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Abstract: Density Peaks Clustering (DPC) has recently received much attention in many fields by
reason of its simplicity and efficiency. Nevertheless, empirical studies have shown that DPC has some
shortfalls: (i) similarity measurement based on Euclidean distance is prone to misclassification. When
dealing with clusters of non-uniform density, it is very difficult to identify true clustering centers in
the decision graph; (ii) the clustering centers need to be manually selected; (iii) the chain reaction;
an incorrectly assigned point will affect the clustering outcome. To settle the above limitations,
we propose an improved density peaks clustering algorithm based on a divergence distance and
tissue—like P system (TP-DSDPC in short). In the proposed algorithm, a novel distance measure
is introduced to accurately estimate the local density and relative distance of each point. Then,
clustering centers are automatically selected by the score value. A tissue—like P system carries
out the entire algorithm process. In terms of the three evaluation metrics, the improved algorithm
outperforms the other comparison algorithms using multiple synthetic and real-world datasets.

Keywords: density peaks clustering; divergence distance; clustering centers selection; tissue—like
P system

1. Introduction

As an unsupervised machine learning method, clustering analysis separates the
datasets into several groups or categories, so points in the same group are similar to
each other, while points in different groups are dissimilar [1]. Currently, multiple fields
have benefited from clustering analysis, such as data mining [2], image segmentation [3],
pattern recognition [4], machine learning [5] and others. There have been thousands of
clustering algorithms created for different applications and data characteristics, which can
be primarily categorized into partition-based methods [6], hierarchy-based methods [7],
grid-based methods [8], model-based methods [9] and density-based methods [10].

During the development of clustering methods, many classic algorithms have emerged.
K-means [11] is a centroid-based method that is representative of partition-based algorithms.
In K-means algorithms, the closest objects are clustered and classified by their distance
from k points in the space. Cluster center values are successively updated to achieve
the best clustering result from the iterative process. The algorithm has been extensively
employed in several big data processing sectors because of its quick operation speeds
and straightforward execution processes. Data objects are hierarchically decomposed
using hierarchical methods. Hierarchical clustering can identify and process an unknown
number of clusters. Hierarchical methods can be cataloged as cohesive or divisive methods.
BIRCH [12] and Chameleon algorithms are two typical hierarchical clustering algorithms.
The flaw with the hierarchical approach is that once a step (merge or split) is complete, it
cannot be undone. Multi-resolution grids are used for clustering, such as STING [13], and
there is no relationship between the amount of data objects processed and the processing
time. All that matters is the size of each dimension. For model-based methods, a model is
assumed for each cluster, and then a dataset is found that meets this model. The density
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distribution of data points in space or another factor might be the basis for such a model.
Model-based techniques typically relate to techniques based on neural network models
and probability models. Gaussian Mixture Models [14] (GMM, Gaussian Mixture Models)
serve as a representation for the former, and Self-Organizing Mapping Networks [15]
(SOM, Self-Organized Maps) serve as a representation for the latter. A representative
density-based clustering algorithm is called DBSCAN [16]. When compared to partitioned
and hierarchical clustering algorithms, it can separate areas with adequate density into
clusters, locate clusters of any shape in noisy spatial datasets, and define a cluster as the
largest collection of densely linked points. However, DBSCAN has some shortcomings;
the improper selection of parameters and MinPts will affect the overall clustering effect,
and it cannot handle datasets with large density differences. To address the disadvantage
of clustering analysis utilizing a set of global parameters, the OPTICS [17] algorithm is
proposed. OPTICS does not intentionally generate dataset clusters, but outputs cluster
ordering. HDBSCAN [18] is a clustering algorithm developed by Campello, Moulavi and
Sander. It extends DBSCAN by converting DBSCAN into a hierarchical clustering algorithm,
and then uses the technique of extracting planar clustering based on clustering stability.
The biggest difference between HDBSCAN and traditional DBSCAN is that HDBSCAN
can handle clustering problems with different densities. However, the processing effect of
boundary points is not ideal.

