, ECG, EMG, EOG, and respiratory
data for sleep stage classifications. The physiological signals were employed, as either a
multichannel or a combination of multiple signals, to develop a model for the classification
of sleep stages. We selected research studies that encompassed multiple physiological
signals from reviews [30,32,33]. Furthermore, we conducted a thorough literature search
to identify additional publications aligned with our criteria. Our emphasis on signal com-
binations sets this review apart and offers a valuable resource for researchers exploring
this specialised domain.

The remainder of the article is organised as follows: Section 2 provides a detailed
description of the research article selection methodology. Section 3 describes a concep-
tual framework for the classification of sleep stages. Section 4 reviews different existing
models of sleep stage classification. Section 5 highlights the limitations of existing ap-
proaches. Section 6 discusses and analyses the existing research used in the classification
of sleep stages. Finally, Section 7 summarises our conclusions and identifies directions
for future research.
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2. Methodology of Selection Papers

In this review article, we followed a systematic review methodology proposed by
Dixon et al. [34].

2.1. Data Sources

We systematically searched literature databases, including Scopus, Google Scholar, and
PubMed, from the last few decades (approximately from 2000) up to present, with English
language restriction. In this systematic review, we focused on studies that employed
multiple channels of EEG, ECG, EMG, EOG, and respiratory signals or a combination
of these signals to propose models for the classification of sleep stages. We conducted a
comprehensive search of the literature to identify additional studies that met our inclusion
criteria. We screened the titles and abstracts of the retrieved articles and included studies
that employed the specified physiological signals for sleep stage classification.

2.2. Data Extraction

A data extraction protocol was defined and evaluated by all authors. The inclusion
criteria for this study encompassed studies with keywords related to (“Classification of
sleep stage”) AND (“Combined physiological signals” OR “Combined EEG ECG EMG EOG
respiratory”) AND (“Machine learning” OR “Deep learning” OR “Artificial intelligence”
OR “Big data”). The included document types were indexed journal papers, conference
papers, book chapters, and books. Exclusion criteria were applied to filter out studies that
did not fall under the subareas of interest, and those that were not in English or did not
meet the predefined criteria.

2.3. Data Analyses

This article primarily concentrates on conducting a systematic review, rather than a
meta-analysis, to explore the classification of sleep stages using intelligent data analysis
techniques in the medical field. However, it does not extensively delve into specific details
and results obtained from individual case studies. Therefore, the utilization of data analysis
techniques within this specific context is not the main focus.

2.4. Results

In our analysis, we incorporated a total of 38 papers that fulfilled the predefined
inclusion criteria. Figure 1 represents the comprehensive search and selection process,
outlining the reasons for excluding certain studies.

Figure 1. Comprehensive search and selection process for systematic review.
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3. Conceptual Framework for the Classification of Sleep Stages

Figure 2 shows the conceptual framework for sleep stage classification. Researchers
in this area use various datasets, such as Sleep-edf [35], Sleep-edfx [36], MASS [37], MIT-
BIH [38], ISRUC-Sleep [39], SHHS [40], UCD [41], and PhysioNet Challenge [42]. In the
preprocessing step, datasets are cleaned to exclude missing values and eliminate noise,
artefacts, and other distortions. The most common preprocessing methods are filtering [43],
normalization [44], and signal conditioning [45]. After that, the feature selection step is
used to select the most important features that have a significant impact on the model’s
performance. The two common methods for feature selection are feature engineering
and statistical methods. Most of the existing work on sleep stage classification employs
feature engineering methods, such as fast Fourier transform (FFT) [46], wavelet transform
(WT) [47], short-time Fourier transform (STFT) [48], Pan–Tompkins algorithm [49], and
temporal decomposition (TD) [50]. Common statistical methods include dynamic wrapping,
dispersion entropy, max, mean, skew, and variance features [51]. However, recently, some
studies proposed to use raw data as input without feature engineering or statistical methods
to reduce the complexity of the proposed model. This approach allows deep learning
algorithms to learn directly from raw data [52].

Figure 2. Conceptual framework for the classification of sleep stages.

The next step is the data splitting strategy, which includes cross-validation and ran-
dom splitting approaches used to split datasets into training and testing sets. The cross-
validation approach divides the dataset into 3, 5, or 10 parts to evaluate the classification
models [53]. The random splitting approach employs a small fraction of the testing set
to evaluate the model (e.g., 70% training set, 15% validation set, and 15% testing set).
In addition, some studies use the above splitting strategies with either a subject-wise or
non-subject-wise approach. In a subject-wise approach, the training and testing sets do not
share any patient’s recording samples. Therefore, the patients whose recordings are used in
the training set are excluded from the testing set. In contrast, a non-subject-wise approach
uses the same patients’ recording samples in the training and testing sets.

The final step involves classification using machine learning or deep learning models.
In the sleep stage classification models, three types of categorizations for the sleep stages
have been used. In the first type, a binary classification has been implied, distinguishing
between wake stage (W ) and sleep stage (combining REM and NREM). In the second type,
it categorises sleep into three stages: wake (W), non–rapid eye movement (NREM), and
rapid eye movement (REM), while the third type involves categorization into five stages:
W, N1, N2, N3, and REM. However, it is important to note that binary and three-sleep stage
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classifications do not completely align with traditional AASM guidelines, while a five-sleep
stage classification is consistent with the AASM guidelines.

4. Literature Review

For this literature review, the selected papers were categorised into five subsections
based on the utilised input signals. According to a preliminary survey of the literature,
the signals most frequently used in the classification of sleep stages were found to be EEG,
EMG, EOG, ECG, and respiratory effort. Each subsection includes a definition of the signals
and describes all associated models and their performances.

