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Abstract: Deep learning-based building extraction methods have achieved a high accuracy in closed
remote sensing datasets. In fact, the distribution bias between the source and target domains can
lead to a dramatic decrease in their building extraction effect in the target domain. However, the
mainstream domain adaptation methods that specifically address this domain bias problem require
the reselection of many unlabeled samples and retraining in other target domains. This is time-
consuming and laborious and even impossible at small regions. To address this problem, a novel
domain adaptation framework for cross-domain building extraction is proposed from a perspective
of anomaly detection. First, the initial extraction results of images in the target domain are obtained
by a source domain-based pre-trained model, and then these results are classified into building mixed
and non-building layers according to the predicted probability. Second, anomalous objects in the
building layer are detected using the isolation forest method. Subsequently, the remaining objects in
the building layer and the objects in the non-building layer are used as positive and negative samples,
respectively, to reclassify the mixed layer using the random forest classifier. The newly extracted
objects are fused with the remaining objects in the building layer as the final result. Four different
experiments are performed on different semantic segmentation models and target domains. Some
experimental results indicate that our framework can improve cross-domain building extraction
compared to the pre-trained model, with an 8.7% improvement in the F1 metric when migrating from
the Inria Aerial Image Labeling dataset to the Wuhan University dataset. Furthermore, experimental
results show that our framework can be applied to multiple target domains without retraining and
can achieve similar results to domain adaptation models based on adversarial learning.

Keywords: building extraction; remote sensing image; domain adaptation; semantic segmentation;
anomaly detection

1. Introduction

As one of the important elements of urban geographic information, the accurate extrac-
tion of buildings plays an important role in the analysis of the human living environment
urban planning layout, disaster damage assessment, and illegal building detection [1–3].
Therefore, building extraction from remote sensing images has been a hot research topic in
the field of remote sensing [4].

In recent years, with the development of artificial intelligence technology, building
extraction from remote sensing images is gradually dominated by deep semantic segmen-
tation models represented by UNet [5], PSPNet (pyramid scene parsing network) [6], and
so on [7–9]. These deep learning-based building extraction methods have achieved F1
values above 90% on closed datasets thanks to the powerful feature extraction capability of
deep learning models. However, these deep semantic segmentation models suffer from the
problems of requiring a large number of samples and a weak generalization ability. That is,
when the distribution of the training dataset (source domain) differs from that of the actual
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dataset (target domain), it is necessary to reselect the training samples and carry out the
training again, which is often time-consuming and laborious [10,11].

Currently, the mainstream approach to solve the above-mentioned model migration
problem is domain adaptation [12–14]. The domain adaptation methods aim to transfer
the knowledge learned from a source domain to a new target domain [15,16]. For ex-
ample, Tasar et al. [17] presented a DAugNet for multisource, multitarget, and life-long
domain adaptation problems by using only one encoder, one decoder, and one discrimi-
nator. Shi et al. [18] proposed a joint pixel- and representation-level network based on a
cycle generative-adversarial network and adversarial learning. These domain adaptation
methods mainly use the idea of adversarial learning and do not require labeled data in
the target domain [19]. This indeed improves the performance of cross-domain building
extraction while reducing the labeling workload. However, these methods still require a
large number of unlabeled samples in the target domain to complete the training process
with the labeled samples in the source domain and, even worse, they need to be retrained
whenever the target domain changes. This condition is difficult to be satisfied for a small
scope of cross-domain building extraction scenarios. Moreover, it should be noted that the
research on domain adaptation is still in its initial stage.

To address the abovementioned issues, we attempt to investigate the domain adap-
tation method from a novel perspective of anomaly detection and propose an anomaly
detection-based domain adaptation framework (AD-DAF) for cross-domain building extrac-
tion from remote sensing images in this paper. The framework is designed with anomaly
detection and reclassification processes based on a conventional pre-trained model. The
anomaly detection process in our framework is a bridge between the knowledge of object
types in the source domain and the knowledge of target features in the target domain,
which is used to refine the accuracy of the pre-trained model for cross-domain building
extraction from the target domain. The effect of this process is equivalent to the training
process of the mainstream domain adaptation methods. The reclassification process is
designed to refine again the effect of cross-domain building extraction from the predicted
non-building data. It should be noted that the framework can be adapted to a variety of
mainstream segmentation models. In other words, our framework can be used as a post-
processing step for mainstream semantic segmentation models. The main contributions of
this paper can be summarized as follows.

