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Abstract: Music genre classification has a significant role in information retrieval for the organization
of growing collections of music. It is challenging to classify music with reliable accuracy. Many meth-
ods have utilized handcrafted features to identify unique patterns but are still unable to determine
the original music characteristics. Comparatively, music classification using deep learning models
has been shown to be dynamic and effective. Among the many neural networks, the combination of
a convolutional neural network (CNN) and variants of a recurrent neural network (RNN) has not
been significantly considered. Additionally, addressing the flaws in the particular neural network
classification model, this paper proposes a hybrid architecture of CNN and variants of RNN such
as long short-term memory (LSTM), Bi-LSTM, gated recurrent unit (GRU), and Bi-GRU. We also
compared the performance based on Mel-spectrogram and Mel-frequency cepstral coefficient (MFCC)
features. Empirically, the proposed hybrid architecture of CNN and Bi-GRU using Mel-spectrogram
achieved the best accuracy at 89.30%, whereas the hybridization of CNN and LSTM using MFCC
achieved the best accuracy at 76.40%.

Keywords: music classification; music information retrieval; convolutional neural network; recurrent
neural network; Mel-spectrogram

1. Introduction

The recognition and classification of music genres from audio data is a significant
task known as “music classification”. Due to the rapid increase in music archives, the goal
of music classification is self-evident. A massive increase in the number music samples
has been observed, making it challenging to retain the music order manually. Music
classification and analysis can be improved by automating the task, which is essential in
MIR, music recommendation, and online access. However, music classification is a difficult
task caused by the presence of a fuzzy nature in various music samples. As a result, music
classification with consistent accuracy is worth investigating.

The advent of digital abilities and sophisticated techniques has stimulated the interest
of music classification researchers. Audio signal acoustics such as rhythm, pitch, tonality,
intensity, timbre, and MFCCs are usually compared in music classification techniques.
Local binary pattern (LBP) and local ternary pattern (LTP) are handcrafted features that
have not performed well and introduced biases as in References [1,2]. The visual domain
features based on Mel-spectrogram are similar to the human auditory system, and they are
suited for deep-learning approaches despite using acoustical and handcrafted features [3].
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Deep learning assists in the design of end-to-end systems for a wide range of appli-
cations. These systems can automatically extract features without biases and outperform
traditional techniques. CNN and RNN are two of the most effective approaches to classi-
fying music data [3,4], where CNN is better at recording spatial dependencies in feature
domains [5,6], and RNN satisfactorily handles sequential data temporal dependencies [7,8].
In literature, many of the works classified GTZAN [9] dataset, which became the musical
analysis benchmark. Further, a computational model that can automatically explore the
digital content of the large and growing library of music is still lacking. Another reason to
apply the CNN and variants of RNN jointly is to learn features incorporated with estimated
parameters, in addition to using sequential modeling for neural networks that should be
capable enough to analyze the inherently sequential nature of music files. The following
are the main contributions of this work:

• Utilizing MFCC and Mel-spectrograms to determine which neural architecture is most
effective for classifying music.

• For the classification of music, multiple hybridization such as CNN-LSTM, CNN-Bi-
LSTM, CNN-GRU, and CNN-Bi-GRU are taken into consideration.

• Lastly, the performance of the various hybridizations for the various extracted features
were also evaluated using the same musical dataset.

The remainder of this paper is structured as follows: Section 2 contains related work,
while Section 3 elaborates on the methodology and proposed architecture. Section 4 is made
up of data descriptions and experiments. Section 5 has the results of extracted features and
discussion, and the work is concluded in Section 6.

2. Related Work

Music genre classification has a wide range of applications. These applications have
used various methods of feature extraction and classifiers for the classification of music
genre using machine- and deep-learning techniques as described in [10–12].

A machine-learning method based on support vector machine (SVM) and k-nearest
neighbor (k-NN) was suggested in Reference [13]. This method was performed on the
GTZAN dataset for the classification task. In order to extract the features from music
samples, it used MFCC, and it obtained 64.4% and 77.78% accuracy for k-NN and SVM,
respectively.

