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Abstract: In network management, network measuring is crucial. Accurate network measurements
can increase network utilization, network management, and the ability to find network problems
promptly. With extensive technological advancements, the difficulty for network measurement is not
just the growth in users and traffic but also the increasingly difficult technical problems brought on
by the network’s design becoming more complicated. In recent years, network feature measurement
issues have been extensively solved by the use of ML approaches, which are ideally suited to
thorough data analysis and the investigation of complicated network behavior. However, there is
yet no favored learning model that can best address the network measurement issue. The problems
that ML applications in the field of network measurement must overcome are discussed in this study,
along with an analysis of the current characteristics of ML algorithms in network measurement.
Finally, network measurement techniques that have been used as ML techniques are examined, and
potential advancements in the field are explored and examined.

Keywords: network measurement; machine learning; latency; packet loss; throughput; bandwidth;
congestion control; path loss

1. Introduction

An important area for research has been how to handle more complicated and dense
data streams while maintaining service quality [1]. The public’s need for network service
quality and service verification is increasing along with the continual expansion of network
size. Measuring and upgrading network characteristics have turned into the lifeblood of
digital inclusion in a society adversely afflicted by an epidemic [2]. The demand for internet
traffic has increased as a result of the various restrictions that governments have put in place
on residential traffic. People’s need for high-quality internet has skyrocketed, particularly
for telecommuting, entertainment, business, and education [3]. Many current algorithms
cannot analyze or fully utilize data to assure the operation, upkeep, and management
of high-quality modern networks, which results in the loss of a great deal of valuable
information or patterns [4]. The hardware of individual network devices has to be enhanced,
but the network as a whole also needs to function better. As a result, the network needs to
incorporate a variety of intelligent components. By using some data mining techniques
to process high-speed and huge amounts of data, the testing system can utilize some data
mining techniques to decrease unnecessary costs when training data and save computing
resources while fulfilling the needs of various users and lowering network operating
costs [5,6]. The study of network measures is expanding in the realm of information
networks right now. Due to its significance in the modern period, it has drawn more and
more attention from researchers. Network monitoring, quality assurance, auxiliary network
management, and network attack prevention all benefit greatly from network measurement.

Various networks (SDN, LTE, IOT, etc.) have already encountered several AI collisions
at this point [7]. The foundation of communication in LTE networks is network planning
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and optimization. An accurate path loss description and modeling, as well as sufficient
network planning, are needed to satisfy user expectations. These issues are specifically
categorized as classification and regression issues, and ML is used to create models to
address serious flaws [8]. Networks have been created to connect ubiquitous physical items
as a result of the advancement of modern technology. Rich neural network structures can
reduce the drawbacks and negative effects of conventional IOT technologies, and as more
high-quality data becomes available, neural networks can offer dependable adaptive IOT
solutions [9–11]. With the success of deep learning (DL) and neural networks (NNs), intelli-
gent data processing and analysis are driving the development of IOT applications [12].
The ML approach used by manufacturers of intelligent IOT devices is extended by AI
technology, enabling them to make complicated judgments based on adaptability and to
improve network management to optimize the distribution of network resources. Numer-
ous studies have merged them due to AI’s strong performance in security and network
data processing, which produces trustworthy results [13].

Predicting future network behavior, achieving fair resource allocation and utilization,
and measuring the network structure to dynamically describe it are the key goals of
network measurement. It is conceivable to employ machine learning’s maximum likelihood
capabilities to effectively handle unstructured and seemingly intractable problems and to
enhance network performance [14]. In other words, the discipline of network measurement
can benefit from the application of machine learning. Machine learning’s classification
and regression capabilities can be very helpful in network intrusion detection and feature
prediction. They can also automatically change parameters in particular situations and
support network scheduling. Additionally, in some complex system situations, network
issues must create precise models to fully account for complicated network behaviors.
Right now, machine learning can be utilized to deliver an exact model that is more in line
with expectations [15]. There are currently two difficulties in using ML techniques with a
network measuring system.

1. To process a significant volume of complicated, high-speed, and heterogeneous net-
work monitoring data gathered in particular applications, network measurement
must first assure a real-time environment. These data frequently emerge as fast data
streams. Applications for network measurement must be able to swiftly and continu-
ously examine this data. A data analysis model that can continue to process significant
amounts of data offline is preferred;

2. The choice of the best ML model for a certain network measurement problem is a
challenging task, according to theory. Different ML approaches for distinct features
have different forms of expression during processing since a significant amount of
data corresponds to a large number of features. To do this, academics must have a
broad enough knowledge base to use a variety of ML techniques to discover the best
solution [16].

This article offers recent research from two angles and focuses on ML techniques
and application areas in network assessment. Finally, we go over upcoming research in
the area. This study attempts to immediately understand the main research objectives
and will benefit researchers from various professional backgrounds. We provide a few
ML techniques used to analyze network measurements in Section 2. We outline the ML
applications for network measurement in Section 3. Finally, Section 4 presents and discusses
current concerns and emerging trends in the choice of ML methodologies.

2. Machine Learning Method in Network Measurement

We all understand that the idea of ML is based on induction and synthesis, which
simulates human thinking and learning in the real world and describes a system’s capacity
to learn from training data for a specific problem to automate the process of analyzing
model building and solving related tasks [17–19]. In Figure 1, we compare how humans
think to machine learning. Machine learning training and forecasting are also appropriate
for human induction and forecasting. In ML, we do not require any special problem-



Appl. Sci. 2023, 13, 2551 3 of 26

related codes; instead, we just need to understand the appropriate concepts. It can be
easily understood as a general algorithm that bases its reasoning on the data it receives
as input. Regression, classification, and structural ML models can all be categorized. The
classification problem in the ML algorithm separates the data into various groups by a
particular connection. Common spam and handwritten digit recognition have a wide range
of potential uses. The machine learning algorithm can be thought of as a “black box” that
we can utilize to accomplish our objectives without having to know its intentions and goals.
Therefore, choosing a good learning algorithm for a certain domain target application is
difficult. The rationale is that various learning algorithms serve various purposes. The
outcomes will vary even for various learning algorithms in the same category because
of varied data properties [20]. ML can use nonlinear examples from the environment to
forecast network traffic. Linear and nonlinear models can be broadly categorized under the
maximum-likelihood model.
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Figure 1. Comparison of ML and human thought.