(1) A novel anomaly detection-based domain adaptation framework is proposed to
extract buildings from cross-domain remote sensing images. Compared with the current
mainstream domain adaptation methods, our framework does not require a large number
of unlabeled samples in the target domain and it retrains in new target domain.

(2) Numerous experiments are conducted on three widely used deep learning models,
large area data with different region types, and publicly available datasets. Our exper-
imental results indicate that our proposed framework can improve the performance of
cross-domain building extraction and can achieve the role of becoming the state-of-the-art
similarly to other recent domain adaptation methods.

The remainder of this paper is organized as follows. Section 2 provides the related
work, including building extraction in the closed datasets, domain adaptation, and its
applications in remote sensing. Section 3 describes our anomaly detection-based domain
adaptation framework, including source domain-based pre-training, anomaly detection for
the target domain, and local region reclassification. Section 4 reports four experiments and
their analysis, followed by the conclusions and future work in Section 5.

2. Related Work
2.1. Building Extraction in Closed Datasets

Building extraction in closed datasets means that the training set (source domain)
and test set (target domain) come from the same dataset (domain). In terms of the image
features, building extraction methods can be divided into handcrafted feature-based and
deep-level feature-based methods. The handcrafted-based extraction methods mainly rely
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on features of samples such as the texture, structure, and spectrum [20]. These features
are then typically used as the input to traditional machine learning methods (i.e., support
vector machine and random forest) to train classification models. This type of method is
more effective for a small-scale building extraction. However, its accuracy in large-scale
building extraction has much room for improvement due to the diversity of the features.

Unlike the handcrafted-based extraction methods, the features of samples are au-
tomatically learned by various deep semantic segmentation models in the deep-level
feature-based methods. For example, Hui et al. [21] modified the deep semantic segmenta-
tion model UNet with the Xception module and multitask learning to extract the buildings.
Liu et al. [22] proposed an efficient segmentation network by incorporating factorized
residual block and the dilated convolutions for building extraction from high-resolution
aerial images. In addition, to further improve the extraction accuracy, attention mecha-
nisms, which can concentrate on significant target features [23], are incorporated into deep
semantic segmentation models. For example, Chen et al. [24] incorporated self-attention
and reconstruction-bias modules into the UNet architecture for building extraction. Guo
et al. [25] added an attention block and multiple losses to the UNet architecture for enhanc-
ing the character of the building. These methods indeed have a higher accuracy of building
extraction than the handcrafted-based extraction methods. However, these methods re-
quire a much higher number of labeled samples than the handcrafted-based methods. In
addition, the accuracy of these methods drops dramatically when the target domain does
not coincide with the source domain source (i.e., domain bias). It should be noted that
both of these two types of methods require labeled samples and assume that the samples
are correct. They usually use cross-validation or batch training to reduce the impact of
incorrect samples, which belongs to partial formal verification methods [26].

2.2. Domain Adaptation in Remote Sensing

In fact, the domain bias phenomenon is very common in the field of remote sensing
due to the imaging conditions and sensors, etc. Therefore, domain adaptation methods,
which are used to reduce the difference between the target and source domain distribu-
tions, have been widely applied in remote sensing fields, such as remote sensing image
retrieval [19], scene classification [27], object detection [28], semantic segmentation [18,29],
change detection [30], and so on. For example, Hou et al. [19] used pseudo-label consis-
tency learning to reduce domain bias in retrieval of different optical remote sensing images.
Zhang et al. [31] employed a correlation subspace dynamic distribution alignment method
with convolutional neural networks to reduce the domain difference in remote sensing
image scene classification. Ji et al. [32] used a generative adversarial network to align the
source and target domains in a land cover classification.