Feature extraction with statistical description was also performed in Reference [14].
This work extracted eight features that were used with different machine-learning algo-
rithms and achieved an accuracy of 72%. Further, they also extended their approach by
using deep-learning techniques such as CNN. They implemented their work in three steps—
creating raw data, using short-time Fourier transform (STFT) (hop count = 1024, window
size = 2048), and MFCC by employing 13 coefficients—and obtained 66% accuracy.

Similarly, multiple techniques for detecting and classifying GTZAN music datasets
were compared in Reference [15], in which FFT and MFCC for the feature extraction is
considered. They performed analysis using the machine-learning approaches “decision
tree”, “k-NN,” and “RNN” as classifiers. By implementing RNN, they obtained the highest
accuracy of 86%. Further, in Reference [16], another model was implemented in two parts.
First, the extracted features from music files were arranged in a specific format to be used
in two architectures. Second, the sum rule was used to merge the two models. To show the
final result, the discrete posterior probabilities were jointly used. The GTZAN dataset was
used for the experiments, and nine distinct features were extracted in order to analyze the
music pattern. Every feature considered input to two models, and results were merged for
the final prediction. By combining the SVM and LSTM, they achieved an accuracy of 89%.

To classify music, a model in Reference [17] considered eight characteristics of extracted
audio files: beat periodicity, loudness, energy, speech, acoustic, valence, and danceability
(discreet wavelet transformation, DWT). A neural network then took the input of these
features. They performed the experiments on only two genres: classical and Sufi songs.
Classical songs were predicted correctly with an accuracy of 87%, and the Sufi genre
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was predicted with an accuracy of 82%. Similarly, the study in Reference [18] used the
GTZAN dataset with limited parameters and the global pooling approach to investigate a
CNN-based network. However, they could only achieve a test accuracy of 70.60%, since
they could not locate the temporal elements. The authors in Reference [19] also suggested
the CNN design combined with a residual network. Still, due to a shortage of training
examples, their experiments on the PMG dataset showed an accuracy of 86%. Additionally,
a model suggested in [20] that attempted to classify the Free Music Achieve (FMA) dataset
using CNN-based architecture showed limited performance, obtaining an accuracy rate of
only 66.4%.

Due to the audio’s sequential nature, the variants of RNN, such as LSTM and GRU,
have been proposed for music classification in References [21,22]. In this work the tests
were conducted on GTZAN, Emotify, Ballroom, and LastFM by utilizing Mel-spectrograms
for feature extraction. This work also compared all datasets and found GRU to be better
than LSTM with reliable accuracy. In another work, George Tzanetakis [9] used the timbral
texture, rhythm, pitch content, and statistical pattern recognition from the GTZAN dataset
as well as real-time music with the accuracy of 60%.

Owing to the immense advancement and effectiveness of neural networks in multiple
classification tasks and also to the better forecasting results, a hybridization of CNN and
variants of RNN is proposed. By utilizing two prominent features, Mel-spectrograms
and MFCC in novel joint architecture are fed into the CNN layers and then to optimized
variants of RNN such as LSTM, Bi-LSTM, GRU, and Bi-GRU, for performance evaluation
and comparison using the GTZAN dataset.

3. Proposed Hybrid Methodology

This work aims to classify the music genres with the proposed hybrid neural architec-
ture implemented with Mel-spectrograms and MFCC. The proposed hybrid methodology
theoretical framework has been presented in a series of steps, including Dataset and Prepro-
cessing, Feature Extraction, and Learning Algorithm. The flow of the proposed architecture,
which consists of extracted features such as Mel-spectrogram and MFCC, incorporated
with CNN and variants of RNN, is shown in Figure 1.
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3.1. Dataset and Preprocessing

The experiments were carried out using GTZAN, which is freely available to the
public [9]. The dataset contains 1000 music clips divided into 10 genres, each with 100
songs such as “blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and rock”
with a duration of 30 s each as in Reference [23]. With a sample rate of 22,050 Hz, each
clip has a size of 16 bits for the mono channel and is encoded in mp3 format. However,
during preprocessing, a clip splitting process is used to converts a 30 s music clip into a 3 s
duration to meticulously assess the proposed model.
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3.2. Feature Extraction