Rodriguez and Laio recently introduced the Density Peaks Clustering method
(DPC) [19] in Science, a novel density-based algorithm. DPC is based on the supposi-
tion that (1) the clustering center has a higher density than the neighboring points in its
immediate vicinity; (2) the clustering center point is comparatively far from the places with
greater densities. In addition, unlike other density-based clustering methods (including
MeanShift [20] and DBSCAN), it does not require any iterative step, and assigns labels
to non-central points in one step. Although DPC has the advantages of simple and fast
calculations, it still has the following shortcomings. On the one hand, while processing
data with an uneven density distribution, DPC finds it challenging to identify clustering
centers in decision graphs comprised of density and distance. On the other hand, when a
point is wrongly allocated during the assignment process, the other points connected to it
are also impacted, which causes a chain reaction.

Many DPC variations have been suggested as solutions to the aforementioned prob-
lems. Three categories may be used to group together the enhancements of the original
DPC. The first improvement aims at improving the calculation of local density. The major
goal of the proposed kernels is to lessen the DPC’s sensitivity to the parameter’s value. As
proof, Du et al. first incorporated K-nearest neighbors (KNN) into DPC to determine the
local density of data points (KNN-DPC) [21]. Additionally, dimensional reduction is pre-
processed using principal component analysis (PCA) when working with high-dimensional
datasets to lessen computing complexity. Different from KNN-DPC, Liu et al. proposed
shared-nearest-neighbor-based clustering to fast search for and find density peaks (SNN-
DPC) [22]. SNN-DPC enhances local density computation by using novel definitions such
as SNN similarity. In [23], the K nearest Shannon entropy-based density peaks clustering
algorithm named SC was proposed. To determine the local density, K-nearest neighbors
and entropy values are used, which takes into account the global and local structure of
the dataset.

The second improvement aims to select clustering centers. Picking clustering cen-
ters may be improved in two ways: automatically selecting centers and boosting center
identification in decision graphs. For instance, a single linkage density peaks clustering al-
gorithm entitled DPSLC [24] was proposed to automatically detect all possible centers. The
suggested approach leverages the neighborhood radius to choose a collection of potential
density peaks that are far from their nearest higher-density spots. Xu et al. [25] proposed a
method for clustering graph adaptive density peaks for automatic center selection. The
clustering centers in this approach are automatically chosen according to the turning angle
and graph connectivity.
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The third improvement seeks to provide effective label assignment strategies. Lotfi,
Abdulrahman [26] and colleagues suggested enhanced density peaks clustering (IDPC) that
uses a two-step approach to find complicated clusters. Nevertheless, this method has a high
sensitivity to the parameters. Recently, the local structure of the dataset has been considered
by researchers of the recently introduced DPC-DLP [27] approach, while constructing their
label propagation strategy. In this methodology, the border points are given lower density
values than the core points, while the core points are given greater density values. By
joining each point to its k-nearest neighbors, DPC-DLP builds a graph. This graph is
utilized to create cluster backbones, and, after that, all data points receive the labels from
the backbones. This method effectively classifies the points that are in the border regions
and identifies clusters with complex shapes. The authors of [28] proposed a method called
DGDPC. In order to create clusters, each set of points with a decay phenomenon is first
assigned to a separate cluster. Then, two clusters are combined using the connection points.
In [29], to efficiently handle data of complex forms or multi-manifold structures, DPC
is integrated with the minimum spanning tree. Whereas this algorithm has a significant
computing resource need and is unable to recognize twisted, folded, or curved clusters.
Despite the proliferation of new approaches, there are still several drawbacks that have an
impact on clustering outcomes.

Table 1 represents the main four properties of the various improvements of the density
peaks clustering methods considering their evaluations.

Table 1. Comparison of various clustering algorithms.

Method Year Kernel
Clustering

Centers
Identification

Label
Assignment

Strategy

Chain
Reaction

DPC 2014 Crisp,
global structure Decision graph Non-iterative

√

KNN-DPC 2016 Gaussian,
local structure Decision graph Non-iterative

√

IDPC 2016 Gaussian,
local structure Top score Non-iterative

Using a voting ×

DPC-DLP 2019 Gaussian,
local structure Top score Iterative ×

DGDPC 2021 Gaussian,
local structure Automatically Non-iterative ×

TP-DSDPC 2022 Gaussian,
global structure

Top score
automatically Non-iterative ×

‘×’ refers to No, ‘
√

’ means Yes.