Recently, many scholars have also used domain adaptation methods for building
extraction as well. For instance, Peng et al. [10] utilized a simple Wallis filter method and
adversarial learning to reduce the differences between different domains for cross-domain
building extraction. Na et al. [29] proposed a segmentation network based on a domain
adaptation transmission attack for cross-domain building extraction. Dias et al. [16] used
two adversarial learning-based methods to explore the impact of domain adaptation on
building extraction. These domain adaptation methods mainly rely on adversarial learning,
self-learning, and differential alignment. They have a substantial improvement in the
accuracy in the target domain compared to the methods for closed datasets. This is because
these methods migrate the source domain knowledge to the target domain and reduce the
effect of domain bias. However, these methods require not only labeled source domain
data but also a large amount of unlabeled target domain data. In small-scale scenarios,
large amounts of unlabeled data are difficult to obtain. In addition, these methods require
a retraining of the model when the target domain or study area is replaced. Unlike these
methods, this paper focuses on correlating the knowledge of source and target domains
from the perspective of anomaly detection to reduce the domain bias.
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3. Methodology
3.1. Overall Architecture

The current mainstream domain adaptation frameworks often require a retraining
of the deep learning models with large amounts of unlabeled data in the target domain
and large amounts of labeled data in the source domain. That is, retraining with large
amounts of unlabeled and labeled data is required for each change in the target domain.
This is difficult to apply for target domains with an insufficient amount of data. To tackle
this problem, our AD-DAF framework fuses a deep semantic segmentation model with
an anomaly detection idea, emphasizing the combination of knowledge in both the source
and target domain. The introduction of the anomaly detection idea allows the AD-DAF
framework to be applied to multiple target domains simultaneously with only one pre-
training. This drastically reduces the need for retraining with large amounts of data. The
overall architecture of our anomaly detection-based domain adaptation framework is
shown in Figure 1.
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It can be seen from Figure 1 that our AD-DAF framework mainly consists of three
processes: source domain-based pre-training, anomaly detection for the target domain, and
local region reclassification. The source domain-based pre-training process is responsible for
learning the building extraction model from the source domain in order to obtain the initial
results of the building extraction for the target domain. The process of the anomaly detection
for the target domain is responsible for detecting misclassification from the initial results of the
building extraction. The local region reclassification process is designed to re-extract buildings
from the above remaining results. The details are given in the following Section.

3.2. Source Domain-Based Pre-Training

The source domain-based pre-training process focuses on creating a pre-trained model
for the building extraction by using a deep semantic segmentation model and an open
access source domain dataset, such as the Inria Aerial Image Labeling [33] and the WHU
dataset (Wuhan University dataset) [34]. The AD-DAF framework is not limited to a
particular deep semantic segmentation model. Any of the deep semantic segmentation
models such as fully convolutional networks, UNet, PSPNet, and LinkNet [35], and their
improvements can be applied to this framework. This means that our framework can be
used as a complement to the current approaches. In other words, this also means that our
framework can be used as a post-processing method for the current mainstream building
extraction methods.

The pre-trained model can output the classification probability that each pixel is
classified as a building. Based on the output probability, the input image in the target
domain can be divided into building, mixed, and non-building layers through the given
thresholds. Regions with a pixel classification probability greater than 0.6 are classified as
the building layer, regions with a pixel classification probability less than 0.2 are classified
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as the non-building layer, and regions with a pixel classification probability between 0.2
and 0.6 are classified as the mixed layer. Obviously, the above given thresholds and the
pre-trained model cannot ensure that the building layer is completely correct; it can only
ensure that most of the pixels in the building layer are buildings. This is mainly because
the pre-trained model is obtained based on the labeled images in the source domain, which
holds bias towards the unlabeled images in the target domain.

To reduce the possibility of bias between the images in the source and target domains, a
test time augmentation strategy [36] is applied in this paper. Specifically, each input image in the
target domain is rotated by 0◦, 90◦, 180◦, 270◦, flipped up and down, and flipped horizontally
to obtain six new images. The final classification probability of the input image is the average of
the classification probabilities of the corresponding pixels in these six augmented images. This
will subsequently improve the accuracy of the classification probability.

In addition, it is important to note that to reduce the disturbance of roads on the build-
ing extraction, roads are roughly extracted by using the same deep semantic segmentation
model and DeepGlobe road extraction dataset [37], and then these extracted roads are
removed from the output of the pre-trained model.

3.3. Anomaly Detection for the Target Domain

The above pre-trained model is less effective in segmenting the target domain due to
the data distribution bias between the source and the target domains. Therefore, the process
of anomaly detection for the target domain is introduced into our AD-DAF framework to
further remove outliers (i.e., non-buildings) in the building layer. In this paper, the isolation
forest approach [38] is selected to perform anomaly detection for the target domain. It is an
unsupervised anomaly detection approach with less execution time, memory requirements,
and a high precision [39]. The isolation forest approach isolates each anomaly data by
constructing binary trees. In general, the binary trees are constructed from the random
properties of the dataset and anomaly data are those nodes that have the shortest average
path lengths on the binary trees [40].