4.1. Electroencephalogram (EEG)

EEG techniques capture the brain’s electrical activity. Electrical signals in the brain
can be measured by observing changes in the electrical activity between two electrodes
over time. The standard method for measuring EEG signals is commonly known as the
10–20 system, which employs a minimum of 21 electrodes [54]. The EEG signal displays
the diverse properties of brain activity. These activities help to classify sleep stages. Stage
W is characterised by alpha activity in the occipital area [55]. The N1 stage is the transition
between the W and N2 stages, and theta activity is one of the characteristics of EEG
activity of the N1 stage [55]. Stage N2 is characterised by distinctive features known as
spindles and K-complexes. Spindles are brief bursts of high-frequency brain activities,
while K-complexes are characterised by sharp, high-amplitude brain activity with a unique
appearance in EEG signals [56]. Delta activity is indicative of N3, which is a deep sleep
stage [57]. The REM stage is characterised by rapid, low-voltage theta waves [58]. The
distinct frequency ranges of EEG signals corresponding to each sleep stage are shown in
Table 1. Figure 3 shows a sample of time series EEG data for the five sleep stages.

Table 1. Distinct frequency ranges of EEG signals corresponding to each sleep stage.

Sleep Stage Characteristic Frequency

W Alpha (8–12 Hz)

N1 Theta (4–8 Hz)

N2 Spindle and K-complexes (12–15 Hz)

N3 Delta (0.5–4 Hz)

REM
Alpha (8–12 Hz)
Theta (4–8 Hz)

Table 2 lists studies that used two or more physiological signals for sleep stage clas-
sification. Few studies of sleep stage classification models have been developed utilising
multiple channels of EEG signals as inputs. Blanco et al. [59] proposed a deep learning
model to select important features from EEG signals for sleep stage classification, aiming
to reduce reliance on sleep experts. They used two channels of EEG signals (Fpz-Cz and
Pz-Oz) as input to the 1D-CNN model. The architecture of 1D-CNN included seven lay-
ers of 1D-CNN, a max-pooling layer followed by a fully connected layer to classify five
sleep stages. Their model achieved an accuracy of 92.60%. Similarly, Satapathy et al. [60]
proposed a deep learning model, which used two channels of EEG signals (C3-A2 and
C4-A1) as input to the 1D-CNN model. The architecture of 1D-CNN contained seven
blocks that included 1D-CNN, batch normalization, and ReLu layers. The last layer was
fully connected with softmax to classify the segments into five sleep stages. Their model
was tested on subgroup 1 and subgroup 2 of the ISRUC-Sleep dataset, and the accuracies
achieved for the classification of five sleep stages were 97.22% and 95.06%, respectively.

Another study by Delimayanti et al. [61] extracted features from two channels of
EEG signals (Pz-Oz, Fpz-Cz) by using an FFT method to improve the accuracy of the
classification. The features extracted passed to SVM to classify three sleep stages and
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five sleep stages. Their model achieved an accuracy of 94.14% and 91.73% for three- and
five-sleep-stage classification, respectively. Dequidt et al. [62] conducted a study to explore
the utilization of time–frequency representations, such as spectrograms, as input for a
fine-tuned VGG-16 network. Their research focused on comparing various spectrograms
encoding multiple EEG channels to facilitate the recognition of visual patterns in images.
The study reported an achieved accuracy of 82.96% with five-sleep-stage classification.

Figure 3. Samples of EEG patterns in five sleep stages from the Sleep-edfx dataset [36].

4.2. Electromyogram (EMG)

The EMG technique records muscles’ electrical activity during contraction and relax-
ation during sleep, which makes EMG a significant signal for classifying sleep stages [63].
Figure 4 presents a sample of time series EMG data for the five sleep stages, illustrating
that EMG activity reaches its peak during the W stage. As we progress from stage N1 to
stage N3, EMG activity gradually decreases as the muscles begin to relax. In the REM stage,
the EMG activity is at its lowest point as the muscles are inactive and relaxed.

Few studies have explored the use of combining EEG and EMG signals to enhance
the accuracy of sleep stage classification. Tautan et al. [64] used a combination of one
channel of EEG (F3-M2) and one channel of EMG signals as input. They extracted statistical
and FFT features from the raw data to pass to RF and MLP classifiers to classify five
sleep stages, achieving accuracies of 88.65% and 66.70%, respectively. Akin et al. [65]
proposed a machine learning model that used one channel of EMG and one channel of EEG
signals (C3-A2) as input, and applied a wavelet transform (WT) to extract features from the
signals. The deep neural network (DNN) model they developed achieved a 98% accuracy
in classifying five sleep stages.

Kim et al. [66] used a temporal decomposition method to extract features from one
channel of EEG signal (Fpz-Cz) and one channel of EMG signal, and used SVM as a
classifier to classify five sleep stages, achieving an accuracy of 93.8%. Almutairi et al. [67]
selected multichannel EEG signals (Fpz-Cz and Pz-Cz) and one channel of EMG signal as
input, and passed them through a deep learning model named as SSNet model containing
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two deep learning architectures. The first architecture contained five 1D-CNN layers, and
the second architecture contained two LSTM layers. The features extracted from the two
architectures were combined and passed to a fully connected layer to classify three sleep
stages, achieving an accuracy of 95.46%.

Figure 4. Samples of EMG patterns in five sleep stages from the Sleep-edfx dataset [36]. Muscle
activity exhibits a gradual reduction from the wake (W) stage to the REM (rapid eye movement) stage.

