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Abstract: To manage noise pollution, cities use monitoring systems over wireless acoustic sensor
networks. These networks are mainly composed of fixed-location sound pressure level sensors
deployed in outdoor sites of the city for long-term monitoring. However, due to high economic and
human resource costs, it is not feasible to deploy fixed metering stations on every street in a city.
Therefore, these continuous measurements are usually complemented with short-term measurements
at different selected locations, which are carried out by acoustic sensors mounted on vehicles or at
street level. In this research, the application of artificial neural networks is proposed for estimation of
the long-term environmental acoustic pattern of a location based on the information collected during
a short time period. An evaluation has been carried out through a comparison of eight artificial neural
network architectures using real data from the acoustic sensor network of Barcelona, Spain, showing
higher accuracy in prediction when the complexity of the model increases. Moreover, time slots with
better performance can be detected, helping city managers to deploy temporal stations optimally.

Keywords: supervised learning; artificial neural networks; big data; wireless sensor network data;
knowledge discovery; urban acoustic environment; environmental noise assessment

1. Introduction

Sound waves, or noise emissions, are one of the pollutants that urban citizens are most
concerned about [1]. To identify, measure, and determine exposure to environmental noise,
city rulers are developing data strategies to capture, transform, and analyze information
using Internet of Things (IoT) and big data technologies.

European Directive 2002/49/EC aims to establish a common approach for the assess-
ment and management of environmental noise in order to standardize procedures and
metrics. The goal is to avoid, prevent, and reduce harmful effects, including annoyance,
for citizens as a result of exposure to different noise sources [2]. The directive specifically
promotes agglomerations of people such as cities or clusters of cities to create strategic noise
mapping (SNM) and then share the findings with the public. Additionally, the outcome
of these noise maps has led to the formation of action plans for noise reduction in areas
identified as having high noise exposure (noise exposure protection zones).

More recently, numerous large cities have begun to deploy Wireless Acoustic Sensor
Networks (WASN), which are based on IoT technologies [3], in order to gather noise data
that can be analyzed and utilized to update SNM and action plans. These WASNs are
usually made up of two different types of stations: fixed-location sensors for long-term
monitoring, and temporal location sensors for short-term monitoring. The latter can take
the form of temporarily deployed sensors, instrumented vehicles with an acoustic sensor
together with a geopositioning system to locate the measurement, or regular sound measure
devices known as sonometers [4].
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While fixed stations remain at one place all their lifetime, allowing the continuous
monitoring of noise levels to identify trends and seasonality, temporal stations are placed in
a particular site during an established period of time (minutes, hours, or days) to measure
the acoustic soundfield by gathering short-term data.

To recognize environmental acoustic patterns or behaviors, using the average or me-
dian of noise indicators for the overall assessment period, generally at least one year, is
recommended by the Directive [2]. Therefore, short-term data are not usually considered
due to the lack of capability to capture seasonality components such as holidays or week-
ends. After the analysis of previously enunciated long-term statistics, two principal types
of environmental acoustic patterns are usually recognized: special regime areas and quiet
areas. Special regime areas include locations where the noise indicator exceeds a high
threshold, while quiet areas include locations where the noise indicator is below a low
threshold. Although other patterns with complex behavior can exist, advanced statistical
techniques are required to recognize them.

In a number of out prior works [5,6], we applied unsupervised learning techniques
to group the nodes of a WASN in clusters with the same behavior and recognize complex
patterns on this basis. These complex patterns can provide insights to city managers
for establishing personalized strategies and defining new acoustic areas. In the current
research, the application of a supervised machine learning technique, Artificial Neural
Network (ANN), is proposed to predict the long-term acoustic behavior group to which a
location belongs by means of short-term measurements. In this way, temporal stations can
be used by city managers to identify the environmental acoustic pattern of a site, enhancing
the value of the WASN and improving the SNM.

During last few years, machine learning algorithms have been considered in a number
of studies involving environmental acoustic data captured by WASNs.