In this paper, the color feature, texture feature, morphological building index, and
morphological shadow index are selected to construct the feature space as the random
properties for anomaly detection [41]. The specific processes are shown below. First, the
mean-shift algorithm [42] is used to segment the building layer into different objects. Then,
the feature vectors of each segmented object are computed using the above features. Next,
binary trees are constructed from the feature vectors of the segmented objects and non-
building objects are detected based on the shortest average path lengths on the binary trees.
Finally, a refined building layer is obtained for the local region’s reclassification.

In practice, the above anomaly detection approach can also be used in the non-building
layer in order to reduce the possibility of buildings in the non-building layer and to add
anomaly-free objects to the mixed layer.

3.4. Local Region Reclassification

The above anomaly detection only refines the extraction accuracy of the building
layer, but in fact the mixed layer still contains a large number of building objects due to
the weak generalization ability of the pre-training model. Therefore, we design the local
reclassification process for the mixed layer in order to extract the building objects from it.

The random forest method is chosen as the core method for this local reclassification
process. This is because it has a strong noise immunity and high classification accuracy [43].
The random forest method is a supervised classification algorithm. In this paper, the refined
building layer is selected as the positive samples and the non-building layer is selected as
the negative samples for the random forest method. Specifically, the sample set is randomly
selected from the refined building layer and the non-building layer through an unordered
sampling with a replacement strategy. This sample set is then divided into a training set
and a validation set in a 2:1 ratio. Then, a corresponding decision tree model is set up for
each training sample set and continues to split until all the training samples at that node
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are of the same type. Furthermore, the generated multiple decision trees are formed into a
random forest and the best classification of the mixed layer is decided based on the voting
probability. Finally, the combined random forest is used to extract building objects from
the mixed layer and the newly extracted building objects are fused with the objects in the
refined building layer as the final result.

4. Experiments and Analysis

To verify the effectiveness of our AD-DAF framework, four experiments are designed
in this paper. The first experiment is to verify the applicability of different deep semantic
segmentation models in the proposed framework. The second experiment is to verify the
effectiveness of the framework for cross-domain building extraction from remote sensing
images in large areas. The third experiment is to test the performance of the framework
on a benchmark dataset. The fourth experiment is to compare the differences between the
framework and the main domain adaptation methods.

These experiments are implemented via Python on a desktop server with an Intel (R)
Core (TM) i9-10900K processor, 32GB RAM (random access memory). The four experiments
are conducted by the Keras library with TensorFlow 2.1 backend. In the pre-training process,
the learning rate is 1 × 10−4 and the number of epochs is set to 20.

The Precision, Recall, F1, and IoU (intersection over union) score are selected to
quantitatively evaluate the accuracy of the cross-domain building extraction. Specifically,
Recall expresses the proportion of correctly extracted buildings to the total buildings in
the image [44]. Precision represents the proportion of correctly extracted buildings in
the extracted result [44]. F1 is the weighted average of Recall and Precision. IoU is the
percentage of the intersection of the predicted and true results in their concurrent sets. The
larger their values are, the more effective the method is. They can be calculated by the
following equations [3].

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 =
2 × Precision × Recall

Precision + Recall
(3)

IoU =
TP

TP + FP + FN
(4)

where TP denotes the number of correctly predicted building pixels in the extracted result,
FP denotes the number of incorrect building pixels in the extracted result, and FN denotes
the number of missed building pixels.

4.1. Experiment I: Semantic Segmentation Model Applicability

In this experiment, three dominant models, UNet, PSPNet, and LinkNet, are chosen to
test the applicability of our AD-DAF framework. The Inria Aerial Image Labeling Dataset
(IAILD) is selected as the source domain for the pre-training model. It is an open access
dataset for urban building detection with building and non-building semantic classes. The
dataset consists of 180 images with 5000 × 5000 pixels and a pixel spatial resolution of 0.3 m.
It mainly covers different forms of urban settlements in the United States and Australia [33],
which makes it often used to test the generalization capabilities of deep semantic segmen-
tation models. In the 180 images, 150 images are selected for training and the remaining
30 images for validation. Specifically, each training image with 5000 × 5000 pixels is split
into 384 × 384 pixel patches under the condition of a 20% overlap, and finally 40,836 training
samples for deep semantic segmentation models are obtained.