4.3. Electrooculogram (EOG)

In sleep research, the measurement of eye movements is crucial for evaluating sleep
quality and identifying sleep stages [68]. EOG recording is used to capture eye movements:
Surface electrodes are positioned around the eye to measure a potential gap between its
anterior and posterior poles [69]. During the W stage, EOG signals are used to detect rapid
eye movements, providing an indication of this stage’s characteristics. In the NREM stage,
EOG signals record slow eye movements. In contrast, during the REM stage, EOG signals
can capture bursts of rapid eye movements, which are a distinctive feature of this stage [70].
Figure 5 presents a sample of time series EOG data for the five sleep stages.
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Figure 5. Samples of EOG patterns in five sleep stages from the Sleep-edfx dataset [36]. Wake (W)
shows frequent eye movements, the NREM stages display sporadic eye movements and unique
patterns, and the REM stage exhibits rapid distinct eye movements.

The characteristics of EOG signals have been utilised in proposing models for classify-
ing sleep stages. Estrada et al. [71] used a feature engineering method with fuzzy rules for
the classification. Two channels of EOG and EMG signals were combined and passed to
an FFT method to extract features. Fuzzy rules were used to predict the final results for
the classification of five sleep stages. The study did not report the performance of their
proposed model. Yildirim et al. [72] proposed a deep learning model to extract features
from a combination of EEG and EOG signals. They selected one channel of EEG signal
(Fpz-Cz) and one channel of EOG signal (horizontal). These features passed to a 1D-CNN
model. Their architecture consisted of two layers of 1D-CNN and max-pooling layers, and
the order of these layers was repeated five times. The final layers were two fully connected
layers to classify the segments into three and five sleep stages. They tested their model on
two datasets (Sleep-edf and Sleep-edfx). The model achieved an accuracy of 94.64% for
three sleep stages and 91.22% for five sleep stages on the Sleep-edf dataset. Similarly, the
model achieved an accuracy of 94.34% for three sleep stages and 90.98% for five stages on
the Sleep-edfx dataset.

A study by Sokolovsky et al. [73] proposed a deep learning model that contained a
deep network to improve the classification accuracy. Their model inputs two channels
of EEG signals (Fpz-Cz and Pz-Cz) and one channel of EOG signal. Their architecture
consisted of six layers of 1D-CNN, followed by batch-normalization and max-pooling
layers. After that, they added three layers of 1D-CNN, followed by a batch normalization
and max-pooling layer. This structure was repeated three times. In the end, they added
two max-pooling layers, followed by a 1D-CNN layer, a max-pooling layer, a 1D-CNN
layer, and two fully connected layers. Their model achieved an accuracy of 81% for the
classification of five sleep stages. Phan et al. [74] used two different datasets (Sleep-edf and
MASS) for evaluating their proposed model. They selected a combination of one channel of
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EEG signal (Fpz-Cz) and one channel of EOG (horizontal) signal from the Sleep-edf dataset.
Similarly, they used a combination of one channel of EEG (C4-A1) and one channel of
EOG signal (ROC-LOC) from the MASS dataset. They used a short-time Fourier transform
method and a 2D-CNN model to classify five sleep stages. The architecture of their model
consisted of one layer of 2D-CNN, a max-polling layer, and a multitask softmax layer.
Their model achieved an accuracy of 82.30% on the Sleep-edf dataset and 82.50% on the
MASS dataset.

Almutairi et al. [67] proposed an SSNet model using a combination of signals of two
channels of EEG (Fpz-Cz and Pz-Cz) and one channel of EOG as input. Their model classi-
fied the segments into the three sleep stages with an accuracy of 95.65%. Sekkal et al. [75]
used two channels of EEG signals (Fpz-Cz and Pz-Cz) and one channel of EOG signal as
input. They extracted statistical features from raw data to pass to different machine learning
classifiers, such as SVM, RF, and KNN. Their model with an SVM classifier achieved the
highest accuracy of 89.1%. Toma et al. [76] proposed an end-to-end CRNN (convolutional
recurrent neural network) model for five-sleep-stage classification. The model takes three
channels of EEG signals (Pz-Oz and Fpz-Cz) and EOG signal as input. It consists of two
branches of 1D-CNN to extract spatial features, followed by several RNN layers. Dropout
layers are inserted between the RNN layers to prevent overfitting. Two types of dropout
layers, regular dropout and spatial dropout, are used in the model. The study reported an
accuracy of 90.30% for five-sleep-stage classification.

4.4. Electrocardiogram (ECG) and Respiratory

ECG and respiratory signals can assist with sleep stage classification because the heart
rate and respiratory effort change throughout the sleep stages [77]. An ECG is a recording
of the heart’s electrical activity over a timespan. The ECG signal consists of several beats
comprising the P wave, QRS complex, and T wave, depending on the individual’s heart
condition [78,79]. The properties of the ECG signal can change during both NREM and REM
sleep stages. The heart rate decreases during the NREM sleep stage, while heart rate variability
can either increase or decrease depending on the NREM sleep stage. Conversely, both the
heart rate and heart rate variability increase during the REM sleep stage, as reported in [80].

Respiratory inductance plethysmography (RIP) is a noninvasive technique for mea-
suring airflow and respiratory effort. Changes in respiratory patterns can help classify
sleep stages. For example, during the REM sleep stage, the respiratory system can become
more irregular, and the upper airway muscles may become more relaxed, leading to more
frequent disruptions in breathing and potential sleep apnoea [81].

We have categorised studies into two subgroups below based on the type of signal
combination used as input. The first group includes studies utilising a combination of ECG
and respiratory as input. The second group encompasses studies employing a combination
of EEG and ECG or a combination of EEG and respiratory as input.

As mentioned earlier, the first group includes studies that utilised a combination of
ECG and respiratory as input. Long et al. [82] used statistical features of dynamic wrapping
to extract features from ECG and respiratory signals and achieved a 95% accuracy in the
binary classification of sleep stages using the LDA classifier. Fonseca et al. [83] applied
the Pan–Tompkins algorithm to extract an R-R interval from ECG signals and the mean
and variance of respiratory signals to classify three sleep stages with an accuracy of 80%
by using a BLD classifier. Casal et al. [84] utilised a combination of signals from ECG and
respiratory effort to classify the segments into the binary classification of sleep stages using
a two-layered gated recurrent unit (GRU) neural network. They reported achieving an
accuracy of 90.13%.