Many of the studies found in the literature use supervised machine learning ap-
proaches to analyze audio signals. In New York City, a comprehensive dataset [7] of
labeled audio recordings was generated utilizing a WASN [8] for the design and assess-
ment of machine learning techniques. This dataset was used to perform methods for
both identification [9] and categorization [10] of acoustic scenes and events. Recently, a
deep learning structure was created using this dataset [11] to retrieve urban sound events
such as car horns and human speech from multi-label audio recordings. In a European
project called DYNAMAP [12], multiple machine learning techniques were evaluated for
detecting [13–16] abnormal noise sources such as birds, bikes, vehicles with heavy loads
passing over rough surfaces, horn vehicle noise, music in a car or in the street, ambulance
sirens, airplanes, thunder storms, etc., in order to eliminate events unrelated to road traffic
noise and create a noise map. In addition to the previously mentioned methods, other
techniques utilizing supervised machine learning have been utilized for classifying sound
sources. Maijala et al. [17] introduced a pattern classification algorithm that used Mel-
frequency cepstral coefficients as features to determine the primary noise source in the
acoustic environment. In this research, two types of supervised classifiers, namely, artificial
neural networks with two hidden layers of 10, 30, 50, or 100 neurons and a Gaussian
mixture model, were compared. Ye et al. [18] introduced an aggregation scheme combining
local features and short-term sound recording features with long-term descriptive statistics
to create a deep convolutional neural network for classifying urban sound events.

Regarding machine learning techniques for sound pressure level and acoustic pat-
tern prediction, a number of studies have been published within the last few years.
Das et al. [19,20] proposed an ANN architecture with only one hidden layer to predict
annoyance levels of traffic noise. The architecture complexity of the trained ANNs (see
Section 2.4 for details about this definition) were Net_3_1, with six variables in the input
layer for the first study and Net_1_1, Net_2_1, Net_3_1, Net_4_1, Net_5_1 with five vari-
ables in the input layer for the second study. By utilizing short-term data and concentrating
on traffic noise, unsupervised machine learning techniques such as dimensionality reduc-
tion and clustering were employed to optimize the location and quantity of monitoring
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sites [21]. A separate publication [22] presented a methodology for more efficiently estimat-
ing day-period and night-period sound pressure levels on urban roads in Milan, Italy in
comparison to the legislative road classification by using equivalent sound pressure levels
of a 1-h period from a 24 h measurement campaign. Subsequently, in order to link each
street in the area of examination to one of the two noise profiles found through clustering,
several non-acoustic parameters were examined [22]. In another recent study, the inter-
mittency ratio indicator was paired with the equivalent sound pressure level of a 1-h time
frame in order to improve the categorization of different types of streets within the two
identified clusters [23].

Regarding the identification of the long-term environmental acoustic pattern of a
city, Torija et al. [24] investigated the necessary stabilization time, short-term variability,
and impulsiveness of the sound pressure level to accurately characterize the temporal
composition of urban soundscapes. The authors used data from sound level meters to
analyze sound pressure levels in urban environments, and found that a stabilization time
of at least 30 min was required to obtain reliable measurements of sound pressure level.
The same study suggested that measurements should be taken over a longer period of
time to achieve a more accurate characterization of urban soundscapes, and that the short-
term variability and impulsiveness of sound pressure levels should be considered as well.
In a later study, Gajardo et al. [25] analyzed data collected from sound level meters in
various urban environments and concluded that hourly averages of sound levels may not
be representative of the true levels of noise exposure. Therefore, using longer measurement
periods such as 24 h, to obtain more accurate representation of noise levels in urban
environments was recommended. On the other hand, regarding the prediction of the
equivalent sound level using short-term measurements, Brambilla et al. [26] focused on
the stabilization time for road traffic noise measurements and concluded that a time of at
least 10 min is necessary for reliable estimation of the equivalent sound pressure level of
1-h period; in addition, factors such as traffic volume, traffic composition, and road type
can affect the required stabilization time.

An environmental acoustic pattern refers to the distribution and variation of sound
levels in a specific environment. These patterns can be affected by a variety of factors,
such as land use, weather conditions, and human activity. In urban environments, the
environmental acoustic pattern is typically characterized by high levels of noise pollution
from sources such as traffic, construction, and industrial activities. However, these noise
sources create a complex and dynamic acoustic environment which is highly dependent
on the time of day and location. In this research, the environmental acoustic pattern of a
location refers to the classification of a location using the equivalent sound pressure level
during the day, evening, and night periods over a year, as recommended by the Directive [2]
and defined in Section 2.2.