ML-based algorithms can be split into supervised and unsupervised learning tech-
niques. Classification and regression typically involve supervised learning, which modifies
the classifier’s parameters to achieve the desired performance using a set of samples from
known categories. From the labeled training data, we infer a function. Unsupervised learn-
ing establishes associations between them by using categorized data [21]. We discover the
model using the unlabeled data and describe the category, transformation, or probability
of the data using data that was collected organically. Compressing data is the essential
tenet. We may also receive semi-supervised and reinforcement learning methods by using
the maximum likelihood algorithm by various training methods. To address the issue
of insufficient labeled data, the semi-supervised learning method uses a large number of
unlabeled samples and a small number of labeled samples. Reinforcement learning differs
from the first three approaches in that feedback cannot be received right away during
training, and the input is sequential data that does not satisfy the independent distribution.
Agents can benefit from reinforcement learning by developing techniques to help them
interact with complex surroundings to their fullest potential. Transfer learning is another
teaching strategy applied in ML. The term “transfer learning” describes how one type of
learning affects another type of learning or how the experience gained through learning
might affect how well one completes other tasks.

Many researchers have debugged and improved ML algorithms, which have been
widely utilized in classification and prediction issues and have demonstrated great perfor-
mance in a variety of disciplines. Based on a classification of different ML algorithms, we
examine how various ML techniques might be used to network feature measurement in
this article. In Table 1, we outline the uses and performance evaluation of these algorithms.
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Table 1. Application of Network Measurement and analysis of ML algorithms.

Algorithm Category Algorithm Application Ref Performance Analysis

Supervised

Random forest Packet loss [22] The training period is brief and can result in
accurate estimation

ANN throughput [23] High level of accuracy in forecasting end-user throughput in
LTE and related 5G networks

SVM throughput [24] When compared to historical methods, the accuracy rate is
over three times higher

DNN Path delay [9] To increase prediction accuracy, fine-tune several super
parameters

DT Path delay [25] A high prediction accuracy and the ability to be applied to
large-scale systems

FNN Bandwidth [26] Substantial data savings

RNN Path delay [27] Find the algorithm with the most accurate prediction

CNN Path Delay [28] This technique’s estimation accuracy clearly outperforms that
of PathQuick3

RBF Path loss [21] The mistake is relatively modest, and the estimated route loss
is close to the true value

MLP NN Path loss [8] The MLP neural network model combined with the RBF
neural network is shown to have the best performance

Unsupervised
LSTM Bandwidth [29] Find a more accurate prediction method in the two modes

K-Means Bandwidth [29] More storage space enhances the classification system

Reinforcement
learning

Greedy
algorithm Bandwidth [30] With less unpredictability, the available bandwidth can be

anticipated correctly

Transfer learning Experts
framework Path delay [31] The quantity of retransmission packets is greatly decreased

while throughput increases

2.1. Supervised Learning in Network Measurement

In the process of supervised learning, input data are mapped to tags, prediction
models are trained using data and their matching tags, and networks are trained using
known examples. Depending on the quantity of annotated training data available [32],
supervised learning is frequently employed in applications such as spam detection, facial
recognition, and text classification. The objective is to increase the model’s capacity for
generalization in a particular area. Algorithms for classification and regression are examples
of supervised learning techniques. The regression process produces continuous data,
whereas the classification technique produces discrete data. The classification algorithm’s
objective is to categorize the data in the set, and the regression algorithm’s objective is to
find the best fitting line between these data so that every point in the dataset can be as
closely related to it as possible.

The regression algorithm is one of the simplest and most common machine learning
algorithms. One of the simplest and most used machine learning algorithms is regres-
sion [33] and the assessment index used in this mathematical technique for performing the
predictive analysis is the discrepancy between the expected and actual values. To calculate
the network quality of service, we used the return to estimate the packet loss rate and other
network properties. Additionally, the distinctive correlations between application KPIs and
network indicators can be inferred using multiple linear returns [34]. This study focuses on
the use of classification algorithms in network measurement because there are few studies
on the use of regression techniques in network measurement. The classification algorithm’s
job is to classify samples into relevant groups based on those groups’ traits. The most
popular classification algorithms include Bayes, ANN, decision trees, linear regression, and
decision trees.
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2.1.1. Random Forest in Network Measurement

Regression and classification issues are solved using RF, an integrated learning strategy.
A machine learning technique called ensemble learning increases accuracy by combining
various models to address the same issue [35,36]. The fundamental concept is to translate
problems, such as delay prediction, into many classification labels by using multiple
decision trees to merge numerous weak classifiers to get better results than simple addition.
To ensure that the sample features and output outcomes of each tree are distinct, choose a
portion of the samples from the training data and randomly choose some of the features
for training. Random forest, as an integrated technique, fits several decision tree classifiers
concurrently on various dataset subsamples and employs majority voting or averaging
for the outcome. As a result, the overfitting issue can be reduced, and prediction accuracy,
control, and training speed can all be improved [37]. It applies to scenes with low real-time
performance requirements.

A classifier with a fair amount of accuracy, random forest can be used in a variety of
situations. Giannakou et al. [38] built a simple machine learning technique based on random
forest regression that can identify the minimal set of the path and host measurements
needed to produce reliable and accurate predictions. The program requires very little
training time and can estimate packet retransmission accurately for any quantity of data
transmission. However, the issue of abnormal packet loss remains unresolved, and the
random forest approach also places restrictions on the flexibility of the input parameters. As
a result, changes in the input characteristics have a major impact on the predictor’s accuracy.
Random forests are ensemble models that are learner-based and have low variance and
bias. They can be used for classification and regression. However, when there are too many
data dimensions, each value is impurely calculated, which slows down the efficiency of
avoiding basic decision trees and prevents continuous output.

2.1.2. ANN in Network Measurement

An ANN is made up of a lot of connected processing units. The network processes
information by progressively altering and increasing the weights of the neuron connections
to replicate the relationship between the input and output through repeated learning and
training of known information. Each neuron and its connection can only represent a portion
of the information in an artificial neural network, which can imitate the complex nonlinear
relationship well. Therefore, when there is a node break, the overall operation effect of the
subnetwork is not affected, and it has strong robustness and fault tolerance. As a result,
the subnetwork has excellent robustness and fault tolerance, and when a node breaks, the
influence on its overall operation is unaffected. One branch of machine learning techniques,
ANN, has frequently been employed in future prediction and image recognition processing
due to its self-learning function, high-speed search for optimal solutions, and simulta-
neous processing of enormous volumes of data, addressing classification and regression
issues [39].

To anticipate the possible throughput in a non-independent 5g network based on
network slices, Minovski et al. [24] suggested a non-network intrusive ML model. To
comprehend the decision-making procedure of root cause analysis, a decision tree model
was employed. Verification yielded an accuracy rate of 93% using an ANN as the optimal
method for processing the tabular dataset. An ANN has the abilities of self-adaptation, self-
organization, and real-time learning and can carry out a huge number of operations quickly
as a parallel and distributed processing approach. The failure to guarantee a superior effect
and total reliability, however, results from extensive training and data renewal, which is
unsuitable for high-precision computations.