The second group includes studies that utilised a combination of EEG and ECG or a
combination of EEG and respiratory as input. For example, Tripathy et al. [85] used R-R
intervals from the ECG signal and the dispersion entropy method for extracting statistical
features from the EEG signal, achieving a 73.70% accuracy in classifying five sleep stages
using multi-fully-connected layers. Yu et al. [86] used a fast Fourier transform method
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to extract features from one channel of EEG and ECG signals, achieving an accuracy of
99% in classifying five sleep stages using SVM. Tautan et al. [64] proposed a model that
takes one EEG (F3-M2) and one respiratory signal channel as input. The model uses an
FFT method to extract features from the EEG signal and extract statistical features such as
mean, skew, and variance from the respiratory signal. The model achieved accuracies of
93.72% and 52.27% using RF and MLP classifiers, respectively. Moreover, they tested their
model by combining one channel of EEG and ECG signals, using an FFT method to extract
features from the EEG signal and R-R intervals from the ECG signal. Their proposed model
achieved accuracies of 72.52% and 60.28% using RF and MLP classifiers, respectively. Zhao
et al. [87] used a combination of two channels of EEG and ECG as input. They passed these
signals separately to a 1D-CNN model, which contains five layers of 1D-CNN. The model
they developed achieved an accuracy of 98.84% in a binary sleep stage classification.

4.5. Combination of Signals

The combination of more than two types of physiological signals provides complemen-
tary information that can improve sleep stage classification. This approach can be beneficial
because certain features of a sleep stage might be missed by one signal but detected by
another [30].

We have categorised studies into two further subcategorises below based on the type
of signal combination used as input. The first category includes studies that utilise a
combination of four types of signals as input: EEG, EMG, ECG, and respiratory. The second
category encompasses studies that employ a combination of three types of signals as input:
EEG, EMG, and ECG, or a combination of EEG, EMG, and EOG.

As mentioned earlier, the first category includes studies that utilise a combination of
four types of signals: EEG, EMG, ECG, and respiratory as input to classify sleep stages.
Only two studies were found in this category. Willemen et al. [88] proposed a model that
extracted statistical features and utilised an SVM classifier, achieving an accuracy of 69% in
classifying five sleep stages. Furthermore, Helland et al. [89] extracted mean and variance
features from raw data and employed a BLD classifier, resulting in an 80% accuracy for the
classification of five sleep stages.

The second category encompasses studies that employ a combination of three types of
signals: EEG, EMG, and ECG/EOG as inputs to classify five sleep stages. Takatani et al. [90]
extracted R-R features from ECG signals and applied fast Fourier transform (FFT) to extract
frequency domain features from EEG and EMG signals. The selected features were then
evaluated using a linear discriminant analysis (LDA) classifier, resulting in an accuracy
of 80%. Biswal et al. [91], on the other hand, used a short-time Fourier transform method
to extract frequency domain features. These features were evaluated by passing them
through a model that included a combination of 1D-CNN layers and a bidirectional LSTM
(Bi-LSTM) layer. Their model achieved a classification accuracy of 87.5%.

In a study by Choi et al. [92], the researchers investigated the utilization of five signal
combinations, namely, ECG, EEG, EMG, left-eye EOG, and right-eye EOG. They explored
all possible combinations of these signals and determined that the combination of EEG,
EMG, and ECG exhibited the most promising outcomes. Statistical features were extracted
from these signals, taking into account different window sizes and signal lengths, and
an XGBoost classifier was employed to evaluate the performance. The proposed model
achieved an accuracy of 85%.

Cui et al. [93] used two channels of EEG signals (C3-A2 and C4-A1), two channels of
EOG signals (O1-A2 and LOC-A2), and one channel of EMG signals (X1). They applied fine-
grained segmentation and a 2D-CNN model to classify five sleep stages. The architecture
of the 2D-CNN model included two 2D-CNN layers, max-pooling layers, and a fully
connected layer. The classification of five sleep stages by their model resulted in an
accuracy of 90.12%. Zhang et al. [94] proposed a method that combined short-time Fourier
transform features with raw data to classify five sleep stages using a 2D-CNN model. The
architecture of their model consisted of two 2D-CNN layers, followed by a max-pooling
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layer, an LSTM layer, and a fully connected layer. Their approach achieved an accuracy
of 86%.

Chambon et al. [95] proposed a 2D-CNN model to extract features from a combination
of six channels of EEG signals and two channels of EOG signals. The 2D-CNN architecture
consisted of three layers of 2D-CNN and max-pooling layers. Additionally, they utilised
a separate 2D-CNN model to extract features from three channels of EMG signals. All
the extracted features were then combined and passed to a fully connected layer for the
classification of five sleep stages. The proposed model achieved an accuracy of 79%.
Phan et al. [74] proposed a model that combined a short-time Fourier transform method
with multitask CNN layers for the classification of five sleep stages. The multitask CNN
architecture comprised one layer of 2D-CNN, a max-pooling layer, and a multitask softmax
layer. The model used a combination of one EEG signal channel (C4-A1), one EOG signal
channel (ROC-LOC), and two EMG signal channels (CHIN1-CHIN2) as input, and the
model achieved an accuracy of 81.2%.