As a new research content of biological computing, membrane computing (also known
as the P system) draws inspiration from the organism’s own operating mechanisms and
cooperation principles; that is, the structure of cells and tissues [30]. It is a model first
proposed by Paun [31] in 1998. In membrane computing, there are mainly three types: a
cell-like P system [32], a tissue—like P system [33] and a neural-like P system [34]. Every
living cell is a running reaction unit of the P system, and each unit independently works.
That is to say, each unit of the P system is independently calculated in parallel. The P
system’s high level of parallelism means that it is frequently used with other algorithms to
increase computing efficiency [35].

So far, the research content of the P system has primarily contained theoretical analy-
sis [36] and application studies [37]. Numerous studies have also been conducted using
clustering algorithms in conjunction with membrane computing [38]. In 2012, Cardona M
et al. [39] first combined membrane computing with clustering algorithms. In 2016, Yan
Huaning et al. [40] designed a new clustering algorithm by combining the PSO algorithm
with the tissue—like P system. In 2020, Jiang Zhenni et al. [23] introduced a density peaks
clustering algorithm based on the K-nearest Shannon entropy and tissue—like P system.
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In 2021, Zhang Xiaoling et al. [41] proposed a spectral clustering method based on the
coupling P system.

It is possible to improve the performance of DPC in some cases using the variants
mentioned above. Nevertheless, as mentioned earlier, DPC still has shortcomings, such
as the use of Euclidean distance, the manual selection of clustering centers and the chain
reaction. To address the above drawbacks, we propose an improved density peaks clus-
tering algorithm based on divergence distance and a tissue—like P system, and verify the
clustering performance in this paper. From the perspective of clustering, the TP-DSDPC
can be viewed as a novel variant of DPC. From the perspective of membrane computing,
the TP-DSDPC is a new variant of TP systems that can process clustering problems. The
following are the main contributions of our work:

• To eliminate the influence of Euclidean distance, a new distance metric—divergence
distance—is proposed.

• To redefine the formula for calculating local density and relative distance, and auto-
matically select the clustering centers according to the score value.

• The TP-DSDPC algorithm is integrated with a tissue—like P system, and optimizes
the efficiency of the algorithm using P system’s computational parallelism in theory.

• The clustering performance of TP-DSDPC is simulated and verified on synthetic and
UCI datasets.

The remainder of this study is structured as follows. Section 2 introduces the funda-
mental principles and steps of the DPC algorithm and relevant notions of the P system.
Section 3 presents the TP-DSDPC algorithm at length. The performance of TP-DSDPC
through experimental results and the analysis of datasets is demonstrated in Section 4.
Conclusions are outlined in Section 5, along with suggestions for future investigations.

2. Related Work

In this section, we introduce the principle of density peak clustering and the tissue—
like P system. For ease of understanding, we summarize major notations in Table 2.

Table 2. The main notations.

Notation Description Notation Description

ρi Density of point i δi
The minimum distance

from point i to point with
higher density

dij
Euclidean distance between

point i and point j Scorei Score value of point i

dc The cutoff distance celli The ith cell
DV(xi) Divergence of point i Ri Rule i

DVdis(xi,xj)
Divergence distance between

point i and point j x(x1, x2, . . . , xn) A dataset of n points

2.1. Density Peaks Clustering

As mentioned above, DPC is one of the most extensively used density-based clustering
algorithms and is very adaptable. Two assumptions underlie DPC: clustering centers have
the highest local density and are relatively far apart [42].

DPC mainly consists of [43]: firstly, local density ρi and relative distance δi of each point
are calculated. It is then determined which points are the initial clustering centers, based
on the decision graph. After that, the remaining points are allocated to their appropriate
clustering centers.

In order to define the local density ρi of a data point, we use the following formula:

ρi = ∑n
j=1 χ

(
dij − dc

)
(1)
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where n represents the number of data points and dij represents the distance between the
point i and the point j. dc is the cutoff distance. χ refers to an indicator function, when
x < 0, χ(x) = 1, otherwise χ(x) = 0.

Furthermore, the Gaussian kernel function can be used to calculate the local density of
data points in addition to the abovementioned method. The specific formula is as follows:

ρi = ∑i 6=j exp
{
−
( dij

dc

)2
}

(2)

The relative distance δi of a data point is calculated by the following formula:

δi =

{
max δ ρi = maxρ
min

j,ρj>ρi
dij ρi 6= maxρ (3)

Based on the above two variables, local density and relative distance, DPC constructs
the decision graph with ρ as the abscissa and δ as the ordinate. The user needs to manually
select clustering centers in the decision graph, or to select the clustering centers through the
decision value γ, where γ = ρ× δ. After finding the clustering centers, those remaining
points belong to a cluster larger than the local density of their nearest neighbors.