2.1.3. SVM in Network Measurement

SVM is a collection of supervised machine learning models with nonlinear classifica-
tion (SVC) and correlation kernels for regression (SVR) [40]. This approach, nevertheless,
was simple and reliable. The kernel approach is used to perform nonlinear classification.
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As a common kernel learning method, the computational objective of SVM, a popular
kernel learning technique, is to create the optimal selection or line restrictions that can
divide the n-dimensional space into classes so that we can insert new information points
into the appropriate classification without overstretching. The hyperplane is the name
given to this optimal choice limit [41]. SVM maps the sample vector to the high-bit space,
represents each sample data point in the space to distinguish distinct sample points as
much as possible, and identifies the hyperplane that best separates the two types of data
to maximize the distance between each classification and the hyperplane. The SVM’s
classification error decreases as the distance increases. The SVM is frequently employed in
binary classification issues because of its strong classification capabilities.

Mirza et al. [42] proposed a throughput estimation tool based on a support vector
machine that forecasts end-to-end throughput using several stream-level features as in-
put. The measurement accuracy, when paired with the prior file transfer and basic path
attributes, was nearly three times greater than it was with the history-based method. This
tool has not been validated in a big flow and scientific traffic environment; instead, it has
only been evaluated on an artificial network track, taking only the unique network path
into account. SVM differs from conventional statistical methods in that it essentially does
not use probability measures or the law of large numbers. As a result, it considerably
simplifies typical classification and regression issues. Similarly to this, utilizing SVM to
deploy huge training samples is challenging. When the number is large, it takes up a lot of
computer memory and processing time, and when solving the multiclassification problem,
there is also the issue of classification accuracy.

2.1.4. DNN in Network Measurement

A DNN, also known as a multilayer perceptron, can be thought of as a neural network
with at least one hidden layer. A feedforward neural network, or DNN, is a branch of the
family of traditional artificial neural networks. Three layers make up a DNN: the input
layer, the hidden layer, and the output layer. The input data are pre-processed in the layers
before entering the network. In the neural network dataset, the number of input neurons
is equal to the number of input features [43]. According to the general approximation
theorem, a DNN relies on a large number of datasets and produces accurate and useful
conclusions. In other words, by enhancing the neural network’s depth and the nonlinear
effect that the activation function produces, any function can be roughly approximated. A
deep neural network can be refined into scenes with uniform properties and no special
reliance. It applies to any deep-learning scene.

In order to anticipate the time series of IOT traffic, Ateeq et al. [9] proposed a method
based on a DNN deep neural network, and the relationship between various communica-
tion parameters and the delay was modeled. The training data’s size, depth, width, and
epoch were all thoroughly examined. The prediction accuracy was then assessed using the
MSE, SSE, MAE cost functions, and MAPE, with an accuracy rate of more than 98%. While
modeling of DNN can more accurately and effectively depict actual complicated nonlinear
issues, there are still many shortcomings in the frequency of DNN calls, data selection in
the time domain, and other aspects. Layer-by-layer data pre-training, which solves the
drawbacks of time-consuming and difficult manual feature designs, can be used to get the
key features of each layer. Although the gradient-vanishing issue gets worse with network
depth, it becomes easier for the optimization function to settle on the local optimal solution.

To determine the download and upload bandwidth measurements of the end user’s
Internet connection, Maier et al. [44] employed a straightforward feedforward neural
network. An artificial neural network that has been trained was used to calculate the
dynamic test’s duration. The outcomes demonstrate that the dynamic duration strategy
little affected the test outcomes. However, the dynamic duration test still saved a substantial
quantity of data. The determined bandwidth’s deviance is disregarded. The feedforward
neural network has a straightforward structure, accurately realizes any limited training
sample set, and can estimate any continuous function and square-integrable function. It
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typically outperforms feedback networks in terms of classification and pattern recognition.
The feedforward neural network has many network parameters because each layer must
record the overall properties of the preceding layer. The training pace will be slow or even
fail to converge when the input dimension is high.

For the time delay prediction of IOT, Abdellah et al. [27] suggested a single-step and
multi-step prediction method based on a time-series NARX recurrent neural network. The
RNN model was trained by adding historical data from the time series to the input layer,
and until the algorithm converged, the network weight was modified by the technological
error between the network prediction outputs. Three neural network training algorithms
were used; MSE was chosen as the performance function to assess prediction accuracy, and
RMSE and MAPE were used as the prediction accuracy indices. The Trainlm algorithm has
the best prediction accuracy, and since they are neural networks with memory functions,
recursive neural networks are appropriate for continuous supervised learning issues using
datasets. RNN has several drawbacks as well. Recurrent neural networks must spend a lot
of time intentionally labeling due to their tree structure, and the separation of each node
may induce error propagation.

2.1.5. CNN in Network Measurement

To discriminate between different items in an image, CNN uses an input image and
assigns importance (learnable biases and weights) to each one [45,46]. A feature extractor
made up of a convolutional and pooling layer is what sets a CNN apart from a typical
neural network. Only some neurons in the adjacent layer are connected to all of the neurons
in the convolutional layer of a convolutional neural network. The convolutional layer
of a CNN often has many feature maps. A rectangle-shaped arrangement of neurons
makes up each feature map. The weight is shared by neurons with the same feature
map (convolutional kernel). Sequence data processing is the main application for one-
dimensional convolutional neural networks, image text recognition is the main application
for two-dimensional convolutional neural networks, and medical image and video data
recognition is the main application for three-dimensional convolutional neural networks.

To analyze enormous volumes of data, Sato et al. [47] devised a method for calculating
the available bandwidth based on a data-driven normal form and four ML techniques.
The findings indicate that CNN is the most precise method for calculating the available
bandwidth. The microscopic and macro aspects of queuing delay are used by CNN to
calculate the precise amount of bandwidth that is available. Two fully connected layers, two
pairs of convolutional and pooling layers, and a six-layer CNN were created to estimate
bandwidth. A CNN can automatically extract features since it shares the convolution kernel,
which relieves the processing burden when working with high-dimensional data. The use
of BP propagation to change parameters will, however, impede the change in parameters
near the input layer when the network level is too deep. By neglecting the correlation
between the local and the overall, the pooling layer will easily cause the training results to
converge to the local minimum rather than the global minimum when the gradient descent
algorithm is used.