The contribution of the current research is to use an unsupervised learning algorithm
to estimate the corresponding environmental acoustic pattern of a location among the
recognized long-term behaviors based on one-year acoustic data. This is carried out by
using one-hour equivalent acoustic data to design and test algorithms based on ANNs,
which are trained using shorter periods of time with a large amount of available data and
require parallel processing to optimize the data pipelines.

This rest of this paper is structured as follows. The datasets, algorithms, and method-
ology used for training and testing the models are presented in Section 2. Then, in Section 3,
the results obtained from the analysis are displayed and discussed. Finally, Section 4
summarizes the main conclusions of this work.

2. Materials and Methods

In this section, the materials and methods applied during this research are presented.
The data source containing the sound pressure level values of the sites and the collection
methodology are described in Section 2.1. The environmental acoustic patterns recognized
in a previous work [5] are summarized in Section 2.2. Next, the curated short-term datasets
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used in this research and their transformations are detailed in Section 2.3. Section 2.4
presents the machine learning models that have been trained and evaluated in this work.
Finally, the metrics used in the evaluation of the models are defined in Section 2.5.

The data preparation, transformation, analysis, modeling, and visualization were
executed utilizing the Statistical Programming Language R [27], which involved the inte-
gration of a local environment using R version 4.2.1 with a free cloud-based environment
provided by Posit Cloud using R version 4.2.2. The scripts applied in this research are
available at the Github repository https://github.com/AntonioPL/BCN_Noise (accessed
on 6 January 2023). In order to ensure the reproducibility of the research, the seed was fixed
using the R function set.seed() in every task that incorporated a random step

2.1. Data Source

The historical data used in this research contain sound pressure level values from
70 fixed acoustic nodes deployed in Barcelona, Spain, to build a WASN, as described in
publications by Camps et al. [28] and Farres et al. [29]. The map in Figure 1 shows the
widespread distribution of the nodes in the whole city.

These fixed acoustic nodes are equipped with remote Cesva TA120 [30] sonometers,
which capture sound pressure levels continuously 24 × 7 (24 h and 7 days a week) and
every minute send the A-frequency weighting equivalent sound pressure level of a 1-min
period, denoted as LAeq1m, as defined in Equation (1) following ISO1996-2 [31]:

Leq1m = 10 · log

[
1
60

∫ t0+60

t0

p2(t)
p2

0
dt

]
dBA, (1)

where [t0, t0 + 60] is a 1-min interval beginning at time t0, p(t) is the sound pressure level
at time t in Pascal pressure units (Pa), and p0 = 20 µPa is the sound pressure reference
value.

These data are captured every minute and stored in the central data storage [28], where
transformation are performed before the data are absorbed into the smart city platform of
BCN called Plataforma de Sensors i Actuadors de Barcelona [32].

More than 97 million of LAeq1m records captured by BCN city council in the full years
from 2018 to 2020 for the 70 nodes were exported from the smart city platform in 73 Excel™

files with wide data format for use in this research. These files contain sound pressure level
values of every minute for every node in the described period. It is worth noting that there
were a number of null values due to sensor errors and maintenance periods; these were
removed during the curation phase. Basic statistics and available records from the nodes
can be found in [5].

2.2. Environmental Acoustic Patterns

To evaluate the environmental acoustic behavior of a site, European Directive 2002/49/
EC [2] recommends the use of the LAeqT indicators corresponding to day, evening, and
night periods over 24 h for a specific station on every day during one year, denoted as Ld1y,
Le1y and Ln1y, respectively, and the overall assessment period noise indicator DEN (day,
evening, night), represented by Lden. To take into account the temporal variability of the
sound pressure level values during the different periods of the day, the yearly standard
deviation of Lden1d, denoted sd1y(Lden1d), has been proposed to describe the variability or
volatility of the sound pressure level of the nodes during a year [5,6]. In these previous
works of ours, four environmental acoustic patterns were recognized using these four noise
indicators, calculated from the described dataset as inputs of several unsupervised learning
techniques. Therefore, the nodes of BCN’s WASN were classified into one of these patterns,
and are shown in Figure 1 in different colors together with their locations.

https://github.com/AntonioPL/BCN_Noise
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Figure 1. Map showing location and pattern category (indicated by different colors) of the nodes of
the WASN of BCN. Category 1 in black, Category 2 in magenta, Category 3 in cyan and Category 4
in brown.