Xu et al. [96] utilised a combination of EEG signals (Fpz-Cz and Pz-Oz), an EOG
signal (Horizontal), and an EMG signal as input. To extract features from raw data, they
employed a 1D-CNN model consisting of a convolution block (four 1D-CNN layers and
max-pooling layers) and a reduction block (input passed to two max-pooling layers and
three layers of 1D-CNN). These blocks were repeated four times, followed by two 1D-CNN
layers and a fully connected layer. The model’s performance was evaluated on two datasets,
achieving an accuracy of 85.40% on the Sleep-edf dataset and 81.60% on the Sleep-edfx
dataset for classifying five sleep stages. Similarly, Sharma et al. [97] utilised two channels
of EEG signals (C3-A2 and C4-A1), one channel of an EMG signal, and two channels of
EOG signals (EOG-L and EOG-R) as input. They applied a wavelet decomposition method
to extract frequency domain features and evaluated the performance of these features by
using a bagging tree classifier for the classification of three and five sleep stages. The model
achieved an accuracy of 95.44% and 95.20% for the classification of three and five sleep
stages, respectively.

Yan et al. [98] utilised a combination of EEG, EMG, and EOG signals to feed into
a 1D-CNN model with four layers of 1D-CNN, followed by max-pooling layers, achiev-
ing an accuracy of 73% for the classification of five sleep stages. Then, they applied an
STFT method to extract frequency domain features from the raw data. These features
were passed to the 1D-CNN model, which resulted in an improved accuracy of 74.24%.
Almutairi et al. [67] utilised two datasets, Sleep-edfx and ISRUC-Sleep, to evaluate their
SSNet model’s performance for the classification of three and five sleep stages. From the
Sleep-edfx dataset, they chose two EEG channels (Fpz-Cz and Pz-Cz), one EMG channel,
and one EOG channel as input. Meanwhile, from the ISRUC-Sleep dataset, they selected
two EEG channels (C3-A2 and C4-A1), one EMG channel (X1), and two EOG channels
(O1-A2 and LOC-A2) as input. Their SSNet model achieved accuracies of 94.64% and
91.22% for three- and five-sleep-stage classification on the Sleep-edfx dataset, respectively.
On the ISRUC-Sleep dataset, the SSNet model reported accuracies of 94.34% and 90.98%
for three and five sleep stages, respectively.

Satapathy et al. [99] utilised EEG (C3-A2), EMG (X1), and EOG (ROC-A2) signals
as input, and passed them to a 1D-CNN model consisting of nine layers. Their model
demonstrated high accuracy for the classification of three and five sleep stages of subgroup
1 of the ISRUC-Sleep dataset, with reported accuracies of 98.61% and 98.46%, respectively.
Furthermore, the model was tested on subgroup 2 of the ISRUC-Sleep dataset, yielding
accuracies of 98.78% and 98.46% for the classification of three and five sleep stages, re-
spectively. Another study by Satapathy et al. [100] employed the same signals as in their
previous study [99] and extracted statistical features to pass to an RF classifier. Their model
classified five sleep stages on subgroups 1 and 2 of the ISRUC-Sleep dataset, achieving
accuracies of 98.52% and 98.46%, respectively. Toma et al. [101] proposed a model for
sleep stage classification, which aims to classify five sleep stages using features extracted
from four distinct channel signals, namely, EEG (Fpz-Cz, Pz-Oz), EOG, and EMG signals
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obtained from PSG recording. The model architecture consists of two key building blocks:
the “Conv Block” and the “Bi-LSTM Block”. The Conv Block includes two consecutive
1D convolutional layers, a max-pooling layer, and a dropout layer for extracting spatial
features from the input signals. On the other hand, the Bi-LSTM Block comprises a Bi-LSTM
layer, a max-pooling layer, and a dropout layer to capture and learn temporal correlations
in the data. By concatenating the outputs of these dual-channel convolutional Bi-LSTM
network modules, the model classifies the five sleep stages and reported an accuracy of
91.44% in their study.

Later, Pei et al. [102] proposed a hybrid model that combined multiple signals, includ-
ing EEG (C4-A1), EOG (EOGL and EOGR), and EMG signals. They fed the signals to a
model architecture that consisted of seven layers of 1D-CNN and GRU. They tested their
model on the SHHS dataset, utilising 717,883 segments, and their model achieved an accu-
racy of 83.15%. Huang et al. [103] proposed a DeConvolution- and Self-Attention-based
Model (DCSAM) as a novel approach for the classification of five sleep stages. DCSAM has
the capability to reverse the feature map of a hidden layer, mapping it back to the input
space. The DCSAM model comprises five layers of 1D-CNN, followed by max-pooling
layers. The final two layers consist of an attention layer and a fully connected layer. Their
model achieved an accuracy rate of 90.26%.
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Table 2. Selected studies used two or more physiological signals for sleep stage classification.

S.No Author/Year Dataset Number of Sam-
ples/Recordings Signals Number of

Channels Input Classification Number
of Classes Accuracy Kappa Splitting Strategy

1 Esteevez et al., 2002 [104] Private 11 recordings EOG, EMG, EEG - FFT Fuzzy rule 5 - - -

2 Estrada et al., 2006 [71] Private 10 recordings EOG, EMG 2 FFT Fuzzy rule 5 - - -

3 Akin et al., 2008 [65] Private 30 recordings EEG, EMG 2 WT DNN 3 - 98.00 50% training + 50% testing

4 Yu et al., 2012 [86] Private 4 recordings EEG, ECG 2 FFT SVM 5 99.00 - -

5 Long et al., 2014 [82] Private 115 recordings ECG, respiratory - Statistic features LD 2 95.00 59.00 -

6 Willemen et al., 2014 [88] Private 35,124 samples EEG, EMG,
respiratory - WT SVM 5 69.00 69.50 -

7 Helland et al., 2015 [89] Private 10 recordings EEG, ECG,
respiratory 3 Statistic features BLD 3 80.00

8 Fonseca et al., 2015 [83] Private - ECG, respiratory 2 Statistical
features BLD 3 80.00 49.00 -

9 Kim et al., 2018 [66] Sleep-edf 5 recordings EEG, EMG 2 TD SVM 5 93.80 94.00 10-fold

10 Takatani et al., 2018 [90] Private 431 recordings EEG, ECG, EMG - RR+FFT LD 5 80.00 - -

11 Cui et al., 2018 [93] ISRUC-Sleep 106 recordings EEG, EOG, EMG 5 Fine-grained 2D-CNN 5 90.12 81.00 10-fold subject-wise

