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Abstract: This paper proposes a novel solution for using deep neural networks with reinforcement
learning as a valid option in negotiating distributed hierarchical controller agents. The proposed
method is implemented in the upper layer of a hierarchical control architecture composed at its
lowest levels by distributed control based on local models and negotiation processes with fuzzy logic.
The advantage of the proposal is that it does not require the use of models in the negotiation, and
it facilitates the minimization of any dynamic behavior index and the specification of constraints.
Specifically, it uses a reinforcement learning policy gradient algorithm to achieve a consensus among
the agents. The algorithm is successfully applied to a level system composed of eight interconnected
tanks that are quite difficult to control due to their non-linear nature and the high interaction among
their subsystems.

Keywords: deep reinforcement learning; distributed model predictive control; multi-agent;
fuzzy logic

1. Introduction

Model predictive control (MPC) is a successful technique with increasing industrial
applications [1]. Nevertheless, the computational requirements that involve a centralized
control MPC are, in some cases, unfeasible from a practical point of view due to the
large-scale nature of the actual engineering infrastructure. Therefore, distributed model
predictive control (DMPC) appears as a possible solution to these problems since a complex
problem can always be seen as a set of coupled simpler problems, with a clear structure that
represents the global one [2]. In addition, DMPC allows the exploitation of this structure
to formulate control laws based on local information and some communication between
the agents to achieve global performance and stability. In this case, negotiation among
agents is a typical approach. The critical task of solving the negotiation problem in multi-
agent DMPC systems comes from designing distributed control protocols based on local
information from each agent and its neighbors.

Consequently, the main concern of this negotiation problem is achieving global deci-
sions based on local information. Therefore, strategies that allow agents to change their
local decisions online according to changes in the environment or the behavior of other
agents to achieve a joint agreement on a global interest is a priority concern. Negotiation
to achieve consensus is focused on addressing this problem. An interesting approach is
using deep neural networks as a negotiation manager trained in the machine learning
method, which offers many advantages and motivates the development of many algo-
rithms for decision making and control, studying all the properties of stability, convergence,
and feasibility.

Within artificial intelligence, machine learning techniques have proven to be a pow-
erful tool when using knowledge extracted from data for supervision and the control of
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complex processes [3–7]. Technological advances and data availability have boosted this
methodology. Deep learning is another field that uses the large amount of data provided
by intelligent sensors. This learning is based on neural networks that capture complex
behavior, such as [8], where deep learning-based models as soft-sensors to forecast WWTP
key features have been developed.

Among them, there is one approach, reinforcement learning (RL) [9] in which an
RL agent learns by interacting with the environment in order to determine, based on a
policy, what action to take given an environment state, aiming at the maximization of the
expected cumulative reward. Ultimately, the RL agent learns the policy to follow when
the environment is in a certain state, adapting to variations. In other words, reinforcement
learning has as its main objective the training of an RL agent to complete a task in an
uncertain environment which it gets to know through the states that the environment
assumes due to the actions [10,11].

Valuable surveys about the RL algorithms and their applications can be found in [9,12].
Several online model-free value-function-based reinforcement learning algorithms that
use the expected cumulative reward criterion (Q-learning, Sarsa, and actor–critic methods)
are described. Further information can also be found in [13–15]. However, several policy
search and policy gradient algorithms have been proposed in [16,17].

Many traditional reinforcement learning algorithms have been designed to solve
problems in the discrete domain. However, real-world problems are often continuous,
making the learning process to select a good or even an optimal policy quite a complex
problem. Two RL algorithms that address continuous problems are the deep deterministic
policy gradient (DDPG), which uses a deterministic policy, and policy gradient (PG), which
assumes a stochastic policy. Despite the significant advances over the last few years, many
issues still need to improve the ability of reinforcement learning methods in complex and
continuous domains that can be tackled. Furthermore, classical RL algorithms require
a large amount of data to obtain suitable policies. Therefore, applying RL to complex
problems is not straightforward, as the combination of reinforcement learning algorithms
with function approximation is currently an active field of research. A detailed description
of RL methodologies in continuous state and action spaces is given in [18].

Recently, in the literature, research works have been published showing that, in partic-
ular, RL based on neural network schemes combined with other techniques can be used
successfully in the control and monitoring of continuous processes. In [11,19–21] strategies
for wind turbine pitch control using RL, lookup tables, and neural networks are present.
Specifically, in [11], controlling the direct angle of the wind turbine blades is considered,
some hybrid control configurations are proposed. Neuro-estimators improving the con-
trollers, together with the application of some of these techniques in a terrestrial turbine
model, are shown. Other control solutions with RL algorithms and without the use of
models can be found in [22], among others. In cooperative control, advances have also used
RL. Thus, in [7], a cooperative wind farm control with deep reinforcement learning and
knowledge-assisted learning is proposed with excellent results. In addition, in [23], a novel
proposal is made for high-level control. RL based on RNAs is used for high-level agent
negotiation within a distributed model predictive control (DMPC) scheme implemented
in the lower layers to control a system level composed of eight interconnected tanks. Ne-
gotiation agent approaches based on reinforcement learning have advantages over other
approaches, such as genetic algorithms that require multiple tests before arriving at the best
strategy [24] or heuristic approaches in which the negotiation agent does not go through a
learning process [25].