Table 1 shows the average values of the four previously defined noise indicators for
the different pattern categories that allow the description of their behaviours. Analytically,
there are three pattern categories in which day and evening sound pressure level values are
similar and in which both are higher than night sound pressure level values by a statistical
significance amount. The first pattern category, shown by the 23 nodes with the black color
tag in Figure 1, has higher sound pressure values (Ld1y, Le1y and Ln1y) than the second
pattern category, shown by the 27 nodes with the magenta color tag in Figure 1. Both
categories have higher sound pressure values than the fourth category, which includes the
11 nodes shown with the brown color tag in Figure 1. Therefore, these pattern categories
represent nodes with high, medium, and low values of sound pressure with the described
behavior. Moreover, a negative correlation between sound pressure levels indicators and
variability (sd1y(Lden1d)) can be observed, i.e., the fourth category is the one with the highest
variability, followed by the second and first categories, in this order. The remaining third
category, indicated by the blue color tag, contains nine nodes. This category shows a
different behavior than the others, with evening sound pressure level value being higher
than the other periods, which all have similar values. Moreover, this third category presents
the highest variability of all categories.

Table 1. Environmental acoustic pattern classification of BCN WASN (adapted from Pita, Navarro,
and Rodriguez [5]).

Pattern
Category Ld2019(dB) Le2019(dB) Ln2019(dB) sd2019(Lden1d) Nodes Color

1 70.74 70.79 66.39 1.50 23 black
2 66.40 66.04 62.28 2.06 27 magenta
3 66.05 68.25 66.71 3.78 9 cyan
4 61.11 60.57 56.24 2.61 11 brown

These environmental acoustic patterns can be contextualized by features such as the
type of roads, use of the area, and noise sources. Interpretation of these characteristics
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allows for a deeper understanding and appreciation of the behavior patterns of different
city areas. This can be valuable for residents, tourists, businesses, and city managers.

Behavior Category 1 groups the locations related to main routes of road traffic, in
particular, major thoroughfares and intersections with very high road traffic intensity. Noise
levels are relatively consistent during the day, with peak noise levels occurring during rush
hour when traffic is heaviest. At night, noise levels decrease somewhat due to reduced
traffic volume, though they are still significantly higher than in quiet residential areas. The
sound pressure level is high and fluctuation is low, as shown in Table 1.

Behavior Category 2 groups those locations related to the regular areas in a city, which
typically include medium-density residential, commercial, and office building areas along
with public spaces such as parks, squares, and sidewalks. The noise pollution is moderate
to high, with a wide range of noise sources. During the day the noise level is relatively
consistent, with peak noise levels occurring during peak hours of activity such as rush hour
and lunchtime. At night, noise levels decrease somewhat due to reduced activity, though
they remain higher than in quiet residential areas. In this category, the sound pressure level
is moderate to high and the fluctuation is moderate, as shown in Table 1.

Behavior Category 3 groups the locations related to shopping, entertainment, and
nightlife activity. The noise pollution is high throughout the day, evening, and night due to
the high level of human activity and mix of commercial and entertainment venues. During
the day, noise levels are high and relatively consistent, with peak noise levels occurring
during peak hours of shopping and entertainment activity. In the evening, noise levels
continue to be high, and are more fluctuating, with an increase in human activity as people
go out for entertainment and nightlife. At night, noise levels are high and fluctuating, with
an increase in human activity in nightlife venues such as bars, clubs, and restaurants. In
this category, both the sound pressure level and fluctuation are high, as is shown in Table 1.

Finally, Behavior category 4 is related to quiet residential areas in a city, where the noise
pollution is low during the day, evening, and night periods. These areas are characterized
by lower levels of human activity and fewer noise sources, providing a relatively peaceful
and quiet environment for residents. Noise levels are low during the day, with occasional
spikes from passing vehicles and aircraft or distant construction and maintenance work.
In the evening noise levels decrease even further due to lower traffic and other human
activities. Noise levels at night decrease significantly, as expected. However, occasional
high noise level events, e.g., from passing vehicles or aircraft, can explain the elevated
fluctuation of the sound pressure level shown in Table 1.