A dense residential image in the urban area and a sparse residential image in the
suburban area from different regions are selected as the target domains to verify the do-
main adaptation effect of our AD-DAF framework. Figure 2 shows the two images from
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different regions. The first image is selected from Google Images at Shenzhen, China, with
500 × 500 pixels and a spatial resolution of 1 m. The second image is selected from the
ISPRS (International Society for Photogrammetry and Remote Sensing) semantic segmenta-
tion dataset [45] at Postdam, Germany, with 6000 × 6000 pixels and a spatial resolution of
0.05 m. The building labels of the first image are obtained by manual vectorization, and the
building labels of the third image are directly from the ISPRS dataset. Compared with the
source domain of IAILD, the above two images are from different regions with different
resolutions; thus, these two images can be considered as two different target domains in
the experiments.
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Table 1 represents the Recall, Precision, and F1 of our AD-DAF framework on the three
semantic segmentation models in two different target domains. It can be seen from this table
that three models behave differently in different target domains. Specifically, the LinkNet
model in our AD-DAF framework shows the largest increase in F1 metrics in the two
target domains compared to the other two models, while the UNet model in our AD-DAF
framework has the largest average F1 value of 87.05%. This indicates that our AD-DAF
framework with the UNet model has the most stable effect for building extraction. Therefore,
we choose the UNet model as our pre-trained model in the remaining three experiments. For
the Precision metrics, our AD-DAF framework with the three models is mostly lower than
their only pre-trained models. This is mainly because our method introduces some error
classes while substantially increasing the recall. In addition, it also can be seen that the recall
and F1 metrics using only the pre-trained model of the three semantic segmentation models
are all lower than those of our proposed AD-DAF framework, with the value of F1 improving
by at least 7.89% and at most 16.96%. These experimental results indicate that our AD-DAF
framework is able to improve the migration ability of different deep segmentation models
and is also applicable to different target domains.

Table 1. The results on the three semantic segmentation models in two different target domains.

Images Methods
UNet PSPNet LinkNet

Recall Precision F1 Recall Precision F1 Recall Precision F1

(a)
Only Pre-trained 81.63% 75.31% 78.34% 62.27% 79.82% 69.96% 53.42% 86.01% 65.91%

AD-DAF 92.16% 81.65% 86.59% 93.49% 72.97% 81.96% 90.86% 76.17% 82.87%

(b)
Only Pre-trained 64.05% 91.66% 75.41% 71.35% 81.19% 75.95% 64.32% 94.91% 76.68%

AD-DAF 90.75% 84.48% 87.51% 88.39% 79.73% 83.84% 90.81% 86.87% 88.79%
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Figure 3 shows the building extraction effects of our AD-DAF framework with three
different models in two different target domains. In this Figure, the first and second rows
correspond to the results of the first image and the second image, respectively. The white
area indicates the building footprint. As shown in Figure 3, our AD-DAF framework can
extract some building objects under all the three models. Compared with the other two
models, the building outlines extracted by our AD-DAF framework with the UNet model
are clearer. This is consistent with the results of the quantitative metric F1 in Table 1.
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Figure 3. Semantic segmentation results of our framework with three different models in two different
target domains. The first and second rows correspond to the results of the first image and the second
image, respectively. The white area indicates the building footprint. (a) Ground truth. (b) Results of
our framework based on UNet. (c) Results of our framework based on PSPNet. (d) Results of our
framework based on LinkNet.