2.2. Tissue—Like P System

On the grounds of the cell-like P system, the tissue—like P system is proposed [44]. The
cell-like P system only contains one cell, whereas the tissue—like P system contains multiple
cells and the environment as well, and there are objects and rules in them. The movement
of objects from cell to cell or cell to environment is carried out through rules in parallel
execution [45]. The membrane structure of the tissue—like P system is demonstrated in
Figure 1. The formal definition of the tissue—like P system of degree m (m ≥ 1) is:

Π = O, σ1, ···, σn, syn, iout (4)

where

1. O is the alphabet, which contains all objects in the system.
2. syn are synapses that connect cells.
3. iout represents the output cell of the system.
4. σ1, ···, σn indicate n cells in the system, the detail definition is as follows:

σi = (Qi, si,0, ωi,0, Pi), 1 ≤ i ≤ m, Qi refers to the collection of all states. si,0 ∈ Qi
refers to the initial state. wi,0 ∈ O∗ means the initial multiset of the object, when
wi,0 = λ there is no object in cell i. Pi stands for the rules of the system.
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3. The Proposed Method

An improved density peaks clustering algorithm based on divergence distance and the
tissue—like P system is presented in this section. In the beginning, the divergence distance
is introduced into the DPC algorithm, and clustering centers are automatically selected by
score values. The whole algorithm is carried out within the structure of the tissue—like P
system. Then, distinct rules and operations are respectively presented. Finally, algorithm
complexity analysis is performed.

3.1. Divergence Distance

To address the influence of the above shortcomings, based on traditional Euclidean
distance, the divergence distance is refined. Inspired by the importance ranking of data
points, the definitions of divergence and divergence distance are shown as follows [46].

Definition 1. (Divergence). For a dataset D containing n points, where m points
(x1, x2, · · · , xi, · · · , xm) appear in the same circle. Point xi can be represented by the Euclidean
distance from point xk (1 ≤ k 6= i ≤ m < n) to it. The divergence of xi, denoted as DV (xi), is
computed by:

DV(xi) =
Eu(x1,xi)+Eu(x2,xi)+···+Eu(xm ,xi)

θ×d =
∑m

k=1,k 6=i Eu(xk ,xi)

θ×d
(5)

where Eu(xk, xi) is the Euclidean distance between xk and xi; the diameter of the circle where these
points are located is d, the amount of accumulation is θ, θ = m− 1. Eu(xk, xi) ranges between 0
and d, so there is a range of 0 to 1 for DV(xi).

Definition 2. (Divergence distance). The divergence distance between point xi and point xj
under the divergence defined in Definition 1 (tagged as DVdis(xi, xj) is:

DVdis
(

xi, xj
)
= Eu

(
xi, xj

)
− e−(DV(xi)−DV(xj))

2
(6)

According to Definition 2, there are two components to the divergence distance
between points xi and xj. There are two parts to the distance between them: the Euclidean
distance and the divergence difference.

3.2. Basic Principle of TP-DSDPC

In our algorithm, we first apply the divergence distance into the calculation formula
of local density and relative distance, which is redefined as follows:

ρi = ∑i 6=j exp
[
−DVdis(xi ,xj)

dc

]2
(7)

δi =

 maxδ ρi = maxρ
min.

J,ρj>ρi

DVdis
(
xi, xj

)
ρi 6= maxρ (8)

Once the density and distance between each point have been calculated, the original
DPC manually decides the clustering centers by drawing a decision graph, but this is
not suitable for complex datasets and can easily cause incorrect clustering. Therefore, we
automatically select the clustering centers by score value [26]. Here is the equation for
calculating the score.

Scorei =
(

ρi
max(ρ)

)2
× δi

max(δ)
(9)

According to this equation, points with high local density and distance are given a
high value. By sorting the score value of each point in the dataset in descending order, c
points are identified as clustering centers (c is the number of clusters).
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As part of the assignment procedure of the DPC algorithm, a new version of the
aggregation strategy is applied in order to resolve the chain reaction. The new version
allocates the remaining points to nearest neighbors redefined with divergence distance
(with higher density), which avoids cascades of misassignments.