Negotiation approaches based on reinforcement learning often employ the Q-learning
algorithm [26], based on the value function, which predicts the reward that an action
will have given a state. This approach is the case in [27], in which a negotiation agent
is proposed based on a Q-learning algorithm that computes the value of one or more
variables shared between two MPC agents. On the other hand, there are those based on
policies, a topic addressed in this work, which directly predict the action itself [28]. One of
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these algorithms is the Policy Gradient (PG) [17], which directly parameterizes a policy by
tracing the direction of the ascending gradient [16]. In addition, PG employs a deep neural
network as a policy approximation function and works in sizeable continuous state and
action spaces.

Local MPCs of a DMPC control make decisions based on local objectives. For this
reason, consensus between local decisions is necessary to achieve global objectives to
improve global index performance. In particular, in this paper, a negotiation agent based
on RL manages the negotiation processes among agents of local MPCs to improve a global
behavior index of a plant composed of eight interconnected tanks. Given this, the PG-DMPC
algorithm within a deep neural network trained by the Policy Gradient (PG) algorithm [29]
is proposed and implemented in the upper-level control layer within the control architecture.
Therefore, the decision to implement the PG algorithm as a negotiation agent is based on
the following advantages: not requiring knowledge of the model, the ability to adapt to
handle the uncertainty of the environment, the convergence of the algorithm is assured,
and few and easy understanding of tuning parameters.

The remainder of this paper is organized as follows: The problem statement in Sec-
tion 2. Section 3 presents the RL method, the PG-DMPC algorithm, and DMPC from the
low-level control layer. Moreover, Section 4 shows the case study, negotiation framework,
the training of the negotiation agent, and performance indexes. Section 5 presents the
results. Finally, Section 6 provides conclusions and direction for future work.

Notation

N0+ and R+ are, respectively, the sets of non-negative integers and positive real
numbers. Rn refers to an n-dimension Euclidean space. The scalar product of vectors
a, b ∈ Rn is denoted as abᵀ or a · b. Given sets X , † ⊆ Rn, the Cartesian product is
X × Y , {(x, y) : x ∈ X , y ∈ Y}. If {Xi}i∈N is a family of sets indexed by N , then the
Cartesian product is ×i∈NXi , X1 × · · · × XN = {(x1, · · · , xN) : x1 ∈ Xi, · · · , xN ∈ XN}.
Moreover, the Minkowski sum is X ⊕ Y , {x + y : x ∈ X , y ∈ Y}. The set subtraction
operation is symbolized by \. The image of a set X ⊆ Rn under a linear mapping
A : Rn −→ RmisAX , {Ax : x ∈ X}.

2. Problem Statement

In implementing DMPC methodologies, local decisions must follow a global control
objective to maintain the performance and stability of the system. In this paper, we
propose reinforcement learning (RL) in the upper-level negotiation layer of a DMPC control
system in search of consensus to achieve global decisions. It requires an upper-level agent
negotiator to provide a final solution for each DMPC agent of the lower level in which
several control actions are available.

A PG-DMPC (policy gradient-DMPC) algorithm is proposed to carry out negotiation.
A deep neural network trained by the policy gradient [29] algorithm has as inputs local
decisions of a multi-agent FL-DMPC (fuzzy logic DMPC) [30]. Hence, it provides negotia-
tion coefficients applied to the consensus of the global decisions through its pairwise local
decisions to achieve the global goal and stability requirements of the FL-DMPC multi-agent
control in the following control architecture (Figure 1).
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Figure 1. PG-DMPC algorithm proposed in the upper-level PG negotiation control layer within the
control architecture.

At each time instant t, a local decision is the control sequence defined as follows:

U(t) =
[
u(t), . . . , u(t + 1), . . . , u

(
t + Hp − 1

)]ᵀ,

where U(t) is the instant control action vector, and Hp is the prediction horizon of the local
MPC controllers in the lower layer. The agent i of the MPC with i ∈ {1, 2, . . . , N} of N

agents have local decisions Ui =

[
U f1

i (t), U f2
i (t), . . . , U

fMi
(t)

i

]
of M pairwise negotiations

in the FL-DMPC lower layer. To achieve a global decision U f
i , it is proposed to agree as

follows:

U f
i (t) =

Mi

∑
m=1

U fm
i (t) · αm

i . (1)

where αm
i is the output of the deep neural network considered, like the negotiation coeffi-

cients weighing local decisions U
fMi
i , to achieve the control objective.