4.2. Experiment II: Large Area Applicability

In this experiment, two images with relatively larger areas (about 1 km2,
5201 × 5201 pixels) and with a spatial resolution of 0.2 m are used as two different target
domains. The first image represents an urban area and is obtained from Google Images at
Jilin, China, where the building types include residential areas, educational sites, industrial
sites, and so on. The second image represents a suburban area and is also obtained from
Google Images at Yunnan, China, in which the buildings are mainly low single bungalows.
Their details are shown in Figure 4. The UNet-based pre-trained model by the IAILD
dataset in experiment I is also used for the pre-trained model in this experiment.
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Table 2 provides the Recall, Precision, and F1 of our AD-DAF framework with the
UNet model on the two relatively larger areas. As can be seen from this table, our AD-DAF
framework improves by 41.92% in the Recall metric and 26.93% in the F1 metric on the
first image compared with the only pre-trained model. This is because the first image is
slightly distorted and its angle is completely different from the angle of the image in the
source domain of the IAILD dataset. This causes the pre-trained model based on the IAILD
dataset to be less effective in extracting buildings in this image. In contrast, our method
uses anomaly detection and reclassification to further improve the building extraction. On
the second image, our method only improves by 9.42% in the Recall metric and 8.23% in
the F1 metric. The above experimental results show that our AD-DAF framework is also
effective under relatively large areas.

Table 2. The results of our framework with the UNet model on the two large areas.

Images Methods Recall Precision F1

(a)
Only Pre-trained 42.97% 72.94% 54.08%

AD-DAF 84.89% 77.46% 81.01%

(b)
Only Pre-trained 72.12% 72.98% 72.55%

AD-DAF 81.54% 80.03% 80.78%

Figure 5 shows the building extraction results of the two methods on the two target
domains. It is apparent from Figure 5 that the completeness of the segmentation results by
our AD-DAF framework is significantly better than those of the only pre-trained model.
This again indicates the advantage of our AD-DAF framework in the cross-domain building
extraction. However, it should be noted that there is still a gap between the building outlines
of our AD-DAF framework and the ground truth.
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4.3. Experiment III: Performance on the Benchmark Dataset

In this experiment, the WHU satellite building dataset I [34] is selected as the target
domain to verify the effectiveness of our AD-DAF framework. This dataset contains a total
of 204 images which are collected from cities over the world. These images are from various
remote sensing satellites such as QuickBird, IKONOS, and ZY-3, with the spatial resolution
of 0.3 m to 2.5 m. Some example images are shown in Figure 6. Due to the diversity of
sensors and imaging conditions in this dataset, it is challenging to extract buildings from
this dataset, especially when this dataset is used as the target domain. These 204 images are
all used as a test set for the target domain, which is consistent with the number of images
used for the experiments in the literature. The pre-trained model still uses the UNet-based
model with the source domain of the IAILD dataset already trained in Experiment I.
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building outline.

Table 3 presents the Recall, Precision, F1, and IoU of our AD-DAF framework with
the UNet model on the WHU benchmark dataset. As can be seen from the table, the
performance of the UNet model decreases substantially when migrating from the IAILD
dataset to the WHU dataset and improves substantially when adding anomaly detection
and reclassification to the pre-trained UNet model, with the Recall improving by 18.37%,
the F1 improving by 8.7%, and the IOU improving by 9.94%. Furthermore, it can be seen
from this table that the results of our AD-DAF framework are close to the testing results
without the cross-domain of the WHU dataset, with only a 3.78% reduction in the F1
and 4.44% reduction in the IoU. This indicates that our added anomaly detection and
reclassification process can indeed increase the effectiveness of the cross-domain building
extraction. Figure 7 shows some building extraction results on the WHU Satellite Dataset I.
Visually, the extraction results of our method do not differ much from the ground truth,
and the differences are mainly in the building outlines.

Table 3. The results on the WHU satellite building dataset I.

Images Methods Recall Precision F1 IoU

WHU->WHU UNet [22] 73.30% 73.10% 73.20% 57.70%
IAILD->WHU Only pre-trained 55.39% 67.19% 60.72% 43.32%
IAILD->WHU AD-DAF 73.76% 65.56% 69.42% 53.26%
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It should be noted that the pre-trained model based on the IAILD dataset has remained
unchanged, while the target domain has changed in Experiments I, II, and III. More
importantly, our method has been effective on different target domains yet with the same
source domain. However, our AD-DAF framework is not retrained when the target domain
changes. In contrast, the current mainstream domain adaptation methods need to be
retrained with a large amount of unlabeled data in the new target domain. This further
indicates that our AD-DAF framework can be applied to multiple target domains with only
one pre-trained model.