3.3. The Initial Configuration of the Tissue—Like P System

To enhance the algorithm’s computational efficiency, the tissue—like P system is
combined with it. The initial configuration, which is shown in Figure 2 for each cell and
rule, is as follows.
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• cell1, ···, celln: They represent n sample points in the dataset.
• celln+1: This is an empty cell.
• R1: Each point’s local density and relative distance are respectively calculated by

formulas (7) and (8) and input to cell1, ···, celln.
• R2: Obtain the divergence distance between each pair of data points by rule R1, build

a distance matrix M and send to cell1, ···, celln.
• R3: The Score value of each point is calculated by formula (9) and input to cell1, ···, celln.
• R4: According to the Score value, the c clustering centers are determined, and the

celln+1 is split into c new cells, which are marked as celln+1, celln+2, · · · celln+c. Cluster
count is c.

• R5: The cells where the clustering centers identified according to the Score value are
located are fused with celln+1, celln+2, · · · celln+c, respectively.

• R6: Allocation of the remaining points pursuant to matrix M, while the fusion of the
intercellular membrane is performed.

3.4. The Process of TP-DSDPC Algorithm

The whole algorithm has seven main steps. The workflow chart of the TP-DSDPC
algorithm is shown in Figure 3. Figure 4 displays the realization process of the tissue—like
P system.

• Input: the dataset x (x1, x2, ···, xn) and dc
• Output: the clustering result
• Step 1: In cell1, ···, celln, we first apply rule R1 to calculate the local density and relative

distance of each data point at the same time.
• Step 2: The rule R2 is applied to obtain the distance matrix M in cell1, ···, celln.
• Step 3: In cell1, ···, celln, the rule R3 is used to calculate the Score value of each point as

a backup for selecting the clustering centers.
• Step 4: According to the number of clusters, use rule R4 to split celln+1 into c new cells.
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• Step 5: Membrane fusion of clustering centers—apply the rule R5 to fuse the c cluster-
ing centers with celln+1, celln+2, · · · , celln+c, respectively.

• Step 6: In this step, rule R6 is used to allocate the remaining points, except clustering
centers.

• Step 7 (Termination of calculation): The calculation is terminated when all of the points
are allocated; the clustering result is output.
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Figure 3. The workflow of the TP-DSDPC algorithm.
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Figure 4. The realization process of the tissue—like P system.

3.5. Complexity Analysis

The sample size is set to n; the dataset has c clusters. The time complexity of TP-DSDPC
is composed of the following components: (i) the calculation of the divergence distance
between all data points O(n2); (ii) density calculation for the points O(n2); (iii) calculating
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the score value and selecting the highest scoring points O(nlog n); (iv) each cluster is merged
with its connect points O(c2); (v) all points are assigned to their anchor points’ clusters O(cn).
Based on the preceding analysis, we can conclude that TP-DSDPC has a time complexity of
O(n2), which is equivalent to that of DPC.

4. Experiment

In this section, to verify the performance of the proposed TP-DSDPC algorithm, we
conduct experiments on both synthetic and real-world datasets. All of the experiments were
organized in Matlab2016a on a laptop computer running Windows 10 with a 2.50 GHz CPU
and 8G RAM. At the same time, we compared it with other clustering methods, including
K-means [47], DBSCAN [48], DPC [19], KNN-DPC [21] and DGDPC [28]. Every method
was repeated ten times with either the default parameter values given by the respective
authors or tuned to achieve the best performance. After each run, the ACC, NMI and ARI
indices of each algorithm were obtained, and the average result from several runs was
used to determine final performance. The standard deviation (std) values are reported
in brackets.

4.1. Evaluation Indicators

Usually, evaluation indicators are used to measure the quality of clustering results. We
adopted three common clustering indicators: Accuracy (ACC) [49], Normalized Mutual
Information (NMI) [50] and Adjusted Rand Index (ARI) [51]. It is believed that the cluster-
ing performance is better when ACC, NMI and ARI are higher. They were calculated as
follows.

(1) Accuracy (ACC)

Based on the clustering label P and the true label T, accuracy represents how many
samples have been correctly clustered compared to the total number of samples. There is a
range of 0 to 1 for the ACC.

ACC =
∑k

i=1 max|Pi∩ Tj|
N

(2) Normalized Mutual Information (NMI)

It uses information theory to measure the difference between the clustering partitions,
and its range is in [0, 1].