In order to compare how well each method performed, each music clip used a dif-
ferent feature extraction method. These methods are Mel-spectrogram and MFCC. Mel-
spectrogram represents an input 2D signal which is also a part of bandpass filters, over the
spatiotemporal domain and a digital filter bank that is a subset of bandpass filters, where
X(t) refers to the input signal, n represents a filter bank analysis number, and A(F) refers to
an analysis filter, as shown in Figure 2. By utilizing this method, a signal can be divided
into sub-bands containing part of the original frequency. It looks exactly like an analysis of
the digital filter bank to the Mel filter bank in Figure 3. We take the music clip as input and
perform a Hann windows operation in Mel-spectrogram processing. Following that, we
perform FFT on each block, converting the time-based signal to a frequency-based signal,
which is similar to STFT.
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Further, Mel-spaced filter bank, also known as analysis filter bank, is used to pass
every frequency-based signal, as in Figure 3. In order to determine the bank energy, the
product of the frequency and filter bank is calculated, and all coefficients are summed
up. Mel-spectrogram vectors create every summed coefficient with n-agreed filters. Every
frame of the signal gets a Mel-spectrogram of n-vector. Then, we obtain the resultant in
a triangular graph, as shown in Figure 4. Different colors represent different filter bank
analyses.
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A comparison can be made between the Mel-filter bank and filter band, as shown
in Figures 3 and 4, respectively, so every triangle filter is considered a distinct block. For
instance, the color of the first triangular block is blue, which is the first block. Further, the
orange color is taken as the second block until the triangular part is the ‘n’ block. When
Mel-spectrogram is functional to each clip with an FFT window size of 1024 and a hop
length of 512, then every clip has dimensions (128,129), as shown in Figure 5.
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MFCC is an alternative form of audio representation after compressing frequency. We
calculate the power log and choose 13 to 20 coefficients after performing DCT. The increas-
ing coefficients represent more changes to the energy estimation and show lower amounts
of received data. Most of the information gets lost, which is why one uses this technique.
Furthermore, DCT is applied similarly to FFT, whose implementation of computation is
easy, as is shown in Figure 6, and MFCC for the blues genre can be seen in Figure 7.
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3.3. Learning Algorithm

With an 8:1:1 ratio, we divided the dataset into three categories: training, test, and
validation. Our model retained 50% of the previous data and all clips are linked to form a
proper chain; the dataset within each genre can be shuffled without losing any information.
Following training, the performance of validation samples can be evaluated after one epoch
to determine generalized unknown data. The test data are evaluated after the performance
of the training and validation data.

CNN has produced impressive results when analyzing image data. To determine
the unique patterns for the classification task, all music features are considered image
features. During convolution operation, different kernel filters are utilized. A method
in [24] used CNN layers to extract features from Mel-spectrogram. As the computations of
weight and bias for any hidden layer are diverse, similar values for the bias and weight
are therefore considered to accumulate the hidden layers. Further, to address this issue,
RNN and its variants play a significant role, using internal memory as mentioned [25–28].
Moreover, a CNN model has been trained both with and without RNN variants, and several
hyperparameters have been adjusted throughout the training process.

4. Experiments

For the experiments, we used Spyder 3.3.2, which is integrated with several influential
packages in the scientific Python stack, such as NumPy, SciPy, matplotlib, pandas, and
other software. This system also includes evaluating the limits of the proposed model by
changing parameters.

During the model-building process, music samples are transformed into Mel-spectrograms
using the Librosa library. By increasing the window length to 2048 and the hop length to
512, the result becomes scalable by the log function of the music files, yielding the desired
shape (640, 128). This technique is based on human perception in the loudness of decibels
(dB). It is not advantageous to use the same hyper-parameters for all datasets, because
different datasets impact different architectures. As a result, choosing the network size
and hyperparameter settings is critical for neural network model training. We ran several
experiments to determine the best parameters, including the number of CNN layers, kernel
length, number of kernels, neurons (hidden units) in RNN variants, and learning rates.
Table 1 displays all optimized parameters.
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Table 1. Parameter configuration used to build the proposed architecture.