4.4. Experiment IV: Comparisons with Other Domain Adaptation Methods

To further evaluate the performance of our newly proposed framework, two other
open access datasets of ISPRS Postdam semantic segmentation dataset (abbreviated as
Postdam) [45] and the other WHU aerial building dataset are chosen as the source and target
domains, respectively. The Postdam dataset consists of aerial orthorectified color imagery
with a spatial resolution of 0.3 m. The other WHU aerial building dataset includes aerial
images with a spatial resolution of 0.075 m covering in Christchurch, New Zealand. Four
recently proposed adversarial learning-based domain adaptation methods of the DAugNet,
DATA (Domain Adaptive Transfer Attack) [29], JPRNet (Joint Pixel and Representation
level Network) [18], and FDANet (full-level domain adaptation network) [10] are selected
for the comparisons. In the experiment, we divide the Postdam dataset into the training
and validation sets in a ratio of 8:2 and use them to train the UNet pre-trained model in
our AD-DAF framework. A total of 50 images are randomly selected from the WHU aerial
dataset for cross-domain building extraction. In addition, F1 and IoU are chosen as the
evaluation metrics.

Table 4 provides the comparison results from the source domain of the Postdam
datasets to the target domain of the WHU aerial building dataset by different methods. As
can be seen from this table, our F1 values are lower than the FDANet and DATA methods
and higher than the DAUgNet and JPRNet methods, while our IoU values are only lower
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than the FDANet method and better than the other three methods. The experimental
results show that our AD-DF framework is comparable to some of the recent domain
adaptation methods based on adversarial learning, but they also have some shortcomings
with individual methods. However, the adversarial learning-based domain adaptation
methods require a large amount of unlabeled data in the target domain to be retrained in
concert with the labeled data in the source domain, which makes it necessary to retrain
every time when the target domain changes. In contrast, our AD-DF framework only needs
to be trained once based on the labeled data in the source domain to satisfy the requirements
of multiple target domains and does not require a large amount of unlabeled data in the
target domain. This again demonstrates the effectiveness of our anomaly detection and
reclassification process.

Table 4. The comparison results from the source domain of the Postdam datasets to the target domain
of the WHU aerial building dataset.

Methods
Potsdam->WHU

F1 IoU

DAugNet [10] 0.7363 0.5827
DATA [10] 0.7951 0.6599
JPRNet [10] 0.7713 0.6277

FDANet [10] 0.8337 0.7148
Our AD-DAF 0.7862 0.6713

5. Conclusions

In this paper, we propose an anomaly detection-based domain adaptation framework
for cross-domain building extraction called AD-DAF. Our proposed framework is com-
posed of source domain-based pre-training, anomaly detection for the target domain, and
local region reclassification. Our proposed framework leverages the anomaly detection
idea to make full use of the feature knowledge of the target domain objects with the pre-
classification knowledge of the source domain. Our framework has the advantage that
a single pre-training can be used for multiple target domains at the same time. This is
completely different from the mainstream domain adaptation methods that require retrain-
ing when the target domain is changed. The first three experimental results demonstrate
that our framework can significantly improve the cross-domain building extraction of the
pre-trained model, with the F1 improving by 8.7%, and the intersection over union improv-
ing by 9.94% when migrating from the Inria Aerial Image Labeling Dataset to the Wuhan
University dataset. The last experimental result shows that our framework is comparable
to the current mainstream domain adaptation methods.

Despite the advantages of the proposed framework, there is still much room for
improvement in the accuracy and applicability of the method. First, the accuracy of our
method is slightly lower than that of some adversarial learning-based domain adaptation
methods. In fact, our newly proposed framework is not intended to replace the current
domain adaptation methods but to complement them. On the one hand, our framework
can provide initial pseudo-label samples for the mainstream supervised domain adaptation
methods. On the other hand, our framework can be used as a post-processing step for
mainstream deep learning semantic segmentation models and domain adaptation methods
to further improve the effectiveness of cross-domain building extraction. Therefore, one
of our future works will be to explore the possibility of integrating our framework with
adversarial learning-based domain adaptation methods for a higher accuracy. Second,
although we have performed method validation on different scenarios and benchmark
datasets, these validations do not include all remote sensing data types because of the
richness and diversity of remote sensing data types. Therefore, we will also validate the
method on more benchmark datasets in the future. Finally, our method has more anomaly
detection and reclassification steps than the mainstream deep semantic segmentation or
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domain adaptation methods. To simplify the usage process, we intend to develop a building
extraction web system using dynamic service computing technology in the future [46,47].
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