2.1.6. LSTM in Network Measurement

An enhanced recurrent neural network called LSTM can address the RNN’s inability
to handle long-distance reliance. LSTM uses a gated technique to address the issue of
exploding and disappearing gradients. Since their debut, LSTMs have drawn a lot of
attention for their adaptability and efficiency across a wide range of applications [48,49].
LSTM contains more parameters that can better regulate which memories are kept and
which memories are destroyed at a certain time step compared to RNN, which only main-
tains a single hidden state. Unit state, hidden state, input gate, forget gate, and output
gate are the five essential components of an LSTM. A one-step prediction with a specific
reference value for time-series prediction can also be made by LSTM in addition to learning
a lengthy series.
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Botta et al. [23] suggested using a machine learning-based automated decision system
to substitute professional users in bandwidth estimation. It is separated into the categoriza-
tion system and the LSTM system. For the LSTM system, a composite dataset made up of
several jobs was produced. While the second is trained simply using a bandwidth sequence,
the first has many features. The performance of the LSTM system with just bandwidth was
shown to be marginally superior to the performance of the LSTM system with numerous
features. It outperforms the other models and is widely utilized in numerous sequence
problems, including forecasting natural gas load. Parallel processing, however, also has
several drawbacks. Even longer sequences still struggle with gradient loss. The LSTM
neural network’s intricacy meant that training took longer than it did for CNN.

2.1.7. DT in Network Measurement

One of the most well-known techniques for representing data classification is the
use of decision trees [50]. The decision tree’s non-leaf nodes have two branches that are
classified as true or false. The leaf node can make decisions. Any input coming from the
root node will always reach a leaf node or be the only input to do so. Based on the idea of
minimizing the loss function using training data, the decision tree model was developed
as a classification and regression technique. You can think of every route leading from
the root node to the leaf node as a rule. The leaf node refers to the conclusion of the
rule, whereas each internal node represents a condition. These rules, which are mutually
exclusive and comprehensive, are applicable in situations when there are more than two
realistic options that the decision-maker can select and more than two uncontrollable
unknown circumstances.

Hu et al. [25] created a decision tree that just requires a modest set of features to be
collected to forecast the RTT between IP pairs that are separated geographically by great
distances. Based on the combination of the mutual information gain of various qualities
and the RTT, a decision tree of the RTT is built. The learning process made use of several
attributes. Tests of the chosen attributes are represented by the internal nodes of the decision
tree. From the matching node used for attribute classification, each branch descended. The
RTT level is represented by the leaf node. When the decision tree has a defined structure, a
strict protocol, and a clear aim that the decision-maker expects to attain, the method can be
used in large-scale systems. It enables the decision-maker to compute the gains or losses of
various schemes under various conditions and estimate the likelihood of the occurrence of
uncertain factors. A decision tree struggles to forecast continuous fields, though. When
processing data with strong feature correlation, speed suffers and errors may multiply
more quickly when there are many categories.

2.1.8. RBF Neural Network in Network Measurement

An RBF is used in the creation of an RBF neural network, which is a typical three-layer
feedforward network. It can be applied to classify patterns and approximate functions. The
RBF neural network has a simple structure, quick learning speed, excellent approximation,
and excellent generalization ability when compared to other artificial neural networks. The
RBF neural network works on the idea that the input vector can be directly transferred to
the hidden space without the need for a weight connection by using RBF as the “base” of
the hidden unit to build the hidden layer space. When the mapping relationship’s center
point is established, the mapping relationship itself is established.

Ojo et al. [21] constructed radial basis function neural network and maximum likeli-
hood probability neural network path loss prediction models, taking into account multi-
transmitter scenarios and evaluating them. They also added a radial basis function neural
network to an efficient path loss prediction. The projected path loss is the most recent
measured value with a minimal error, and the RBF neural network’s prediction impact is
superior to that of the MLP neural network. RBF neural networks can map any complex
nonlinear connection, and they have simple learning principles, making them practical
for computer implementation. They also have good nonlinear fitting capabilities. It has
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excellent memory, robustness, and self-learning capabilities. However, the incapacity of
RBF neural networks to describe the basis and process of reasoning is one of their most
critical issues. The neural network cannot operate RBF to convert all problem characteristics
into numbers and all reasoning into calculations when the data are insufficient. There must
have been data loss in the outcomes.

2.1.9. Discussion on Supervised Learning in Network Measurement

The performance of frequently used supervised learning techniques is listed in Table 2
based on the research in this paper. Practically speaking, classification problems have
more application opportunities than regression problems, and different parts of network
assessment have been addressed through the use of random forests, SVM, ANN, and
FNN. Though several feature extraction techniques and datasets have been utilized by
researchers, more relevant techniques have maintained a high accuracy of more than 90%.
Additionally, the best answers varied depending on the various conditions. The complexity
of the dataset, feature extraction, user needs, and other aspects should be taken into account
while choosing an acceptable approach.

Table 2. Network Measurement Application and ML Algorithm AnalysisPrediction accuracy of
different supervised ML algorithms.

Ref Application Dataset RF ANN SVM FNN Else

[22] Predict Packet loss 10 DTN system in NERSC 97–99% - - - -

[23] Predict throughput Real Dataset 91% 93% 89% - XGBoost:93%

[26] Predict Bandwidth Manual Dataset - - - 78% -

[51] Predict Path Delay Commercial mobile operators 73% - 66% - LR:60%

[52] Predict Path loss Real Dataset - - 85% - RBF:89%

[53] Congestion control Manual Dataset - - 98% - -

2.2. Unsupervised Learning in Network Measurement

Unsupervised clustering methods were researched before the development of deep
learning and are still in use today [54]. In the real world or a real network environment, it
could be difficult or expensive to manually label some data due to a lack of appropriate prior
knowledge or because it would be too expensive. Unsupervised learning is now a technique
used by computers to solve various pattern recognition issues based on training samples
of unknown categories. It does not process supervised signals; it merely processes the
so-called “features”. Unsupervised learning is used to train models to learn the structure of
datasets, give users useful information about new samples, and assist managers in making
the best decisions possible using both qualitative and quantitative methods. This process
calls for a methodical learning process that represents precise input signals in a way that
reveals the structure of the entire set of input signals [55].

The unsupervised learning algorithm has three main characteristics:

• Unsupervised learning has no clear purpose;
• Unsupervised learning does not need to label data;
• Unsupervised learning cannot quantify the effect.

Therefore, it is difficult to determine whether a job has been finished during unsuper-
vised learning using this strategy. Unsupervised learning lacks definite markers that can be
used to determine whether a goal has been attained. Currently, clustering and dimension
reduction are two widely utilized unsupervised algorithms that are mostly used in the
following scenarios:

1. One of the most common tasks in unsupervised learning is clustering. Instead of
defining groups before seeing data, it enables us to identify and evaluate naturally
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generated groups, that is, groups that were established depending on the data itself.
K-Means, hierarchical, and probabilistic clustering are popular methods;

2. Too many features could waste an ML model’s storage space and processing time in
the event of a dimensional catastrophe. Researchers want to represent data accurately
in smaller dimensions without sacrificing too much useful information. The dimen-
sions of the data can be decreased using a dimension-reduction technique. PCA and
SVD were the two basic methods employed.