3. Methodology

Given a problem to be solved by the RL method, the environment is modelled as
a Markov decision process with state space S, action space A, state transition function
P(st+1|st, at), with s ∈ S and a ∈ A, t as the time step, and a reward function r(st, at).
The training of an agent consists of the interaction of the agent with the environment,
for which the agent sends an action at to the environment, and it sends back a state st+1
and a reward rt+1 as a qualifier of the at according to the environment objectives. Conse-
quently, each episode training generates an episode experience composed of the sequence
{st, at, rt+1, st+1, . . . , sT−1, aT−1, sT , rT} with t ∈ {0, 1, . . . , T} where T is the time horizon.

The PG algorithm selects at based on a stochastic policy πθ(at|st) that assigns states
to actions (π : S→ P(A)). For this task, the algorithm uses a deep neural network as an
approximation function of the stochastic policy πθ(at, st). The parameter of the policy
optimization θ is performed through the ascent optimization method of the gradient. This
optimization aims to maximize for each state in the episode training for t = 1, 2, . . . , T− 1,
the discounted future reward,

Gt =

{
T

∑
t=0

γtrt

}
(2)

where γ is a discount factor, and rt is the reward received at t time step. Therefore,
the objective function is

Gt · ∇θ log πθ(at | st). (3)
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The score function ∇θ log πθ(at | st) allows optimization to be achieved without re-
quiring the dynamic model of the system, optimizing the gradient of the logarithm of
πθ(at|st) which expresses the probability that the agent selects at given a st.

The estimate of the discounted future reward Gt made by the Monte Carlo method
has a high variance, leading to unstable learning updates, slow convergence, and thus slow
learning of the optimal policy. The baseline method takes from Gt a value given from a
baseline function b(s; ϕ) to address the variance in the estimate,

Ât = Gt − bϕ(s), (4)

where Ât is called the advantage function. Consequently, the objective function becomes,

Ât · ∇θ log πθ(at | st). (5)

The exploration policy used by PG is based on a categorical distribution, where
πθ(a | s) = P(a | s; θ) is a discrete probability distribution that describes the probability
π(s, a ; θ) that the policy can take action a of a set k actions, with i ∈ {1, . . . , k}, given a state
s, with the probability of each action listed separately and is the sum of the probabilities of
all the actions equal to zero, ∑k

i=1 pi = 1.
Figure 2 shows the policy gradient algorithm for the negotiating agent training. The op-

timization of deep neural networks is based on the input data collected at training by a
categorical distribution exploration policy. Model knowledge is not necessary, only local
decisions as the state and control objectives as the reward, a consequence of the action of
the previous t time step employed to agree among the local decisions and obtain the global
decisions of the agents.

Figure 2. PG optimization scheme for the required negotiation agent in the upper-level control layer
in the distributed MPC-based control system.

3.1. PG-DMPC Algorithm

This section details the PG-DMPC algorithm implemented as a negotiating agent
required for the upper layer of a distributed MPC control system. The aim of the upper
layer PG-DMPC algorithm is to achieve a consensus among all candidate control sequences
for each agent to obtain the final control action implemented.

In order to reach consensus, the deep neural network receives the available control
sequences for each agent as state st,

st = [U1(t), U2(t), . . . , UN(t)],
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where Ui =

[
U f1

i (t), U f2
i (t), . . . , U

fMi
i (t)

]
, N is the number of agents, i ∈ {1, 2, . . . , N},

and Mi is the total number of pairwise fuzzy negotiations in the lower layer performed by
agent i. The total number of control sequences received by the PG-DMPC upper level is
defined as M = ∑N

i=1 Mi. The states st ∈ S, where S is a compact subspace S ⊆ RN·M·Hp .
The action at ∈ A where A ⊆ RN·M is a compact set, at are some coefficients weighting

the control sequences to compute a suitable final control sequence U f
i to be applied in

the plant for agent i, this procedure being the way to achieve consensus among agents
in the upper layer. Particularly, the action vector is defined as at = {φi, . . . , φN}, where
φi =

[
α1

i , α2
i , . . . , α

Mi−1
i

}
, i ∈ {1, . . . , N]. Note that for agent i, the number of coefficients

provided is Mi−1 because the last one is obtained as the complement to 1 in order to
reduce the computational load, and provided that ∑M

m=1 αm
i < 1 due to normalization when

training the deep neural network,

α
Mi
i = 1−

Mi−1

∑
m=1

αm
i . (6)

Finally, the reward provided by the environment at each time step is defined in
Section 4.2.1 because it depends on the particular case study and its global control objective.

Considering states and actions defined above, Algorithm 1 developed negotiation in
this paper is described:

Algorithm 1 Proposed PG-DMPC negotiation algorithm for multiples agents
At each time step t for each agent i:
1. The states st are taken from the environment (low-level control layer) by the RL upper

layer (deep neural network) defined by non-linear function ζ.
2. The deep neural network takes the states as inputs in order to provide the actions at

which are the negotiation coefficients αm
i , for i ∈ {1, . . . , N}, m ∈ {1, . . . , Mi−1}, as

outputs,

at = ζ(st).