Parameters Candidate Set Optimized

Window Length - 2048
Hop Length - 512
Convolutional Block {3, 5, 7} 5
Kernel Dimensions {3,5,7, 9, 11} 5
Number of Kernels {32, 64, 128, 256, 512} 128
Number of LSTM/B-LSTM/GRU/Bi-GRU - 3
Number of hidden units in RNN Variants {64, 96, 128, 256, 512} 128, 64
Number of Epochs {30, 40, 50, 60} 50
Dropout - 0.25
Window Length {0.1, 0.01, 0.001, 0.0001} 0.001

In this proposed model, we created 5 layers of convolution block. Each layer included
a different-sized kernel filter followed by a maximum 0.25 dropout. Each block layer
contains a different size of convolution kernel, followed by a max-pooling layer with a 25%
dropout. Afterward, we flatten them using a 1D array and the output layer. This model
also consists of three layers of LSTM (or GRU) with two 128 LSTM or GRU units and one 64
LSTM or GRU unit. Further, this outcome is flattened into a 1D array and uses one dense
layer followed by an output layer, as shown in Figure 8.
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Similarly, in Figure 9, we used one layer of LSTM or GRU extended with 128 units for
CNN incorporated with Bi-LSTM or Bi-GRU. A Bi-LSTM or Bi-GRU was then extended
with 128 units of one LSTM or GRU. Additionally, they were flattened into a 1D array
followed by one dense layer and an output layer.
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5. Results and Discussion

We developed and compared the accuracies of four different combinations, including
CNN+LSTM, CNN+Bi-LSTM, CNN+GRU, and CNN+Bi-GRU, using Mel-spectrograms
and MFCC features, which are mentioned in Table 2 and Figure 10, to evaluate the perfor-
mance of the proposed hybridization.
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Table 2. Results of extracted features with proposed hybrid architecture.

Features Model Accuracy

Mel-Spectrogram CNN+LSTM 87.20%
Mel-Spectrogram CNN+Bi-LSTM 88.00%
Mel-Spectrogram CNN+GRU 87.78%
Mel-Spectrogram CNN+Bi-GRU 89.30%
MFCC CNN+LSTM 76.40%
MFCC CNN+Bi-LSTM 73.69%
MFCC CNN+GRU 71.50%
MFCC CNN+Bi-GRU 76.30%
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Using Mel-spectrograms and MFCC features from the GTZAN dataset, we compared
various combinations. With an accuracy of 89.30%, the combination of CNN+Bi-GRU
performed the best for Mel-spectrograms. The CNN+LSTM combination model achieves
an accuracy of 87.20%. On the other hand, we evaluated the proposed models’ performance
in terms of MFCC features. The combination of CNN+LSTM achieved the highest accuracy
of 76.40%, while CNN+RNN achieved the lowest accuracy of 71.50%. Table 3 and Figure 11
compare the proposed models to the state-of-the-art models.

Table 3. Comparison between the proposed hybrid model and the other state-of-the-art models.

Method Accuracy

George Tzanetakis [9] 61.00%
G. Sun et al. [20] 66.40%
A Heakl et al. [18] 70.60%
Nilesh M. et al. [13] 77.78%
Praseneet Fulzeele et al. [16] 89.00%
N. Farajzadeh [19] 86.00%
Pradeep Kumar D et al. [15] 86.00%
Jan Jakubik [21] 87.70%
Proposed Work 89.30%
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The findings indicate that the classification effectiveness of the CNN-BiGRU and
CNN-BiLSTM networks using a bidirectional framework is preferred to that of CNN-
GRU and CNN-LSTM networks without bidirectionality. Furthermore, acknowledging the
pattern of information enables the model to more intelligently recognize the value of the
features retrieved by the convolutional neural networks at a specific time. There is initially
a convolutional block in the hybridization in terms of CNN and RNN variants. Also,
the gradient during backpropagation is not sufficient, restricting the network layers from
being proficiently updated, which probably contributed to lower accuracy. The training
performance of the model depends upon the hardware used for the experiments. We used
a Core i5 Intel 3.2 GHz processor with 10th generation and 32 GB RAM to execute the
program on Microsoft Windows. Figure 12 elaborates the comparison between the training
and validation accuracy. It can be seen that after 20 epochs, the validation accuracy becomes
stable up to 50 epochs. Similarly, Figure 13 shows the validation loss statistics of the model.
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We also calculated the precision, recall, and F1 score to assess how well the model
works, as shown in Table 4.



Appl. Sci. 2023, 13, 1476 10 of 11

Table 4. Performance evaluation measures.