K-Means in Network Measurement

When the datasets are segregated from one another, K-Means is a quick, reliable, and
simple algorithm that can produce accurate results. This algorithm groups data points
into clusters to minimize the square distance between each data point and the center of
mass [19,56]. Its major job is to automatically group samples that are similar into categories.
The key concept is to randomly select K objects to serve as the initial cluster centers, divide
the data into K groups, measure the distance between each seed cluster center and each
item, and then assign each object to the cluster center that is closest to it. Up until the
termination condition was met, this process was repeated.

Botta et al. [23] suggested a machine learning (ML)-based automatic decision system
to substitute expert users. To dynamically choose the optimum device to measure the
available bandwidth, four ML algorithms were utilized. The CPU, memory, and bandwidth
were only a few of the various parameters that were used to validate the decision system.
The K-Means approach may typically be used on continuous datasets with tiny dimensions
and values since it is trained by including its features in the input. It can be applied in a
variety of situations, including document classifiers, item transmission optimization, and
customer classification. The K-Means algorithm can perform a preliminary examination
of the data and even identify the hidden value after suitable pre-processing. However, it
might be challenging to understand how to choose the K-value for the K-Means technique,
and it struggles to converge for non-convex datasets. Using an iterative approach, only a
locally optimal solution could be found.

2.3. Reinforcement Learning in Network Measurement

The challenge of agents employing learning methods to maximize gains or attain
particular objectives while interacting with the environment is described and solved using
one of the concepts and methodologies of reinforcement learning. The labeling of training
data is not necessary for reinforcement learning, but each action environment’s feedback
must be either a reward or punishment. Feedback can be measured and given to the item
to modify its behavior continuously. Trial and error is a hallmark of reinforcement learning,
and time and delayed feedback are significant components. The data in supervised and
semi-supervised learning are unrelated to one another and have no association. However,
with reinforcement learning, this is not the case. The future receipt depends on the current
situation and the decisions made. The two sets of data were correlated with one another. In
the process of learning, known as reinforcement learning, agents regularly make decisions,
monitor the outcomes, and then automatically modify their techniques to attain the best
possible outcome. Even though this learning process is convergent, it still takes a long time
to arrive at the best strategy because it must explore and learn about the entire system,
making it unsuitable for large-scale networks. As a result, reinforcement learning’s practical
application is quite limited [57].

The environment, state, action, and reward are also included in reinforcement learning,
with the agent serving as its core component. One premise governs the reinforcement-
learning training procedure. We think the entire procedure complies with the Markov
decision-making procedure. The fundamental tenet is that the next state is only connected
to the present state by the action that the present state must perform and only by one step.
We can only easily deduce the next state from the current state and the action that has to be
taken when it adheres to the MDP. During the training phase, it was convenient to infer the
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state change in each step. We cannot train if we are unable to deduce the state change at
each stage of the training procedure. The three primary types of reinforcement algorithms
are Value-Based, Policy-Based, and Actor-Critic.

Khangura et al. [28] developed single-state Dobby bandit technology using reinforce-
ment learning and the greedy algorithm to determine the available bandwidth. The reward
function was maximized to calculate the available bandwidth. Under many challenging
circumstances, it converges to the available bandwidth, has a more precise estimation and
a faster convergence speed in several network scenarios, and does not require noise statis-
tics. Utilizing the exploratory development mechanism, one can learn through untrained
observation of the environment while also maximizing the cumulative return function. The
method based on reinforcement learning has less variability and can also get an accurate
estimate of the bandwidth available. Because we frequently run into issues when using
reinforcement learning for practice training, the use of reinforcement learning in network
measurement is less common. The reinforcement learning sample period is excessively
long, which makes it challenging to use in practice. It is easy to fall into a locally optimal
solution since incentive functions are challenging to build and balance between exploration
and utilization.

2.4. Transfer Learning in Network Measurement

Learning a task’s model and applying it to other tasks that are related is referred to as
transfer learning, and the basis of transfer is the requirement that two learning activities
be connected [58]. In other words, we can apply the lessons we choose to learn in one
situation to another. A model must be built for transfer learning and then turned into
a feature extraction module. The model is then applied immediately to a different task
after being trained on a comparable task. The model can be fine-tuned to a new task after
training so that it can more easily adapt to the new activity. Transfer learning is comparable
to mimicking how the human brain thinks, in other words. If we can solve one problem,
we can solve others that are related to it more effectively and quickly. Transfer learning
is given a source domain and a source task, a target domain, and a target task. When the
source domain or source task is not the same as the target domain or the target task, the
purpose of transfer learning is to use the knowledge of the source domain and source task
to enhance the prediction of the target task learning function. The definition of transfer
learning, domain data, and transfer methods are only a few of the criteria that can be used
to categorize transfer learning.

Transfer learning is frequently used in a variety of contexts. Transfer learning is an
option if the issue falls inside the scenario. Nunes et al. [31] thought that without real
measurements, network delays could be correctly anticipated. They used datasets to train
the model, freeze the CNN layer of the predictor, and load out-of-date weights when data
were entered. The network delay predictor was used in the real world with 93% accuracy
thanks to transfer learning in an upgraded model of ML-assisted transfer learning that
was built in the lab. The main problems of transfer learning are data-adaptive distribution,
feature selection, and subspace learning, and it is demonstrated that transfer learning
is superior to begining from scratch in terms of both accuracy and training time. It can
address issues with a variety of duties, fewer data in the new office, and differing data
distributions between the new office and the old office. The transfer cannot be used if there
is no connection between the source and target domains. In the worst circumstances, this
interferes with the target field’s task learning. Negative transfer is a circumstance that
needs to be avoided as much as feasible.

2.5. Semi-Supervised Learning in Network Measurement

Unsupervised and supervised learning are combined in semi-supervised learning.
It performs pattern recognition using both labeled and a sizable amount of unlabeled
data. In practice, there are far more unlabeled training samples than labeled training
samples. In this situation, where untagged data are easily accessible, and tagged instances
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are frequently challenging, expensive, and time-consuming, the SSL technique is better
suitable for real-world applications. To make up for the lack of markup training data, SSL
can create superior classifiers [59].

There are still some flaws in the theory that semi-supervised learning has proposed be-
cause it has only recently been developed. Three reliability-related presumptions are made,
and they are as follows: Semi-supervised learning depends on relative simplicity, and data
processing does not account for noise interference to samples, which is unavoidable in real
life. Additionally, semi-supervised learning is unable to pinpoint the conditions under
which the classification performance of unlabeled data can be enhanced. Semi-supervised
learning performs worse than supervised learning when the model or parameters are incor-
rectly chosen. As a result, semi-supervised learning is currently primarily experimental on
synthetic datasets, and further study is necessary before it can be applied to real datasets.
As a result, network measurement has not yet used semi-supervised learning.