12 Tripathy et al., 2018 [85] MIT-BIH 18 recordings EEG, ECG 2 Statistic features DNN 5 73.70 - 10-fold subject-wise

13 Yuan et al., 2018 [98] UCD 25 recordings EEG, ECG, EMG -
Raw data 1D-CNN

2D-CNN 5
73.00 -

-
STFT 74.22 -

14 Bisawal et al., 2018 [91] Private 10,000 samples EEG, EMG, ECG 6 FFT 1D-CNN+
Bi-LSTM 5 87.50 80.50 Train 90%, testing 10%

subject-wise

15 Zhang et al., 2018 [94] SHHS 5804 recordings EEG, EMG, EOG 5 TD+FFT 2D-CNN 5 86.00 82.00 Train 90%, testing 10%
subject-wise

16 Chambon et al., 2018 [95] MASS 62 recordings EEG, EOG, EMG 11 Raw data 2D-CNN 5 79.00 70.00 5-fold subject-wise

17 Phan et al., 2019 [74] MASS 200 recordings EEG, EOG 2 FFT 2D-CNN 5 87.10 81.50 20-fold subject-wise

18 Yildirim et al., 2019 [72]
Sleep-edf 15,188 samples

EEG, EOG
2

Raw data 1D-CNN

3
5

94.64
91.22 - Training 70%, validation 15%,

testing 15%
non-subject-wiseSleep-edfx 127,512 samples 2 3

5
94.34
90.98

19 Blanco et al., 2019 [59] Sleep-edfx 20 recordings EEG 2 Raw data 1D-CNN 5 92.60 84.00 20-fold subject-wise

20 Phan et al., 2019 [105]
Sleep-edf 20 recordings

EEG, EMG, EOG 2 FFT 2D-CNN 5
82.30 75.00 Training 19 subjects, validation 4 subjects,

testing 4 subjects

MASS 200 recordings 82.50 75.00 20-fold cross-validation
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Table 2. Cont.

S.No Author/Year Dataset Number of Sam-
ples/Recordings Signals Number of

Channels Input Classification Number
of Classes Accuracy Kappa Splitting Strategy

21 Satapathy et al., 2020 [60]

ISRUC-Sleep
Subgroup 1

6000 samples EEG 2 Raw data 1D-CNN 5
97.22 -

Training 70%, testing 30%
ISRUC-Sleep
Subgroup 2 95.06 -

22 Tautan et al., 2020 [64] PhysioNet Challenge 994 recordings

EEG, ECG

2 Statistic features+FFT RF 5

72.52 -

10-fold subject-wise

EEG, EMG 88.65 -

EEG, respiratory 93.72 -

EEG, ECG

2 Statistic features+FFT MLP 5

60.28 -

EEG, EMG 66.70 -

EEG, respiratory 52.27 -

23 Sokolovsky et al., 2020 [73] Sleep-edfx 20 recordings EEG, EOG 3 Raw data 1D-CNN 5 81.00 - 10-fold subject-wise

24 Xu et al., 2020 [96]
Sleep-edf 37,628 samples

EEG, EMG, EOG 4 Raw data 1D-CNN 5
85.40 78.90

5-fold subject-wise
Sleep-edfx 213,695 samples 81.60 74.70

25 Delimayanti et al., 2020 [61] Sleep-edfx 127,663 samples EEG 2 FFT SVM
3 94.14 -

10 -fold
5 91.37 -

26 Casal et al., 2021 [84] SHHS 5000 recordings ECG, respiratory 2 Raw data GRU 2 90.13 74.00 Training 50%, validation 25%, testing
25% subject-wise

27 Zhao et al., 2021 [87] MIT-BIH 10,127 samples EEG, ECG 2 Raw data 1D-CNN 2 98.84 - 10 fold

28 Sharma et al., 2022 [97]
SHHS visit 1 5,861,304 samples

EEG, EOG, EMG 5 WT BT

3
5

95.05
94.79 83.80

Training 90%, testing 10%

SHHS visit 2 3,037,838 samples 3
5

95.44
95.20 86.00

29 Satapathy et al., 2022 [99]

ISRUC-Sleep
Subgroup 1 3750 samples

EEG, EOG, EMG 3 Raw data 1D-CNN

3
5

98.61
89.46 -

Training 70%, testing 30%
ISRUC-Sleep
Subgroup 2 3750 samples 3

5
98.78
98.46

30 Satapathy et al., 2022 [100]

ISRUC-Sleep
Subgroup 1 3750 samples

EEG, EOG, EMG 3 Statistic features RF
5 98.52 -

Training 70%, testing 30%
ISRUC-Sleep
Subgroup 3 3750 samples 5 98.46

31 Pie et al., 2022 [102] SHHS visit 1 717,883 samples EEG, EMG, EOG 4 Raw data 1D-CNN 5 83.15 89.00 Training 50%, validation 20%,
testing 30%

32 Sekkal et al., 2022 [75] Sleep-edfx 21,265 samples EEG, EOG 3 Statistic features SVM 5 89.10 82.00 Training 80%, testing 15%
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Table 2. Cont.