The deep neural network ζ outputs satisfy ∑
Mi−1
m=1 ≤ 1 because it is a constraint

considered at training for normalization.
3. The final control sequence U f

i is obtained, considering the actions provided by ζ,

U f
i (t) = ∑Mi

m=1 U fm
i (t) · αm

i .

4. The control sequences for each agent are aggregated to UN =
[
U f

1 , U f
2 , . . . , U f

N

]
.

U f
N(t) is computed and compared with the global cost J f

N(xN(t)) from the previous
time t. Otherwise, the previous t control sequences that check stability, Us

N(t + 1), are
applied. Hence, the global cost function is

J f
N

(
xN(t), U f

N(t)
)
=

Hp−1

∑
k=1

(
‖xN(t + k)− xrN (t + k)‖2

QN
+

‖uN(t + k)− urN (t + k)‖2
RN

)
+ ‖xN(t + HP)− xrN (t + HP)‖2

PN
,

(7)

with the weighting matrices QN = [Qi]i∈N and RN = [Ri]i∈N and the terminal cost
matrix PN = [Pi]i∈N , xrN and urN the global state and input references is calculated by
a procedure to remove offset based on [30].

The proposed PG-DMPC negotiation algorithm is performed in the upper-level control
layer from the control architecture, (Figure 1), where the low-level control layer is based on
fuzzy logic DMPC and detailed in the next section.
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3.2. Distributed MPC

The low-level control layer is a DMPC in which agent i ∈ {1, 2, 3, 4} negotiates with
its neighbours in a pairwise manner. Local models are defined as:

xi(t + 1) = Aixi(t) + Biiui(t) + Bdi
di(t) + wi(t), (8)

where t ∈ N0+ denotes the time instant; xi ∈ Rqi , ui ∈ Rri , and di ∈ Rdi are, respectively,
the state, inputl and disturbance vectors of each subsystem i ∈ N , constrained in the
convex sets containing the origin in their interior Xi =

{
xi ∈ Rqi : Ax,ixi ≤ bx,i

}
, Ui =

{ui ∈ Rri : Au,iui ≤ bu,i}, respectively; and Ai ∈ Rqixqi , Bii ∈ Rqixri and Bdi
are matrices of

proper dimensions and can be seen in [30].
The vector wi ∈ Rqi represents the coupling with other subsystems j belonging to the

set of neighbors Ni =
{

j ∈ N�{i} : Bij 6= 0
}

, i.e,

wi(t) = ∑
j∈Ni

Bijuj(t), (9)

where uj ∈ Rrj is the input vector of subsystem j ∈ Ni, and matrix Bij ∈ Rqi × rj models the
input coupling between i y j. Moreover, wi is bounded in a convex setWi , ⊕j∈N BijUj
due to the system constraints.

The linear discrete-time state-space model is

x̃N (t + 1) = AN x̃N (t) + BN ũN (t) + Bd̃N
d̃N (t), (10)

where x̃N and ũN are the state vector and the input vector respectively, d̃N is the distur-
bance vector, and AN , BN , and Bd̃N

are the corresponding matrices of the global system.
The low-level control layer performs the FL-DMPC algorithm for multiple agents.

Specifically, fuzzy-based negotiations are made in pairs considering the couplings with
their neighboring subsystems, which are assumed to hold their current trajectories. To this
end, it a shifted sequence of agent i is used, which is defined by adding Kixi(t + Np) on the
sequence chosen at the previous time step Ui(t− 1):

Us
i (t) =


ui(t + 1|t− 1)
ui(t + 2|t− 1)

...
ui(t + Np − 1|t− 1)
Kixi(t + Np|t− 1)

 =


us

i (t)
us

i (t + 1)
...

us
i (t + Np − 2)

us
i (t + Np − 1)

. (11)

To make the paper self-contained, a brief description of the FL-DMPC algorithm [30]
is presented here (Algorithm 2):

Algorithm 2 Multi-agent FL-DMPC algorithm
At each time step t for each agent i
1. Firstly, agent i measures its local state x̃i(t) and disturbance d̃i.
2. Agent i calculates its shifted trajectory Us

i (t) and sends it to its neighbors.
3. Agent i minimizes its cost function considering that neighbor j ∈ Ni applies its shifted

trajectory Us
j (t). It is assumed that the rest of the neighboring subsystems l ∈ Ni \ j

follows their current control trajectories Us
l (t). Specifically, agent i solves
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Algorithm 2 Cont.

U∗i (t) = arg min
Ui(t)

Ji
(
xi(t), Ui(t), Us

j (t), Us
l (t)

)
, (12)

subject to
xi(t + k + 1) = Aixi(t + k) + Biiui(t + k)+
Bijuj(t + k) + Bdi

di(t + k) + ∑
l∈Ni\{j}

Bilul(t + k), (13)

Constraints
xi(t) = x̃i(t), i ∈ N ,
xi(t + k) ∈ Xi, k = 0, . . . , Np − 1,
xi(t + Np) ∈ Ωi,
ui(t + k) ∈ Ui, k = 0, . . . , Np − 1,
uj(t + k) = us

j (t + k), k = 0, . . . , Np − 1,
ul(t + k) = us

l (t + k), k = 0, . . . , Np − 1,
di(t + 1) = di(t),
di(0) = d̃i(t),

(14)

where set Ωi is imposed as the terminal state constraint of agent i. Details regarding the
calculation Ωi are given in [30].