2.6. Discussion of Different ML Methods in Network Measurement

We introduce the application of supervised learning, unsupervised learning, reinforce-
ment learning, and transfer learning to network measurements in the second section. The
aforementioned findings demonstrate that most datasets in the field of network measure-
ment contains labeled data. Hence most researchers still opt for supervised methods to
teach and train their models. In terms of network metrics, supervised learning has devel-
oped and is at a good level of development. In comparison to other learning algorithms,
including unsupervised learning, it is popular and performs well. Advanced training
data are not necessary for unsupervised learning. A dataset can be directly modeled.
Unsupervised learning’s main goals are to train the model that will be used to learn the
dataset’s structure and to give users meaningful knowledge about fresh samples. As a
result, all we need to do to apply the clustering algorithm to get the desired outcomes is
to understand how to calculate data similarity. Semi-supervised learning has not been
used for network measurement compared to supervised and unsupervised learning due
to its rapid development and scant theoretical backing. Both reinforcement learning and
transfer learning are now in use; however, due to the differences between the two learning
techniques, few academics are interested in them. In conclusion, supervised learning is
currently the most widely used technique for measuring networks, which is consistent with
tendencies in future development.

3. Network Measurement Based on ML Method

According to the classification of ML methods, which is the subject of this study, the
application of various ML approaches to network measurement is introduced in the second
section. Understanding the key traits of the various ML algorithms is useful for researchers.
This section of the article will provide the ML-based solution from the standpoint of a real-
world network measurement application. To characterize and visualize network behavior
and quantify numerous network indicators, network measurement’s primary objective
is to gather traffic data linked to network operation [60]. According to the classification
standard for network measurement objects, network measurement can be further separated
into active measurement, passive measurement, network performance measurement, and
network traffic measurement. An ML technique based on a network measurement object is
presented in this study. Measurements of latency, packet loss, path loss, throughput, and
bandwidth are all examples of network performance metrics. As demonstrated in Table 3,
this article provides a detailed introduction to various application situations utilizing the
ML approach for network monitoring.

3.1. Network Delay and RTT

Network performance measurement is now essential for identifying the root causes
of network performance degradation due to the growth in network complexity and scale.
A key metric of network performance is packet latency. The accurate measurement of the
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time delay or its distribution is the current emphasis of time-delay measurement. The
amount of data required for the delay measurement may be enormous in an actual network
because the measurement may extend for several days, weeks, or even longer. Therefore, a
constant issue in the delay measurement is the quick processing of these enormous and
high-latitude data. Low latency can enhance service quality, particularly for applications
that require quick response times. To address network delays, it is crucial to significantly
enhance algorithm selection, modification, and prediction capabilities [61,62]. Additionally,
there is a concern with the lack of testing for network-link congestion or large-scale file
transmission in the existing review procedure.

Among all the features that might be utilized for the experiment, an ML technique
was proposed that employs a random forest approach to choose RTT as the most crucial
attribute. Several decision trees were then used to assign labels to each input record.
This considerably reduces the amount of data (by more than 60%) by minimizing the
information loss of the prediction RTT. Guo et al. [63] suggested a path delay change
prediction model based on random forest and BP neural networks. Based on the prepared
path for the network configuration, the fundamental path features were retrieved. Both
the computational work for the interpolation method of non-grid timing and the work
characterizing the timing database of each cell has been left out. It can more accurately
forecast the change in path delay under a curve that was not simulated when the training
set was being created.

In their papers, Nunes et al. [31,64] provided a precise estimate of the TCP round-trip
time using ML technology known as the expert framework. The “experts” all provided
fixed value estimates. The RTT is the weighted average of these estimates, and the weight is
adjusted after each measurement of the RTT by the discrepancy between the estimated and
real RTT. The latter employs a retransmission timeout timer, which incorporates TCP error
and congestion control but does not routinely assess RTT. Throughput increased while the
quantity of retransmitted packets drastically dropped. To forecast the IOT delay, Abdellah
et al. [65] employed the maximum likelihood approach based on the NARX recurrent neural
network. MSP and single-step prediction are the two time-series prediction techniques
that were suggested. Embracing the root means square error and the lowest root mean
square error helped gauge the accuracy of the predictions. An ANN was used to examine
the prediction of packet transmission latency in a self-organizing network.

3.2. Packet Loss

The term “packet loss” refers to the failure of one or more packets’ data to travel
through a network to their intended location. Numerous factors contribute to this, includ-
ing packet loss due to channel blocking at the early layer and signal attenuation brought on
by multipath fading on the network. The quality of multimedia applications that depend
on delay is largely determined by packet loss [66]. Some applications in scientific networks
demand frequent, large-volume data transfers with precise network performance specifica-
tions; as a result, transmission becomes extremely sensitive to performance deterioration
events [22]. Keeping track of packet loss on a link enhances network administration and
service [67]. Thus, to enable researchers or network operators to reduce packet loss through
various host or stream reallocation technologies, advanced technologies are needed. Due
to this requirement, researchers started to forecast packet loss using ML techniques.

To forecast the packet loss rate, Roy et al. [22] employed a decision tree and a logical
regression model. To present decisions and potential outcomes, a decision tree was em-
ployed as a tool. To conduct predictive analysis and characterize the data, logical regression
was utilized. The decision tree approach, in comparison, has a stronger predictive impact.
For the IoT’s packet loss prediction, Abdellah et al. [65] suggested a multi-step advance pre-
diction time series based on a feedback neural network. However, because packet loss and
queuing delay are closely related and because most researchers still focus on queuing delay,
there is little research on the packet loss rate. Instead, the prediction accuracy of the neural
network learning process is estimated by the mean square error, maximum likelihood error,
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and minimum mean square error. The issue of unusual packet loss instances is still open.
The chosen method places restrictions on the flexibility of the output and input parameters,
and data delivery without retransmission is unpredictable. Changes in the distribution of
the input characteristics had a major impact on the forecast period’s accuracy as well.

3.3. Throughput

Throughput, which is a key metric of network performance, is the quantity of data
successfully transmitted per unit of time for networks, devices, ports, and other facilities.
The internal and external network interface hardware of the network equipment, as well
as the effectiveness of the program algorithm, especially the program algorithm, are the
key determinants of throughput. The best throughput method is one which, for a certain
TCP transmission size, can be accomplished via a particular path between two end hosts.
Creating a solution that accurately predicts TCP performance for arbitrary and potentially
highly dynamic end-to-end links is the fundamental difficulty [42].