S.No Author/Year Dataset Number of Sam-
ples/Recordings Signals Number of

Channels Input Classification Number
of Classes Accuracy Kappa Splitting Strategy

33 Almutairi et al., 2023 [67]

Sleep-edfx 72,000 samples

EEG, EMG 3
Raw data 1D-CNN + LSTM 3

95.46 90.12

EEG, EOG 3 95.65 89.70

EEG, EMG, EOG 4

Raw data 1D-CNN + LSTM

3
5

96.36
96.57

93.40
83.05 Training 70%, validation 15%,

testing 15%, non-subject-wiseISRUC-Sleep
Subgroup 1 56,515 samples EEG, EMG, EOG 5 3

5
94.90
93.96

90.34
77.31

34 Choi et al., 2023 [92] SHHS 9736 recordings ECG, EMG, EEG 3 Statistic features XGBoost 5 85.00 - 10-fold non-subject-wise

35 Dequidt et al., 2023 [62] MASS 62 recordings EEG 8 FFT VGG-16 5 82.96 80.90 31-fold subject-wise

36 Toma et al., 2023 [101] Sleep-edf 20 recordings EEG, EMG, EOG 4 Raw data 1D-CNN +
Bi-LSTM 5 91.44 89.00 Training 85%, testing 15%

non-subject-wise

37 Toma et al., 2023 [76] Sleep-edf 20 recordings EEG, EOG 3 Raw data 1D-CNN + RNN 5 90.30 86.86 Training 85%, testing 15%
non-subject-wise

38 Huang et al., 2023 [103] Sleep-edfx 20 recordings EEG, EOG, EMG 3 Raw data 1D-CNN +
attention 5 90.30 86.86 -
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5. Gaps in Literature

This section aims to provide a valuable resource for scholars who are seeking to gain a
comprehensive understanding of the limitations within the current state of the literature.
The classification of sleep stages is crucial as it helps in detecting sleep disorders, which can
have significant implications for life-threatening conditions. The literature review indicates
that the existing framework used for sleep stage classification encounters one or more of
the following limitations.

5.1. Testing of Multiple Datasets

Enhanced reliability and generalizability of a proposed model can be achieved by
evaluating a model with multiple datasets collected through the implementation of diverse
recording equipment and laboratory practices. As a result, it guarantees the model’s
strength and effectiveness in handling various scenarios [106]. A considerable amount of
the existing literature assesses models using a single dataset. However, a growing body of
literature as highlighted in [60,67,96,97,99,100] tested their models across multiple datasets
with variations in data collection environments. Results from these studies highlight the
critical role that the diversity in datasets and data collection methods plays in improving a
model’s robustness.

5.2. Splitting Strategy

The splitting strategy used to divide a dataset into training, validation, and testing sets
can impact a model’s performance in the classification of sleep stages [107]. Many studies
have employed random allocation, where data in the dataset are randomly divided into
fixed percentages of training, validation, and testing, such as 70% training, 15% validation,
and 15% testing, or 90% training and 10% testing. Another cross-validation approach has
been utilised to calculate the average accuracy of the entire dataset. Another factor that
can significantly influence model performance is the choice between a subject-wise or a
non-subject-wise strategy. In a subject-wise approach, the model may recognise patterns
in the test data in a more effective and generalisable way, as training and testing sets do
not include the same subjects. Conversely, a non-subject-wise approach may result in the
model being unable to adequately generalise, as it recognises similar patterns in training
and testing data [108]. These considerations highlight the importance of carefully selecting
the splitting strategy and considering the subject-wise or non-subject-wise approach to
ensure an accurate, reliable classification of sleep stages.

5.3. Computational Complexity

Computational complexity is mainly associated with training and deploying deep
learning models. Deep neural networks often exhibit several parameters, leading to in-
creased computational demands and longer training times [109]. Researchers have tackled
this problem by prioritising the development of low-parameter deep learning models.
Therefore, there is a need to propose new, efficient models that are less computationally
complex while maintaining high performance standards.

5.4. Imbalanced Dataset

The classification of sleep stages is hindered by the limitations posed by imbalanced
datasets. Sleep stage classification involves training machine learning models to accurately
identify sleep stages based on physiological signals. However, imbalanced datasets arise
due to the uneven distribution of samples across sleep stages. Sleep time is predominantly
spent in the N2 stage, while other stages, such as N1, N3, and REM, are comparatively
less frequent. This inherent class imbalance leads to a bias in the model’s performance,
with a tendency to favour dominant classes. Consequently, minority classes such as N1,
N3, and REM sleep stages may be poorly classified [110]. The insufficient representa-
tion of these under-represented classes makes it challenging for models to learn their
distinctive characteristics.
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5.5. Scarcity of Studies Using a Combination of Signals for Sleep Stage Classification

In this study, we identified only 38 out of 1427 studies that utilised a combination
of signals and machine learning models. This finding underscores the prevalent focus of
researchers on utilising single-channel EEG signals with machine learning. The utilization
of multiple signals available from PSG is reported in the identified studies to provide
additional features that aid in accurately classifying sleep stages. Hence, we suggest that
future studies explore the use of combined physiological signals to enhance the accuracy of
sleep stage classification.

6. Discussion

This systematic review investigated the effectiveness of using machine learning on
a combination of physiological signals in sleep stage classification. The combination of
signals from multiple physiological sources has gained attention, as it has been found to be
a promising approach for enhancing the accuracy and reliability of sleep stage classification.
By leveraging complementary information captured by signals, researchers aim to improve
the overall performance of sleep stage classification models. The studies included in the
literature review were characterised based on the type and number of physiological signals
used, the classification models employed, and the accuracy achieved. Figure 6 presents
the distribution of the total number of studies that utilised either multiple channels of a
single type of physiological signal or a combination of signal types for the classification of
sleep stages.

Figure 6. Distribution of studies using multiple channels of a single type of physiological signal or a
combination of different types of physiological signals for the classification of sleep stages.

Most of the reviewed studies utilised a combination of EEG + EOG + EMG signals for
sleep stage classification, as these signals provided more accurate discrimination between
sleep stages. They capture both brain activity and eye movement patterns that characterise
each sleep stage. Additionally, incorporating EMG signals provides valuable information
about muscle activity and helps differentiate sleep stages with varying muscle tone [67].