NMI(X, Y) = 2 I(X,Y)
H(X)+H(Y)

where I (X, Y) is the mutual information between X and Y, and H(X), H(Y) are the entropy
of random variables.

(3) Adjusted Rand Index (ARI)

The Rand Index indicates how closely the predicted and actual values match, and its
range is [0, 1]. However, as RI does not guarantee that a random result is close to 0, we
recommend using the Adjusted Rand Index, which has a higher degree of discrimination.
Values are between [−1, 1]. Larger value indicates better consistency with reality.

RI = TP+TN
TP+FP+TN+FN

ARI = RI−E[RI]
max(RI)−E[RI]

Decisions are represented as TP (true positive), FP (false positive), TN (true negative)
and FN (false negative), respectively.

4.2. Experiments on Synthetic Datasets

In this subsection, the performances of K-means, DBSCAN, DPC, KNN-DPC, DGDPC
and TP-DSDPC on nine synthetic datasets are reported. The nine synthetic datasets are
listed in Table 3. Figure 5 displays the original data.
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Table 3. The basic information of the nine synthetic datasets.

Dataset Objects Attributes Clusters

Flame 240 2 2
Jain 373 2 2

Spiral 312 2 3
Threecircles 299 2 3

Smile 266 2 3
Fourlines 512 2 4

Aggregation 788 2 7
R15 600 2 15
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As shown in Figure 6, only the TP-DSDPC algorithm is completely effective for the
Flame dataset. DPC and KNN-DPC cannot identify some noise points and boundary points.
DGDPC does not recognize the junction points of two clusters. It can be seen from Figure 7
that TP-DSDPC is able to excellently cluster the Jain dataset. From the clustering results
revealed in Figure 8, aside from K-means and the original DPC, others are processed well
for clusters of the Spiral dataset.
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Figure 8. Clustering results on Spiral.

Only DBSCAN, DGDPC and TP-DSDPC had successful clustering results for the Three-
circles dataset according to the clustering findings in Figure 9. This may be because other
algorithms cannot recognize circular datasets. Figure 10 illustrates that most of the algo-
rithms can perform well on the Smile dataset, except for K-means and DBSCAN. Figure 11
demonstrates that most algorithms can find proper clusters on the Fourlines dataset.
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The clustering results of the Aggregation dataset are displayed in Figure 12. The
TP-DSDPC has the best clustering performance, while other algorithms are less efficient. As
for the last R15 dataset, which is displayed in Figure 13, all of the algorithms can identify
different clusters. However, K-means and DBSCAN have some clustering errors, because
many normal points on the boundary of the clusters are also recognized as noise points.
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From Tables 4–6 (the bolded results are the best), the ACC, NMI and ARI of TP-
DSDPC are separately the highest for all synthetic datasets, which shows its superiority on
clustering datasets with complex structured clusters and non-uniform density.

Table 4. The ACC of the six algorithms on nine synthetic datasets.

Datasets K-Means DBSCAN DPC KNN-
DPC DGDPC TP-

DSDPC

Flame 0.6355
(0.0212)

0.6749
(0.0253)

0.8537
(0.0137)

0.9613
(0.0158)

0.9827
(0.0245)

1.0000
(0.0000)
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1.0000
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(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)
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0.3349
(0.0999)

0.7013
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0.7758
(0.0255)
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Table 5. The ACC of the six algorithms on nine synthetic datasets.

Datasets K-Means DBSCAN DPC KNN-
DPC DGDPC TP-

DSDPC

Flame 0.2038
(0.0133)

0.3185
(0.0177)

0.5602
(0.0142)

0.7148
(0.0093)

0.8411
(0.0387)

1.0000
(0.0000)

Jain 0.2597
(0.0178)

0.4829
(0.0120)

0.5589
(0.0226)

0.2216
(0.0061)

0.3517
(0.0197)

1.0000
(0.0000)

Spiral 0.1713
(0.0185)

1.0000
(0.0000)

0.2019
(0.0176)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

Threecircles 0.1569
(0.0149)

0.9982
(0.0285)

0.1753
(0.0119)

0.1345
(0.0758)

1.0000
(0.0000)

1.0000
(0.0000)
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Table 5. Cont.