4. Agent i again optimizes its cost Ji(·) maintaining its optimal input sequence U∗i (t)
to send to find the input sequence wished for its neighbors Uwi

j (t). Here, it is also
assumed that subsystems l follow their current trajectories. To this end, agent i solves

Uwi
j (t) = arg min

Uj(t)
Ji
(
xi(t), U∗i (t), Uj(t), Us

l (t)
)
, (15)

subject to
xi(t + k + 1) = Aixi(t + k) + Biiui(t + k)+
Bijuj(t + k) + Bdi

di(t + k) + ∑
l∈Ni\{j}

Bilul(t + k), (16)

Constraints
xi(t) = x̃i(t), i ∈ N ,
xi(t + k) ∈ Xi, k = 0, . . . , Np − 1,
xi(t + Np) ∈ Ωi,
ui(t + k) = u∗i (t + k), k = 0, . . . , Np − 1,
uj(t + k) ∈ Uj, j ∈ Ni, k = 0 . . . , Np − 1,
ul(t + k) = us

l (t + k), k = 0, . . . , Np − 1,
di(t + 1) = di(t),
di(0) = d̃i(t),

(17)

5. Agent i sends Uwi
j (t) to agent j and receives U

wj
i (t).

6. For each agent i ∈ N , the triple of possible inputs is
{

Us
i (t), U

wj
i (t), U∗i (t)

}
. Since the

wished control sequence U
wj
i is computed by neighbor j without considering state

constraints of agent i, it is needed to check whether state constraint satisfaction of
agent i holds after applying U

wj
i . Otherwise, it is excluded from the fuzzification

process. Afterwards, fuzzy negotiation is applied to compute the final sequence U fm
i .

Similarly, U fm
j is computed.

7. A resulting pairwise fuzzy negotiation sequence U fm
ij (t) =

{
U fm

i (t), U fm
j (t), Us

l (t)
}

is defined based on U fm
i and U fm

j , assuming that the rest of subsystem l ∈ N\{i, j}
follows their pre-defined trajectories.
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Algorithm 2 Cont.

8. Agent i sends its cost for the fuzzy and stabilizing control inputs to its neighbours

and vice versa. Let us define Us
ij =

{
Us

i (t), Us
j (t), Us

l (t)
}

; if the condition

∑
l∈MiMj∪{i,j}

Jl

(
xl(t), U fm

ij

)
≤

∑
l∈MiMj∪{i,j}

Jl

(
xl(t), Us

ij

) (18)

holds, then stability is guaranteed, and thus, U fm
i (t) is sent to the upper control layer.

Otherwise, Us
i (t) is sent.

Hence, the cost function Ji(·) is

Ji
(
xi(t), Ui(t), Uj(t), Ul(t)

)
=

Hp−1

∑
k=1

(
‖xi(t + k)− xri (t + k)‖2

Qi
+

‖ui(t + k)− uri (t + k)‖2
Ri
+∥∥∥uj(t + k)− urj(t + k)

∥∥∥2

Ri
+∥∥ul(t + k)− url (t + k)

∥∥2
Ri

)
+

‖xi(t + HP)− xri (t + HP)‖2
Pi

,

(19)

with Qi being a semi-positive definite matrix, Ri, Pi being positive-definite matrices, and
xri and uri being the state and input references calculated by a procedure to remove offset
based on [30].

4. Case Study

This section describes the coupled eight-tank plant based on the quadruple tank
process in which the proposed PG-DMPC algorithm was implemented together with the
previously detailed low-level control layer.

4.1. Plant Description and Control Objective

The eight-coupled tanks plant comprises eight interconnected tanks (Figure 3) with
four upper tanks (3, 4, 7, and 8) that discharge into the lower ones (1, 2, 5, and 6), which in
turn, discharge into sinking tanks. The plant is controlled by four pumps whose flows are
divided through six three-way valves γv with v ∈ {1, 2, . . . , 6}manually operated.
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Figure 3. Schematic diagram of the eight-coupled tanks plant with the proposed subsystems.

The system is divided into s subsystems with s = {1, 2, 3, 4}: Tanks 1 and 3 are part of
Subsystem 1; Tanks 2 and 4 form Subsystem 2; Tanks 5 and 7 belong to Subsystem 3; and the
rest of the tanks form Subsystem 4. The level of Tank hn with n ∈ {1, 2, . . . , 8}, being the
controlled variables the levels h1, h2, h5, and h6 renamed hc

s as, hc
1 = h1, hc

2 = h2, hc
3 = h5,

and hc
4 = h6 for each agent. The manipulated variable qs is the flow given by the pump of

each Subsystem s. The tank level operating point is established, h0
n for n ∈ {1, 2, . . . , 8}

as h0
1 = 0.10, h0

2 = 0.15, h0
3 = 0.07, h0

4 = 0.03, h0
5 = 0.10, h0

6 = 0.15, h0
7 = 0.025, h0

8 = 0.10
(units: meters). In addition, the operating point of the flow of the pumps q0

s as q0
1 = 0.142,

q0
2 = 0.421, q0

3 = 0.421, q0
4 = 0.140 (units : m3/h).