Mirza et al. [42] generated throughput estimations by using SVR’s ability to take
various inputs. The actual throughput of the target TCP stream was measured on-site in
comparison to the predicted throughput produced by numerous instances of our SVR-based
algorithms that were trained using various combinations of path parameters. Throughput
prediction can increase by up to three times when path attributes are taken into account us-
ing SVR-based tools in comparison to history-based predictors. Lazaris et al. [68] provided
a paradigm for deep neural network-based traffic-based throughput classification. Using
t-distribution random neighbor embedding, it presents a real dataset of 252 million traffic
records amassed in a single week (t-SNE). Instead of dividing the expected bit rate into
elephant and mouse flows, their objective was to divide it into three categories. The num-
ber of nodes, number of layers, and learning rate were three super parameters that were
optimized. The results of the trial revealed that during a continuous period of one week,
the prediction’s accuracy averaged 82%. As a benchmark, Minovski et al. [24] measured the
throughput of each network slice’s cellular links. He then utilized the DTs model to better
understand how root cause analysis decisions are made. The chosen method for processing
tabular datasets, particularly an MLP, is an ANN. To forecast the available throughput in a
non-independent 5G network based on network slices, a non-network intrusive machine
learning approach is suggested. To predict the link throughput using a real traffic dataset,
Chen et al. [69] evaluated the effectiveness of the LSTM network and ARIMA model. For
the test split, they assessed the duration of four epochs and three iterations of each model.
In each instance, the LSTM network’s average error was much lower than the ARIMA
model’s average error. Currently, the majority of studies using machine learning to estimate
throughput only analyze the artificial network path, only taking into account the particular
network path, and have not been tested in a big flow and scientific traffic environment.

3.4. Bandwidth

The amount of data that may be transmitted in a given length of time is referred to
as network bandwidth. The fundamental element of digital communication, particularly
in packet networks, is bandwidth, which refers to the quantity of data that can be carried
in a given length of time through links or network channels. The three indicators, capac-
ity, available bandwidth, and batch transmission capacity, are all measured by existing
bandwidth estimate techniques. When transmitting data, a reliable bandwidth should
ensure that there is no congestion and that it can be cleared quickly by predetermined
standards [70]. The statistical cross-flow model and the self-induced congestion model, two
frequently used bandwidth assessment techniques, now have issues. When the network
scenario is complex, there may be inaccuracy or behavioral interference. To assess the
bandwidth of Internet links, new techniques must be used. The majority of academics now
favor ML.

Chen et al. [29] suggested a system for anticipating traffic bandwidth. A support vector
machine can interpolate or extrapolate the system output based on the characteristics of the
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test input, even if the system output is not present in the training dataset. A support vector
machine also has a reasonable computational cost. A simulation was used to determine
the available bandwidth. In all test instances, the results demonstrate that the pathChirp
model is superior to the package sequence model. Additionally, this approach has more
precise estimates than the two widely used tools, pathChirp and Spruce, by combining the
pathChirp-like model with an SVM. The original dichotomy approach was replaced by a
neural network by Khangura et al. [71] to decide the next detection rate, and the available
bandwidth was calculated using the information already present in the program between
them. To forecast the output bandwidth and an input vector that is not filled up, two neural
networks were trained.

To reduce prediction difficulty, Khangura et al. [28] simplified the prediction problem
of the actual available bandwidth into a classification problem. The prediction results
were filtered through training with fewer data. A k-dimensional vector was used as the
input. The process was, detect, collect relevant information, combine them into a complete
k-dimensional vector, and then input them into the classifier. The SVM, K-NN, AddBoost,
and other ML methods were selected. The range to which the actual available bandwidth
belongs is the output, and the midpoint of the range is set as the estimated value; median
filtering was applied to the estimated values to improve the accuracy. Hága et al. [30]
unveiled a neural network-based empirical bandwidth estimation tool. The neural network
was trained using simulation data, and it is capable of accurately estimating the physical
and available bandwidth for single-hop and multi-hop networks in both the lab setting
and under real-world settings on the ETOMIC test bench. It has been established that the
input data are the only factor limiting the accuracy of bandwidth estimates. Other network
analysis issues can simply be addressed using this approach. Khangura et al. [72] trained
the packet dispersion vector as a characteristic of the available bandwidth using a neural
network. To choose the next detection rate, an iterative neural network rather than a binary
search approach was suggested. The issue of estimating the available bandwidth was
described as a classification challenge. The suggested method is assessed using support
vector regression, Gaussian process regression, and random forest. The findings demon-
strate that by lowering the bias and variability, the neural network may greatly enhance the
estimation of the available bandwidth. Labonne et al. [73] evaluated three machine-learning
techniques to forecast bandwidth usage 15 seconds in advance. Network link use can be
predicted using LSTM models with good accuracy (the error is less than 3%).

The degree of improvement varies depending on the position of the filling elements,
the number of existing elements, and the position of the existing elements in some ap-
proaches that only use a small number of detection rates. Overfitting occurs when there is
insufficient data for training. Because each class defines a real number range, errors will still
occur even if the classifier classifies the data correctly. The maximum error happens when
the available bandwidth is at the class’s edge. The actual bandwidth can be converged
by direct detection techniques. It cannot, however, keep up with rapid fluctuations in
bandwidth. While reducing probe traffic helps to estimate the available bandwidth, it also
causes network congestion. With more links, the misclassification error rose, necessitating
additional training data.

3.5. Path Loss

The loss brought on by the spread of radio waves through space is referred to as path
loss. The channel’s propagation characteristics and the radiation diffusion of the transmis-
sion power are to blame for this. This indicates the shift in the signals’ average power at the
macroscale. The strength of the received signal is greatly impacted by obstructions in the
signal route between the transmitter and receiver in a wireless propagation scenario. Path
loss describes the attenuation of this signal strength. Planning, optimization, and interfer-
ence analysis for networks all depend on precise path loss characterization and modeling.
Several path loss prediction algorithms have been put forth recently to enhance network
performance. Implementing a single-path loss prediction model that is appropriate for all
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wireless propagation conditions, however, is a basic issue that the majority of these models
fail to address [8]. That is to say, ML can give a flexible network topology and can use a lot
of data to increase the accuracy and performance of signal prediction. People start looking
for new ways to overcome these difficulties.