In the current research, short-period measurement data are used to estimate the
corresponding behavior recognized using long-term data, i.e., the environmental acoustic
pattern category is the output variable of the proposed supervised learning algorithm.

2.3. Curated Modelling Datasets

To train and evaluate the machine learning models, 24 short-term period curated
datasets were prepared and denoted using numbers from 0 to 23, sequentially correspond-
ing with every one-hour time slot of the day. Each instance contains 60 sound pressure
level values for a particular node on a specific date at the fixed hour, i.e., dataset number X
contains all the sound pressure level values captured from X:00 until X:59 in hh:mm format
for every node at any date from January 2018 until December 2020. Table 2 shows the
distribution of these 24 datasets, detailing the amount of available, valid, and null instances
and the average instances per node for every dataset. As a summary, there are 1,621,145
valid instances, which is 93.66% of the total available instances, with an average of 23,159
instances per node.

The following tasks were applied to these curated datasets to train and test the models
implemented with the machine learning technique described in Section 2.4. First, instances
with null values were removed. Then, every dataset was randomly split into two subsets,
called the training and and test sets. The training subset contained 80% of the curated
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dataset instances, and was the input for model training, while the test subset contained
20% of the curated dataset instances, and was used to evaluate the models.

Table 2. Hourly sound pressure level datasets.

Dataset
(Hourly

Time Slot)
Instances Valid

Instances
Instances

with Nulls
% Rows

with Nulls

Average
Instances
per Node

0 72,213 68,208 4005 5.55% 974.40
1 72,213 68,107 4106 5.69% 972.96
2 72,213 67,741 4472 6.19% 967.73
3 72,213 67,892 4321 5.98% 969.89
4 72,213 67,870 4343 6.01% 969.57
5 72,213 68,024 4189 5.80% 971.77
6 72,213 68,032 4181 5.79% 971.89
7 72,089 67,885 4204 5.83% 969.79
8 71,967 67,652 4315 6.00% 966.46
9 71,998 67,362 4636 6.44% 962.31
10 71,998 67,257 4741 6.58% 960.81
11 72,029 67,033 4996 6.94% 957.61
12 72,059 66,967 5092 7.07% 956.67
13 72,060 66,931 5129 7.12% 956.16
14 71,998 67,047 4951 6.88% 957.81
15 72,029 67,483 4546 6.31% 964.04
16 72,029 67,476 4553 6.32% 963.94
17 72,121 67,477 4644 6.44% 963.96
18 72,121 67,533 4588 6.36% 964.76
19 72,120 67,526 4594 6.37% 964.66
20 72,151 67,218 4933 6.84% 960.26
21 72,213 67,112 5101 7.06% 958.74
22 72,213 67,206 5007 6.93% 960.09
23 72,213 68,106 4107 5.69% 972.94

2.4. Artificial Neural Networks

To estimate the target variable or pattern category described in Section 2.2 using the
curated datasets described in Section 2.3, supervised learning algorithms were considered.
In particular, several feed-forward multilayer Artificial Neural Networks were built.

A feed-forward multilayer ANN is a mathematical model composed of elements called
neurons [33] grouped by layers and relationships between the elements of a layer with the
elements of the previous layer by activation functions, as displayed in Figure 2.

Figure 2. Artificial neural network architecture (adapted from Dastres and Soori [34]).
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There are three different types of layers, as can be seen in Figure 2. The input layer,
represented by the green circles, is fed the input dataset, meaning that the size of this layer
must be equal to the size of every instance in the dataset (60 in this work). The output layer,
represented by the blue circles, is populated by the output variable to be estimated, meaning
that the size must match the number of categories described in Section 2.2 (four in this work).
Moreover, there are one or more intermediate layers, usually known as hidden layers, which
are represented by the orange circles in Figure 2. The hidden layers can have different sizes.
To fit the parameters of these layers to the data, a backpropagation algorithm [35] was used,
with normalized exponential (softmax) as the activation function of the output layer and
rectified linear unit (ReLU) as the activation function of the hidden layers.