The selection of a signal’s channels is critical for the performance of the sleep stage
classification model. Typically, multiple signal channels are used instead of using a single
channel. However, utilising additional channels can increase the costs associated with
the recording configuration and impose a greater computational complexity on machine
learning models. Thus, the selection of channels balancing the accuracy and efficiency is an
important research area. For example, Cui et al. [93] observed that increasing the number of
channels correlated with enhanced model performance. Chambon et al. [95] demonstrated
that their research using a set of six EEG channels produced results comparable to those
obtained with a larger set of 20 EEG channels. Sharma et al. [97] conducted a compre-
hensive investigation that explored 15 signal configurations. Notably, among this array of
combinations, the one that incorporated the specific set of five channels, as proposed in
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their research, consistently demonstrated superior performance in the classification of sleep
stages. Furthermore, Sekkal et al. [75] comprehensively compared signal combinations and
a single-channel EEG. They compared combinations of signals with a single-channel EEG.
The study found that when specific classifiers were used, there was only a small decrease
in accuracy, even when using a single EEG channel or different signal combinations. This
suggests that the choice of classifiers plays a significant role in maintaining the accuracy
of sleep stage classification. Investigations by Almutairi et al. [67] and Dequidt et al. [62]
exploring numbers of channels of signal combinations revealed the potential for significant
improvements in model results by utilising all available channels from the dataset used in
their proposed models.

It is also observed from the literature that majority of the studies for the classification
of sleep stages used feature extraction methods as a pivotal step in their data processing
pipelines. Figure 7 presents the distribution of studies utilising different feature extraction
methods and raw signals as inputs to machine learning models. A total of 27 studies
have chosen to employ feature extraction techniques to extract crucial information or
features from raw data. These methods are designed to condense and represent underlying
patterns in a more informative manner [111]. In parallel, an alternative approach has been
embraced by 14 studies, wherein they directly utilise raw, unprocessed data as input for
their classification models. This distinction highlights the variety of methodologies used
within this research domain, where some researchers prioritise feature engineering, while
others take advantage of deep learning and sophisticated machine learning techniques
with raw data input [111].

Figure 7. The distribution of studies used feature extraction methods or raw data as input to machine
learning.

Figure 8 illustrates the distribution of the utilisation of sleep datasets in studies ded-
icated to sleep stage classification through the utilisation of ML techniques. The most
frequently used open-source datasets in sleep research are ISRUC-Sleep, Sleep-edf, Sleep-
edfx, and MASS. These datasets stand out due to their availability and diversity. In contrast,
the usage of the PhysioNet Challenge 2018 and the MIT-BIH, UCD, and SHHS datasets
is comparatively low due to restrictive access and small size. However, when comparing
the performances of machine learning models across studies, a significant challenge arises
due to variations in datasets and sample sizes. These dataset differences, including data
source, diversity, and size, introduce confounding factors that complicate direct model
comparisons. A model trained on a small, specialised dataset may excel within that context
but might not generalise to another dataset with distinct characteristics [112]. Therefore,
it is essential to recognise that identifying the ‘best’ model is highly context dependent,
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and meaningful comparisons necessitate careful consideration of the data and sample sizes
underlying each model’s evaluation.

Figure 8. The distribution of the utilization of each sleep dataset in studies employing ML techniques
for sleep stage classification.

Figure 9 illustrates the ML models proposed in the literature to classify sleep stages. CNN-
based architectures are the most popular models for classifying sleep stages. In our review,
we found that 14 studies proposed models based on 1D-CNN, and 6 studies proposed models
based on 2D-CNN. These 1D-CNN models have the advantage of being computationally less
complex than 2D-CNN models. In addition, 2D-CNN-based models require input signals to
be converted from 1D to 2D. This conversion process must be carefully handled to prevent
the potential loss of important information [113]. Therefore, 1D-CNN models are well suited
for real-time applications, such as home-based sleep stage classification.

Figure 9. Distribution of different machine learning models for the classification of sleep stages.

7. Conclusions

This systematic review targets studies that employ machine learning techniques for
sleep stage classification using combined multichannel physiological signals. These studies
utilise signal combinations to enhance classification accuracy, with EEG, EMG, and EOG
signals being the most frequently used inputs for machine learning models. Most reviewed
studies proposed a variety of machine learning models for both three- and five-sleep-stage
classifications. Additionally, a prevailing preference was observed for feature engineering
methods over raw data utilisation. Furthermore, the review highlights an emerging trend
that underscores the potential benefits of leveraging combined signals and deep learning
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algorithms to achieve improved sleep stage classification. This trend represents a promising
direction for future research and application in the field of sleep medicine.

To further advance sleep stage classification, future studies are recommended to con-
sider additional metrics such as specificity, sensitivity, F1 score, and kappa for evaluating
ML models. These metrics are especially beneficial when dealing with imbalanced datasets.
Moreover, researchers are encouraged to evaluate model performance using both subject-
wise and non-subject-wise evaluation approaches. This comparative analysis will yield
valuable insights into the generalisability and effectiveness of the models across diverse
data distributions. In the context of addressing imbalanced datasets, future research should
also consider implementing data augmentation techniques to improve models’ perfor-
mance. Class imbalance difficulties can be overcome by creating synthetic samples from
the minority class through data augmentation, thereby enhancing classification accuracy.
Future research in the domain of sleep stage classification must prioritise the investiga-
tion of the most effective combination of physiological channels required for accurate
and efficient classification.
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28. Ronzhina, M.; Janoušek, O.; Kolářová, J.; Nováková, M.; Honzík, P.; Provazník, I. Sleep scoring using artificial neural networks.

Sleep Med. Rev. 2012, 16, 251–263. [CrossRef] [PubMed]
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