Datasets K-Means DBSCAN DPC KNN-
DPC DGDPC TP-

DSDPC

Smile 0.5305
(0.0320)

0.5587
(0.0214)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

Fourlines 0.1153
(0.0150)

0.9998
(0.2682)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

Aggregation 0.3441
(0.0311)

0.2019
(0.0169)

0.4110
(0.0454)

0.4853
(0.0117)

1.0000
(0.0000)

1.0000
(0.0000)

R15 0.6259
(0.0543)

0.5487
(0.0227)

0.6449
(0.0186)

0.6571
(0.0209)

0.9448
(0.0197)

1.0000
(0.0000)

Table 6. The ARI of the six algorithms on nine synthetic datasets.

Datasets K-Means DBSCAN DPC KNN-
DPC DGDPC TP-

DSDPC

Flame 0.1904
(0.0281)

0.2718
(0.0110)

0.4205
(0.0112)

0.6251
(0.0246)

0.7619
(0.0415)

1.0000
(0.0000)

Jain 0.4759
(0.0297)

0.6014
(0.0157)

0.5813
(0.0046)

0.4206
(0.0096)

0.5381
(0.0429)

1.0000
(0.0000)

Spiral 0.1028
(0.0140)

1.0000
(0.0000)

0.2998
(0.0576)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

Threecircles 0.1358
(0.0208)

0.9987
(0.0409)

0.2769
(0.0563)

0.1137
(0.0451)

1.0000
(0.0000)

1.0000
(0.0000)

Smile 0.6144
(0.0446)

0.6369
(0.0274)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

Fourlines 0.2588
(0.0468)

0.9973
(0.0177)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

Aggregation 0.1028
(0.0181)

0.0099
(0.0560)

0.3579
(0.0198)

0.4899
(0.0761)

1.0000
(0.0000)

1.0000
(0.0000)

R15 0.5108
(0.1235)

0.4236
(0.0361)

0.7003
(0.0285)

0.7140
(0.0419)

0.9047
(0.0526)

1.0000
(0.0000)

4.3. Experiments on Real-World Datasets

The UCI dataset is a widely recognized standard test dataset that is frequently used
in clustering research. To further prove the performance of TP-DSDPC, we conducted
experiments on six UCI datasets. Table 7 indicates the specific information of the datasets.
The proposed algorithm is universally applicable to a wide variety of complex datasets,
based on the results of the experiments.

Table 7. The basic information of the six UCI datasets.

Dataset Objects Attributes Clusters

Iris 150 4 3
Ecoli 336 8 8
Zoo 101 18 7

Glass 214 10 6
Yeast 1484 9 10
Seeds 210 7 3

The results of ACC, NMI and ARI are separately presented in Tables 8–10. Bold is
used to highlight the best outcomes.
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Table 8. Results of ACC on UCI datasets.

Dataset K-Means DBSCAN DPC KNN-
DPC DGDPC TP-

DSDPC

Iris 0.6911
(0.0321)

0.6505
(0.0734)

0.7954
(0.0528)

0.8363
(0.0558)

0.8651
(0.0267)

0.8913
(0.0395)

Ecoli 0.6724
(0.0195)

0.5475
(0.0696)

0.4294
(0.0366)

0.4271
(0.0364)

0.6991
(0.0232)

0.6816
(0.0216)

Zoo 0.6817
(0.0363)

0.7018
(0.0451)

0.7529
(0.0583)

0.6803
(0.0398)

0.7284
(0.0345)

0.7748
(0.0264)

Glass 0.6458
(0.0976)

0.5154
(0.0381)

0.3943
(0.0176)

0.2625
(0.0422)

0.5692
(0.0463)

0.6958
(0.0205)

Yeast 0.2874
(0.0113)

0.3973
(0.0420)

0.3906
(0.0342)

0.4563
(0.0281)

0.4397
(0.0163)

0.6015
(0.0278)

Seeds 0.7525
(0.0272)

0.6373
(0.0267)

0.7735
(0.0314)

0.7964
(0.0161)

0.8569
(0.0232)

0.8711
(0.0380)

Table 9. Results of NMI on UCI datasets.