The aggregated state vector and input state vector are defined as

x̃N =
[
hc

1(t)− h0
1, hc

2(t)− h0
2, h3(t)− h0

3, h4(t)− h0
4,

hc
3(t)− h0

5, hc
4(t)− h0

6, h7(t)− h0
7, h8(t)− h0

8
]ᵀ,

ũN =
[
q1(t)− q0

1, . . . , q4(t)− q0
4
]ᵀ,

The disturbance state vector is defined as d̃N =
[
d1(t)− d0

1, . . . , d4(t)− d0
4
]ᵀ.

The control objective is to solve a tracking problem to reach the reference T̃N ,

T̃N =
[
hT1 (t)− h0

1, hT2 (t)− h0
2, 0, 0, hT3 (t)− h0

5, hT4 (t)− h0
6, 0, 0

]
,

where hTs is the target level of the controlled variable hc
s.

For the upper tank levels, the objective is to keep the operating point despite the distur-
bance d̃N affecting the system. Additionally, the state and input vectors are constrained by

−h0
n < x̃n(t) ≤ 0.08, −q0

i < ũi(t) ≤ 0.04,
∀n ∈ {1, 2, . . . , 8}, ∀i ∈ {1, 2, 3, 4}.

The linear state space models of the global system and subsystems are detailed in [30].

4.2. Negotiation Framework

In this case study, there are four agents. Subsystems 1 and 4 have only one neigh-
bour, Subsystems 2 and 3, respectively, because coupling only exists with them. On the
other hand, Subsystems 2 and 3 have two neighbours each. Then, the low-level con-
trol layer FL-DMPC provides agent i the following control sequences U1 =

[
U f1

1 (t)
]
,

U2 =
[
U f1

2 (t), U f2
2 (t)

]
, U3 =

[
U f1

3 (t), U f2
3 (t)

]
, and U4 =

[
U f1

4 (t)
]
, obtained by performing
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pairwise negotiation among agents. In particular, M1 = 1, M2 = 2, M3 = 2, and M4 = 1 in
(Equation (1)).

Due to the particular configuration of the eight coupled tanks system, negotiation is
not required in the upper layer for Subsystems 1 and 4, and therefore U f

1 (t) = U f1
1 and

U f
4 (t) = U f1

4 . Negotiation is only needed for Agents 2 and 3, and the state is defined as:

st ≡ [U2(t), U3(t)].

The actions at provided by the deep neural network are:

at ≡ [φ2, φ3] = ζ(st; θ)

where φ2 =
[
α1

2
]

and φ3 =
[
α1

3
]
. Note that only one weighting coefficient is obtained for

each subsystem because the other ones are directly obtained from:

α2
2 = 1− α1

2; α2
3 = 1− α1

3

Then,
U f

2 (t) = U f1
2 (t) · α1

2 + U f2
2 (t) · α2

2 (20)

U f
3 (t) = U f1

3 (t) · α1
3 + U f2

3 (t) · α2
3 (21)

Therefore, considering that the final sequence for each agent is U f
i = [u f

i (t), u f
i (t +

1), . . . , u f
i (t + Hp−1)], with Hp = 5 the prediction horizon for each local MPC controller

and manipulated variable, qs, to be applied to the system is selected as the first value of the
sequences, usually an MPC framework:

q1 = u f
1(1), q2 = u f

2(1), q3 = u f
3(1), q4 = u f

4(1)

Figure 4 displays the implemented PG-DMPC algorithm within the control architecture
performed in the case study, where PG-DMPC receives local decisions from a FL-DMPC
and gives global decisions according to the control objective.

Figure 4. PG-DMPC negotiation algorithm implemented.

4.2.1. Reward

The PG algorithm optimizes weights θ of the deep neural network ζ(st; θ) used as
an approximation function of the stochastic policy πθ(st, at) in order to maximize the
discounted future reward Gt (Equation (2)). The reward function is critical for the proper
working of the RL, and it is defined heuristically as:

rt(st, at) =


zt(at), i f α1

2 or α1
3 /∈ [0 , 1]

2000, i f es(t) < ebs(t) ∀s
−1000, Otherwise

, i f α1
2 and α1

3 ∈ [0 , 1]
(22)
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where es(t) =
(
hTs (t)− hc

s(t)
)2 is the tracking square error, and eb

s is the error threshold
for each subsystem. Note that a positive reward corresponds to a desired situation and
negative rewards penalties for the RL.