In this article, the notation Net_X1_ . . . _Xn_Y represents a feed-forward ANN archi-
tecture with n hidden layers with size Xi for hidden layer i and size Y for the output layer.
In particular, eight architectures with a different number of hidden layers and different
amounts of neurons in the layers were trained on the 24 datasets described in Section 2.1,
resulting in 192 models used in the comparison. The eight detailed architectures are
the following: Net_16_4, Net_32_4, Net_64_4, Net_16_16_4, Net_32_32_4, Net_64_32_4,
Net_16_16_16_4, and Net_64_32_16_4. Note that all the models have four neurons in the
output layer.

2.5. Performance Metrics

In this study, the classification performance of the trained models was measured
globally and for each category using three different metrics: Accuracy, F1-Score, and
Balanced Accuracy.

Accuracy, the percentage of elements correctly labeled by the model, was calculated
using Equation (2) to evaluate the global performance of the models:

Accuracy =
∑C

i=1 TPi

N
, (2)

where N is the quantity of elements, C is the number of categories, and TPi is the quantity
of elements belonging to real category i correctly labeled by the model as category i for
every category i. By definition, the Accuracy is a real number between 0 and 1. A high
Accuracy indicates good global performance of the model, with the best result reaching 1
when all the elements are correctly labeled by the model.

On the other hand, F1-Score and Balanced Accuracy were calculated for every category
i to evaluate the performance of the model over every category. Thr F1-Score is the harmonic
mean of the trade-off metrics, precision and recall, as defined in Equation (3), for every
category i:

F1 − Scorei = 2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

, (3)

where
Precisioni =

TPi
TPi + FPi

, and (4)

Recalli =
TPi

TPi + FNi
. (5)

FNi is the quantity of elements belonging to real category i incorrectly labeled by the
model as a category different from i, while FPi is the quantity of elements not belonging to
real category i incorrectly labeled by the model as category i. The maximum possible F1-
score value is 1, which indicates perfect precision and recall, while the minimum possible
value is 0, which is the case if either precision or recall is zero.
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Second, Balanced Accuracy is the arithmetical mean of the trade-off metrics, sensitivity
and specificity, as shown in Equation (6):

Balanced Accuracyi =
Sensitivityi + Speci f icityi

2
, (6)

where
Sensitivityi =

TPi
TPi + FNi

, (7)

Speci f icityi =
TNi

TNi + FPi
, (8)

and FNi is the quantity of elements belonging to real category i incorrectly labeled by the
model as belonging to a category other than i. The highest possible Balanced Accuracy
value is 1, indicating perfect Sensitivity and Specificity, and the lowest possible value is 0,
which is the case if both Sensitivity and Specificity are zero.

In summary, when evaluating a particular category, the closer the Balanced Accuracy
and F1-Score are to 1, the better the model can correctly classify observations.

3. Results and Discussion

This section presents and discusses the results obtained in the comparison between
trained models for the different ANN architectures. This evaluation was carried out in
three approaches: global performance, time slot, and environmental acoustic pattern.

First, the performance of the different models on the test datasets was calculated using
Accuracy as a global metric. Table 3 shows the Accuracy of the 192 trained models for the
eight ANNs defined in Section 2.4 on the test subsets of the 24 datasets representing each
hourly time slot, where time slot X corresponds to the interval from X:00 hour to X:59 hour,
as defined in Section 2.3.

The global performance of the models depends on the time slot and the model, as
expected; Net_64_32_4, from 21:00 to 21:59, shows the highest Accuracy at 0.6943, resulting
in the best combination of architecture and hourly time slot. This is a particular insight,
very valuable for city managers; however, this asseveration is difficult to generalize for
other cities. Analyzing these results, a discussion is provided in the following paragraphs
in order to obtain more general conclusions.

Due to the existence of four categories, adopting a random model supposes an Accu-
racy of 0.25 in each of them. As shown in Table 3, in general, all models across every hour
exceed the random model except one. As the pattern categories are not equally distributed
(see Table 1), a baseline model could be the selection of the most representative category
with an Accuracy of 0.39 (=27/70). Even though the Accuracy of the models ranges from
0.150 to 0.694, 160 of the 192 models (83%) have an Accuracy higher than the baseline
model. In addition, a one-sided parametric hypotheses testing was carried out with the
hypotheses represented in Equation (9):{

H0 : µ ≤ 0.39
H1 : µ > 0.39

(9)

Considering the central limit theorem, the test statistic follows a Student’s t-distribution
with 191 degrees of freedom, and the estimator of the test is 18.929, equivalent to a
p-value < 2.2 ∗ 10−16. Therefore, the null hypothesis is rejected, leading to the conclu-
sion that the improvement when using an ANN to estimate the long-term environmental
acoustic pattern of a spot based on short-term data is statistically significant.
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Table 3. Accuracy of the trained models over the 24-h time slot datasets. Different colors represent an
accuracy heat-map to visually identify patterns.