Dataset K-Means DBSCAN DPC KNN-
DPC DGDPC TP-

DSDPC

Iris 0.7437
(0.0229)

0.6955
(0.0343)

0.7346
(0.0247)

0.7978
(0.0164)

0.7809
(0.0200)

0.8103
(0.0231)

Ecoli 0.6444
(0.0401)

0.1421
(0.0183)

0.2289
(0.0223)

0.2181
(0.0348)

0.7094
(0.0402)

0.7285
(0.0199)

Zoo 0.7062
(0.0284)

0.7138
(0.0175)

0.7852
(0.0230)

0.7358
(0.0291)

0.7162
(0.0212)

0.7753
(0.0177)

Glass 0.7459
(0.0125)

0.1052
(0.0324)

0.4018
(0.0136)

0.4376
(0.0288)

0.6819
(0.0292)

0.8157
(0.0208)

Yeast 0.2436
(0.0167)

0.0295
(0.0329)

0.1224
(0.0287)

0.1375
(0.0205)

0.1226
(0.0197)

0.3649
(0.0231)

Seeds 0.5288
(0.0195)

0.3087
(0.0228)

0.5684
(0.0270)

0.6251
(0.0116)

0.7382
(0.0179)

0.7136
(0.0101)

Table 10. Results of ARI on UCI datasets.

Dataset K-Means DBSCAN DPC KNN-
DPC DGDPC TP-

DSDPC

Iris 0.6998
(0.0373)

0.5749
(0.0820)

0.6485
(0.0576)

0.7001
(0.0605)

0.7953
(0.0293)

0.7807
(0.0431)

Ecoli 0.5774
(0.0351)

0.3931
(0.0402)

0.2677
(0.0251)

0.2758
(0.0311)

0.6537
(0.0359)

0.7042
(0.0228)

Zoo 0.5636
(0.0408)

0.5796
(0.0520)

0.6441
(0.0513)

0.7015
(0.0629)

0.6561
(0.0436)

0.7549
(0.0373)

Glass 0.5459
(0.0148)

0.0137
(0.0463)

0.2297
(0.0198)

0.2017
(0.0480)

0.4307
(0.0530)

0.4473
(0.0347)

Yeast 0.1437
(0.0526)

0.0248
(0.0381)

0.0194
(0.0324)

0.0121
(0.0187)

0.0983
(0.0176)

0.3144
(0.0308)

Seeds 0.5886
(0.0250)

0.3319
(0.0310)

0.5992
(0.0399)

0.6129
(0.0167)

0.7764
(0.0256)

0.8013
(0.0354)

In order to more intuitively observe the ACC, NMI and ARI of six algorithms on these
real-world datasets, histograms were applied to represent them, as can be seen separately
from Figures 14–16.
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Regarding the ACC, Figure 14 illustrates that the TP-DSDPC algorithm has the best
results on the five real-world datasets, except for the Ecoli dataset. The results from the
Ecoli dataset are also the second best. In terms of the NMI, Figure 15 demonstrates that the
proposed algorithm achieved excellent results on most datasets. At the same time, it is only
second to the DPC and DGDPC algorithms on the Zoo and Seeds datasets. In terms of the
ARI, as displayed in Figure 16, the proposed algorithm obtained the best results on most
datasets, expect for the Iris and Glass datasets.
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4.4. Analysis of Experimental Results

As previously mentioned, the theory research and experiments on the synthetic and
real-world datasets indicate that TP-DSDPC outperforms other algorithms. It obtained
larger values of ACC, NMI and ARI than others. The TP-DSDPC algorithm can properly
identify different types and scales of clusters. Moreover, it can be applied to more com-
plicated situations. In this paper, all of the procedures of the algorithm were carried out
in the structure of the tissue—like P system. Taking advantage of the extremely parallel
computing characteristics of the tissue—like P system in membrane computing, it can
improve efficiency to a certain extent in theory.

5. Conclusions

In this study, an improved density peaks clustering algorithm based on divergence
distance and the tissue—like P system is proposed, termed TP-DSDPC. In the proposed
algorithm, we introduce the divergence distance to relieve the impact of similarity mea-
surements and the chain reaction. The main clustering process of TP-DSDPC is compatible
with DPC. First of all, it calculates local density and updates relative distance by divergence
distance. Then, it automatically selects the clustering centers by the score value from high
to low. Lastly, the remaining points are clustered by the relative distance. Furthermore, the
whole flow is implemented in the structure of the tissue—like P system and the efficiency
of the algorithm is immensely promoted by the parallelism of the P system in theory. The
proposed algorithm performs better on synthetic and real-world datasets, according to the
experimental results.

In the years ahead, the proposed method will be expanded further so that it can
address more clustering and optimization issues. Additionally, to improve the effectiveness
and efficiency of TP-DSDPC, certain optimized methods should also be considered.
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