The maximum reward is given when the tracking error does not exceed the threshold
value for any subsystem and the weighting coefficient provided by the deep neural network
belongs to [0, 1]. A small penalty is given when any error exceeds the threshold, but still,
α1

2 and α1
3 ∈ [0, 1]. Finally, a large penalty defined by zt is added if α1

2 or α1
3 /∈ [0, 1] in order

to obtain normalized values for the coefficients:

zt(at) = −3000−
((∣∣∣α1

2

∣∣∣+ ∣∣∣α1
3

∣∣∣)× 1000
)

. (23)

4.2.2. Discrete Action Framework

Discretization is the process of transferring continuous functions, models, variables,
and equations to discrete counterparts. In our case, the actions of the trading agent are
discrete values, which in Equations (20) and (21) give a discrete weight to the continuous
sequences for consensus. More specifically, the discretization is carried out as φi = 0.05 · x,
whit x ∈ {1, 2, ...20}. A discrete action framework is employed to obtain a shorter training
time, simpler calculations, a lower computational cost, and faster convergence. According
to discrete stochastic policy, each output of the deep neural network is the probability of
assigning a combination of discrete values of φ2 and φ3 given a specific state in the inputs.

4.3. Training

This section compares the influence of the baseline method with two approaches,
the convergence velocity and stability, during the search for the optimal policy. Table 1
shows the two PG configurations compared and trained.

Table 1. Policy gradient configurations implemented.

Named Gradient Estimation Exploration Policy

Conf. 1 Non-baseline and Categorical distribution
Conf. 2 Baseline and Categorical distribution

Policy and baseline networks employed as approximation functions are set up to a 0.01
fixed learning rate using the Adam optimizer. The policy deep neural network consists of
three fully connected hidden layers, whereas the baseline network uses one fully connected
hidden layer.

Training and results are obtained using the MATLAB reinforcement learning tool-
box. The two configurations trained for 1000 episodes with the time horizon T = 120
and the simulation of the environment with sample time Ts = 5. Consequently, each
Ts is an RL training time step. The initial randomization of levels taken from the inter-
val

[
h0

n − 0.01, h0
n + 0.01

]
is required and performed. As a remark, although the agents

trained with the exploratory policy based on categorical distribution, their policies during
validation follow greedy exploration, which selects the action with maximum likelihood.

Figure 5 displays the non-use and use of the baseline method under the categorical
distribution exploration policy. Baseline and non-baseline in policy convergence have quite
a similar approach time to the high rewards zone. Despite this, the baseline case sets more
stability and a faster approach to the high-reward zone.
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Figure 5. Gradient estimation variance approach by exploration policy based on categorical distribu-
tion.

4.4. Performance Indexes

In order to evaluate the proposal, the following performance indexes were established.
MPC global cost function,

Pe =
T

∑
t=0

JN(·), (24)

where JN is detailed in Equation (7).
Sum of the integrals of squared errors of controlled levels,

ISE = ∑
s

ISEs, (25)

with

ISEs =
∫ T

0

(
hc

s(t)− hTs (t)
)2

dt. (26)

The sum of the squared differences of the controlled levels hvsb is,

e(t) = ∑
(

hc
s(t)− hTs (t)

)2
(27)

The sum of the pumping energies PEs for each pump s as the sum of the average of
pumping energy over the prediction horizon is proportional to water flows provided by
the pumps:

PE(t) = ∑
s

PEs(t), (28)

with

PEs(t) =
0.04

3600Hp

Hp

∑
k=1

qs(t + k) (29)

with s ∈ {1, 2, 3, 4} for all performance indexes.

5. Results

Results of the proposed PG-DMPC are presented in this section. The objective of the
PG-DMPC algorithm is to provide consensus among local decisions from an FL-DMPC
algorithm to achieve control objectives. The proposal PG-DMPC is compared with fuzzy
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DMPC (FL) [30], DMPC using a cooperative game [31], and the centralized MPC. FL and
Coop. The game was also implemented in the upper layer. Furthermore, the influence
of the baseline method is evaluated. Three validation cases (Table 2) were employed to
demonstrate the proper performance of the proposal under the different initial, reference
state vectors and disturbance states. The sampling time used in simulations is Ts = 5 s.

Table 2. Validation cases.

Case 1 Case 2 Case 3

Control problem regulation regulation tracking
Disturbance none from t > 245 to t < 305 none

Reference steady state steady state step from one to another steady state

Case 1: The reference vector is the same as the one used for training, and the state
vector of the operating point was considered as the initial state vector, x̃N = x̃0

N .
Case 2: The reference vector and the initial state vector are the same as those used in

Case 1, but for this case, the disturbances d̃N = [0.02; 0.02; 0.02; 0.02] were included.
Case 3: The reference vector changes at t > 200 from the operation point as initial

reference vector to T̃2
N with hT1 = h0

1 + 0.04, hT2 = h0
2 + 0.03, hT3 = h0

5 + 0.04, hT4 =
h0

6 + 0.03. The initial state vector was taken from
[
h0

n − 0.03, h0
n + 0.03

]
. Note that the initial

state vector is taken out of the interval for initial state vectors during training.
Tables 3–5 show the performance of the proposal and the techniques considered in

Cases 1, 2, and 3, respectively. In the same order as the validation cases, Figures 6–8 portray
the evolution of the state vectors until the reference vector is reached by Conf. 1 and Conf.
2.