Performance Score

Precision 0.85
Recall 0.91
F1-Score 0.88

Furthermore, results are also based on input image size, number of layers, number
of kernels, and the size of the network kernels. It can be seen the proposed model obtains
the precision, recall, and F1-scores of 0.85, 0.91, and 0.88, respectively, as shown in Table 4.
These results confirm the significance of the model when compared with the other models.

6. Conclusions

In this paper, we performed a music classification task on a public dataset called
GTZAN by introducing a novel hybridization of CNN and variants of RNN. For feature
extraction, we used Mel-spectrogram and MFCC jointly with the four combinations of
neural network, namely CNN and LSTM, CNN and Bi-LSTM, CNN and GRU, and finally
CNN and Bi-GRU. For the MFCC, using the combination of CNN and LSTM, we obtained
the highest accuracy of 76.40%, whereas for the Mel-spectrogram, the combination of
CNN and Bi-GRU exhibited the highest accuracy of 89.30%, which was the best among all
combinations. We also compared our model with the other state-of-the-art methods and
found comparable results. We found that a hybridization is beneficial to music classification
using extractive features and temporal aggregation. In future, we will conduct experiments
on other datasets, such as FMA, for the classification of music, instruments, or recognition
of the artist.
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pp. 27–37. [CrossRef]

22. Ashraf, M.; Geng, G.; Wang, X.; Ahmad, F.; Abid, F. A Globally Regularized Joint Neural Architecture for Music Classification.
IEEE Access 2020, 8, 220980–220989. [CrossRef]

23. Jakubec, M.; Chmulik, M. Automatic music genre recognition for in-car infotainment. Transp. Res. Procedia 2019, 40, 1364–1371.
[CrossRef]

24. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks For Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
25. Song, G.; Wang, Z.; Han, F.; Ding, S.; Iqbal, M.A. Music auto-tagging using deep Recurrent Neural Networks. Neurocomputing

2018, 292, 104–110. [CrossRef]
26. Ashraf, M.; Abid, F.; Atif, M.; Bashir, S. The Role of CNN and RNN in the Classification of Audio Music Genres. VFAST Trans.

Softw. Eng. 2022, 10, 149–154. Available online: https://vfast.org/journals/index.php/VTSE/article/view/793 (accessed on 11
August 2022).

27. Dai, J.; Liang, S.; Xue, W.; Ni, C.; Liu, W. Long Short-Term Memory Recurrent Neural Network Based Segment Features for
Music Genre Classification. In Proceedings of the 2016 10th International Symposium on Chinese Spoken Language Processing
(ISCSLP), Tianjin, China, 17–20 October 2016; pp. 1–5. [CrossRef]

28. Abid, F.; Li, C.; Alam, M. Multi-source social media data sentiment analysis using bidirectional recurrent convolutional neural
networks. Comput. Commun. 2020, 157, 102–115. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/fit53504.2021.00066
http://doi.org/10.1109/TSA.2002.800560
https://riteshajoodha.co.za/sitepad-data/uploads/2021/02/2020-Dhiven.pdf
https://github.com/ZainNasrullah/music-artist-classification-crnn
https://github.com/ZainNasrullah/music-artist-classification-crnn
http://doi.org/10.1109/kse.2018.8573325
http://doi.org/10.1109/asyu.2018.8554016
http://doi.org/10.1109/discover.2016.7806258
http://doi.org/10.1109/ic3.2018.8530557
https://ieeexplore.ieee.org/abstract/document/7001506/
http://doi.org/10.1109/ijcnn55064.2022.9892651
http://doi.org/10.1016/j.entcom.2022.100518
http://doi.org/10.1088/1742-6596/2033/1/012008
http://doi.org/10.1007/978-3-319-67220-5_3
http://doi.org/10.1109/ACCESS.2020.3043142
http://doi.org/10.1016/j.trpro.2019.07.189
http://doi.org/10.1016/j.neucom.2018.02.076
https://vfast.org/journals/index.php/VTSE/article/view/793
http://doi.org/10.1109/iscslp.2016.7918369
http://doi.org/10.1016/j.comcom.2020.04.002

	Introduction 
	Related Work 
	Proposed Hybrid Methodology 
	Dataset and Preprocessing 
	Feature Extraction 
	Learning Algorithm 

	Experiments 
	Results and Discussion 
	Conclusions 
	References