Model
Hourly Time Slot

0 1 2 3 4 5 6 7 8 9 10 11

Net_16_4 0.543 0.574 0.538 0.447 0.609 0.546 0.544 0.552 0.494 0.566 0.538 0.564

Net_32_4 0.597 0.549 0.533 0.546 0.521 0.393 0.454 0.476 0.392 0.459 0.515 0.508

Net_64_4 0.392 0.525 0.472 0.393 0.564 0.556 0.544 0.390 0.460 0.393 0.532 0.516

Net_16_16_4 0.604 0.557 0.475 0.492 0.584 0.538 0.562 0.502 0.517 0.571 0.361 0.259

Net_32_32_4 0.551 0.538 0.531 0.556 0.519 0.543 0.442 0.514 0.504 0.492 0.435 0.535

Net_64_32_4 0.602 0.532 0.565 0.530 0.576 0.550 0.523 0.553 0.549 0.583 0.480 0.390

Net_16_16_16_4 0.515 0.522 0.568 0.559 0.515 0.598 0.527 0.396 0.394 0.524 0.584 0.571

Net_64_32_16_4 0.560 0.561 0.555 0.498 0.528 0.480 0.449 0.488 0.441 0.515 0.396 0.355

Average 0.545 0.545 0.530 0.503 0.552 0.525 0.506 0.484 0.469 0.513 0.480 0.462

Model
Hourly Time Slot

12 13 14 15 16 17 18 19 20 21 22 23

Net_16_4 0.615 0.635 0.664 0.544 0.557 0.641 0.622 0.529 0.639 0.683 0.485 0.568

Net_32_4 0.531 0.517 0.490 0.578 0.599 0.571 0.634 0.392 0.423 0.389 0.666 0.386

Net_64_4 0.436 0.551 0.530 0.579 0.485 0.540 0.468 0.588 0.585 0.584 0.150 0.611

Net_16_16_4 0.454 0.537 0.626 0.635 0.610 0.630 0.634 0.657 0.490 0.615 0.548 0.605

Net_32_32_4 0.384 0.339 0.517 0.389 0.385 0.452 0.561 0.504 0.595 0.497 0.494 0.427

Net_64_32_4 0.616 0.385 0.652 0.387 0.631 0.618 0.480 0.612 0.643 0.695 0.557 0.396

Net_16_16_16_4 0.332 0.531 0.575 0.586 0.572 0.614 0.629 0.556 0.665 0.609 0.390 0.396

Net_64_32_16_4 0.380 0.497 0.564 0.382 0.343 0.533 0.370 0.473 0.420 0.334 0.408 0.587

Average 0.468 0.499 0.577 0.510 0.523 0.575 0.550 0.539 0.558 0.551 0.462 0.497

Regarding the optimum hourly time slot to capture data that best represent the long-
term pattern, Table 3 shows that on average every hourly time slot improves the baseline
model; the better hourly time slots to predict environmental acoustic behaviors are 14, 17,
20, 4, and 21, in which the averaged Accuracy is higher than 0.55. Finally, the worst time
slots to capture data are 7, 10, 8, 12, 22, and 11, in which the Accuracy is lower than 0.49.

However, outliers decrease the representativeness of the mean value. Therefore, a
median Accuracy analysis was performed to minimize the impact of outliers in the above
results. The Accuracy distribution for each hourly time slot ordered by the median of the
Accuracy is shown in Figure 3. These hourly time slots are colored yellow for daytime
periods (from 7:00 a.m. to 7:00 p.m.), orange for evening periods (from 7:00 p.m. to
11:00 p.m.), and gray for night periods (from 11:00 p.m. to 07:00 a.m.), as defined in
Directive 2002/49/EC [2].