Tables 3–5 show that the centralized control has the best results because it has the
availability of full plant information for prediction. For validation Case 1, Coop game offers
better results in Pe, ISE, and e. Both configurations of the PG-DMPC show an advantage in
Pe over the FL, while ISE and e display very close values to FL. (Table 3).

Table 3. Case 1: Configurations performance through performance indices values.

Index Conf. 1 Conf. 2 FL-DMPC Coop. Game Centralized MPC

Pe 0.03594 0.03591 0.03605 0.03040 0.01958
ISE 0.04272 0.04297 0.04285 0.04130 0.03012

e 0.00934 0.00939 0.00937 0.00906 0.00682
PE × 100 0.77505 0.77501 0.77503 0.77505 0.77463

(a) (b)

Figure 6. Validation Case 1: Evolution of the levels of the controlled variables: (a) Conf. 1 performance;
(b) Conf. 2 performance.

In validation Case 2, Coop. game shows better Pe than PG-DMPC and FL techniques.
In this case, the worst Pe are given by PG-DMPC. On the other hand, these three techniques
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show ISE and e are very close to each other. Although the measure disturbance was added,
an acceptable response was raised by PG-DMPC (Table 4).

Table 4. Case 2: Configurations performance through performance indices value.

Index Conf. 1 Conf. 2 FL Coop. Game Centralized MPC

Pe 0.03745 0.03778 0.03733 0.03132 0.02029
ISE 0.04349 0.04369 0.04351 0.04227 0.03080

e 0.00947 0.00953 0.00950 0.00925 0.00696
PE ∗ 100 0.77038 0.77040 0.77028 0.77016 0.76993

(a) (b)

Figure 7. Validation Case 2: Evolution of the levels of the controlled variables involving disturbance
in the state vector; (a) Conf. 1 performance; (b) Conf. 2 performance.

Finally, in Case 3, the Coop game and FL show better Pe values. At the same time,
the worst of ISE and e are given by FL. The two PG-DMPC configurations display similarly
in the four indices. The PG-DMPC agent has an acceptable response and is comparable to
the other techniques even though it was not trained for reference tracking (Table 5).

Table 5. Case 3: Configurations performance through performance indices values.

Index Conf. 1 Conf. 2 FL Coop. Game Centralized MPC

Pe 0.26797 0.26716 0.27060 0.22242 0.12143
ISE 0.33429 0.33409 0.33465 0.33341 0.20224

e 0.06815 0.06811 0.06823 0.06798 0.04175
PE × 100 1.59417 1.59418 1.59410 1.59450 1.59313

(a) (b)

Figure 8. Validation Case 3: Evolution of the levels of the controlled variables involving steps:
(a) Conf. 1 performance; (b) Conf. 2 performance.
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In addition, Table 6 shows the compliance of the stability evaluation according to Step
4 of Algorithm 1 (see Section 2). For each configuration and validation case, the percentage
of total time that cost JN decreases without using the backup sequence Us is shown in the
table. Both configurations show similar stability, highlighting the stability in Case 2 under
Conf. 2.

Table 6. Compliance with stability requirement: % of total time.

Validation Case Conf. 1 Conf. 2

Case 1 84.2% 83.33%
Case 2 80.84% 82.5%
Case 3 70.41% 70.41%

6. Conclusions

In this paper, the PG-DMPC algorithm was implemented as a negotiating agent in
a distributed MPC control system. The proposal generates negotiation coefficients to
achieve final control sequences according to the control objectives of DMPC agents. The
key of the proposed PG-DMPC algorithm is the deep neural network trained by the RL
method. The results obtained are satisfactory, obtaining a successful consensus between
the sequences for negotiation in the evaluation cases. It shows similar results to the other
techniques with which it was compared even though no prior knowledge of the negotiation
problem was required for its training. Therefore, we demonstrated that PG-DMPC is a
powerful technique for negotiation problems in multi-agent DMPC control.

PG-DMPC configuration results are similar due to optimal policies converging to
the maximum sum of rewards during training. As an advantage, it is reaffirmed that the
baseline configurations present a faster convergence to the zone of high reward values.
Therefore, the stopping criterion linked to the speed of arrival at the high reward zone
would present significant benefits in computational cost and training time compared to
the other configurations. Despite using discrete values, the proposed algorithm shows
an acceptable tracking of the controlled levels. In addition, it allows any other criteria in
possible future rewards to adapt to any control objectives. In fact, PG-DMPC could be
implemented as a single control layer of the present architecture without knowledge of the
local models of the system, which is necessary for a centralized control that involves higher
computational costs.
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