Figure 3 shows that 21, 18, and 17 are the best hourly time slots, in this order. On the
other hand, the worst time slots are 22, 8, and 12. The top seven most accurate hourly time
slots are in the interval 14 to 21. From this interval, only 19 is not in the ranking, falling to
the twelfth position. Therefore, the period from 14:00 to 22:00 is recommended to capture
data and estimate the location acoustic pattern.
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Figure 3. Statistical distributions of the Accuracy variable for each hourly time slot, represented
though box and whisker plot and sorted by the median value of the Accuracy in decreasing order.

Next, the impact of the complexity of the ANN architecture on the performance in
the classification was analyzed. Figure 4 shows a comparison of the distribution of the
Accuracy performance metric. The fill color represents the number of hidden layers, with
light blue, blue, and dark blue standing for 1, 2, and 3, respectively. Although the models
with a higher quantity of hidden layers have the highest average Accuracy, the amount of
neurons in the layers does not significantly affect Accuracy.

Figure 4. Statistical distributions of the variable Accuracy for every ANN Model ordered by mean
value (red circle) represented though box and whisker plots. The colors group the models by their
quantity of hidden layers.

Finally, the performance of the models in relation to each pattern category, as described
in Section 2.2, was evaluated using Balanced Accuracy and F1-score.

Figure 5 shows that Pattern Category 1 has the best performance on average (0.63 F1-
Score and 0.75 Balanced Accuracy), followed by Categories 2 (0.53 F1-Score and 0.59 Bal-
anced Accuracy) and 4 (0.32 F1-Score and 0.60 Balanced Accuracy). Category 3 is the
most difficult to predict (0.07 F1-Score and 0.50 Balanced Accuracy). This observation is
inverse correlated with the sd2019(Lden1d) of each pattern category, meaning that its higher
the volatility makes this category harder to predict. It is important to note that one-hour
time slots are used as a short-term measurement period; thus, improvements in the predic-
tions for Pattern Category 3 can be achieved by combining data from two or more hourly
time slots.
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(a) (b)

Figure 5. Statistical distributions of F1-Score (a) and Balanced Accuracy (b) performance metrics for
every environmental acoustic pattern, represented as box and whisker plots.

To obtain further insights into the prediction ability, an hourly time slot F1-Score
performance comparison was carried out for every category.

Figure 6 shows similar trends in Categories 1 and 2 regarding median F1-Score for each
hourly time slot. Most of these have low variability, meaning that in general any period
could be used to predict these environmental pattern categories. On the contrary, Category
3 has low performance at all time slots, improving in the nightly period, but not enough to
be confident in the prediction. Therefore, other strategies, for example, increasing the size of
the time period or including several hourly time slots as input data, should be considered in
future works. Finally, Category 4 presents a wide range of performance values, highlighting
the nightly period 21:00–02:00 as the best period. Moreover, the variability of the F1-Score
distribution for Category 4 is the highest of all categories.

(a) (b)

(c) (d)

Figure 6. Statistical distributions of the F1-Score variable for every hourly time slot, broken down
into the four environmental acoustic behaviors (subfigures (a–d) for category patterns 1, 2, 3, and 4,
respectively) represented though box and whisker plot.
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4. Conclusions

In this paper, we carried out an evaluation of the suitability of predicting the long-term
environmental acoustic pattern of a position based on information collected in a short-term
interval using artificial neural networks. For this, we used a dataset with sound pressure
level values from the city of Barcelona, Spain, captured with a wireless acoustic sensor
network. Using several performance metrics, we performed a comparison between 192
models designed with eight different architectures and trained using hourly sound pressure
level datasets.

In general, the results show that artificial neural networks can classify short-term
acoustic data into one of several recognized long-term environmental acoustic patterns.
From a global perspective, models with higher quantity of hidden layers have better
performance, even though this performance is not affected by the amount of neurons,
and the performance increases if the data are gathered in an hourly time slot included
in the interval from 14:00 to 22:00. Regarding particular environmental acoustic patterns,
those with lower sound pressure level variability are easier to estimate using hourly sound
pressure level measurements.

The provided insights are crucial to define the data collection methodology in order
to assure the most accurate pattern category prediction and avoid bias created by stable
routines with temporal stations. Moreover, it is recommended to capture data at the same
time slot in different locations, as this improves recognition of the specific environmental
acoustic behavior of a place.
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