Ostlin et al. [74] suggested and assessed a model for an artificial neural network to
predict macrocell path loss. We examined neural networks of various sizes from multi-
layer FNN neural models. To improve prediction accuracy and generalization properties
while shortening training time, a quicker training algorithm was incorporated into the
training process. Popoola et al. [75] developed an optimization model for path loss using a
feedforward neural network technique. With the help of normalized terrain profile data
and normalized distance, a single-layer fuzzy neural network was trained to calculate the
corresponding path loss value using the Lvenberg Marquardt algorithm. By varying the
number of hidden layer neurons, the ANN with the best prediction accuracy was found.
Ojo et al. [76] predicted path loss in a research environment using radial basis function and
support vector regression. The SVR and RBF ML algorithms’ precise system architecture
was optimized by adjusting the hyperparameters of the RBF model. Five other empirical
models’ performance was compared to that of SVR and RBF ML, and it was found that the
ML models’ performance was superior to those of the empirical models. In order to provide
a resilient network structure, robust adaptability, and wide-ranging data availability, the
ML algorithm was applied to signal propagation modeling. Many components, from the
transmitter to the receiver, can be accurately modeled using ML for signal propagation.
However, researchers have discovered that more sophisticated neural networks might
not be more effective, and larger FNN might provide erroneous predictions as a result
of overtraining. In addition, rather than overcorrecting and overpredicting, more focus
should be placed on carefully choosing training data and broader datasets.

3.6. Congestion Control

The load of the communication network has a direct impact on the throughput of
the network. If the throughput drops when the network load reaches a specific level,
congestion develops. When congestion is severe, it will cause wasteful retransmissions,
which will lower the communication subnet’s effective throughput and eventually push the
local or even all communication subnets into a state of deadlock, with an effective network
throughput that is near zero. In the present situation, congestion detection in wireless
sensor networks is a significant issue. Currently, several academics employ machine
learning techniques to identify congestion.

Singhal et al. [77] identified congestion in the transport-layer sink node using an NN-
based congestion detection method. The output was the degree of congestion, while the
input parameters were the number of participants, buffer occupancy, and traffic. Numerous
simulation results demonstrate the scheme’s ability to detect and better reflect the level of
congestion in sensor networks. Madalgi et al. [78] created a congestion detection classifier
with three levels: low, middle, and high using an open-source SVM package and a sequence-
to-minimum optimization approach. When the radial basis function is chosen as the kernel-
function model, gamma and cost are crucial factors to consider. By modifying various
factors, the ideal model training time can be achieved. Scholars generally agree that M5
decision trees are superior to general NN and that employing neural networks to predict
network congestion is better than empirical models after analyzing various studies.

3.7. Discussion on Network Measurement Application with ML

Six facets of network measurement using the ML approach are discussed in the
third section. Network measurements can gather information about network operations’
traffic and use it to inform all facets of network operations. The ML approach effectively
extracts valuable network features, classifies and predicts the desired information we
want to know, and manages network features as necessary. In recent years, network
measurement has gained popularity as a study area. Especially when network bandwidth
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is expanding, it offers a smart control approach for future efficient and high-quality network
transmission. Currently, throughput, delay, and available bandwidth are all addressed by
the ML technique. We are aware that these three can interact with one another in some ways,
and Figure 2 shows how they relate to one another. Additionally, a network’s utilization
rate is extremely high if throughput is virtually equal to bandwidth. The bandwidth
problem is, in some ways, simpler to fix than the latency issue.
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Figure 2. Throughput, bandwidth and delayFigure 2. Throughput, bandwidth, and delay.

Therefore, to aid networks in achieving more efficiency, the majority of scholars have
concentrated on gaining more available bandwidth and producing more precise estimates
of the available bandwidth. As opposed to the conventional empirical model of traffic
measurement, the ML method can convert the detection of abnormal behaviors into pattern
recognition when they occur in a network. It then classifies these behaviors by examining
the characteristics of network traffic and the data gathered to differentiate between normal
and abnormal behaviors. Because of the significant labor time savings, the ML approach has
drawn increased attention. The study’s findings demonstrate that, despite the possibility
that the best suitable machine learning techniques vary depending on the circumstances,
the use of ML in network assessment has advanced significantly and quickly. The public
will see more and more appropriate general models as software and hardware development
continues, in addition to the optimization of various models and the adjusting of datasets.

Table 3. Network Measurement Application and ML Algorithm Performance Analysis.

Scenarios Applications Ref ML
Algorithms Performance Analysis

Path delay

Reduce data volume [51] RF, LR, SVM
It shows the importance of data pre-evaluation and
feature selection, but the basic algorithm can not

provide high accuracy in this case.

Reduce computing effort [79] RF, BP NN
It can better predict the change in path delay under
the curve that has not been simulated during the

preparation of the training set.

Provides accurate estimation of
round-trip time in TCP

transmission

[31,
64] Experts Frame The number of retransmitted packets decreases

significantly, and the throughput increases.

Predicting Delay in IoT Models [80] RNN, ANN

Compared with similar models, the model using
the Trainlm training algorithm has the best

prediction accuracy, while the model using the
Trainrp training algorithm has the lowest

prediction accuracy.
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Table 3. Cont.

Scenarios Applications Ref ML
Algorithms Performance Analysis

Packet loss

Faster computing with lower call
latency [65] DT,LR

Use LR to perform predictive analysis and describe
data. By contrast, the DT model has a better

prediction effect.

Combining the two networks for
prediction [42] ANN, RNN Improve the accuracy of Internet of Things traffic

prediction.

Throughput

Use characteristics to generate
throughput predictions [24] SVR

Use different combinations of path attributes for
training. Compared with the history-based

predictor, the efficiency is improved by three times.

Three super parameters are
optimized [69] DNN The prediction achieved an average accuracy of

82% over a continuous time interval of one week.

Forecast based on the cellular
link throughput of each network

slice
[23] DT, ANN,

SVR, MLP

The non-network intrusive machine learning
model is used to predict the available throughput

in a non-independent 5G network based on the
network slice.

Evaluate three variations of each
model for four epoch durations [74] LSTM

In each case, the average error obtained by the
LSTM network is significantly lower than the

ARIMA model

Bandwidth

The available bandwidth is
obtained through simulation [81] SVM

The combination of the pathChirp-like model and
SVM can obtain a more accurate estimation than

the two widely used tools.

Use the existing program
information to estimate the

available bandwidth
[71] ANN

Two neural networks are trained to deal with
incompletely filled input vectors and prediction of

output bandwidth, respectively.

Simplify the prediction of actual
available bandwidth into

classification
[47] ANN, SVM,

K-NN
Median filtering of estimated values to improve

accuracy.

Provides reliable physical and
available bandwidth estimation
for the simulated single-hop and

multi-hop networks

[72] ANN It is proven that the accuracy of bandwidth
estimation is only limited by the input data.

The available bandwidth
estimation task is described as a

classification problem.
[26] SVM, RF

Proved that neural networks can significantly
improve available bandwidth estimation by

reducing bias and variability.

Path loss

A faster training algorithm is
added to the training process [75] ANN

The prediction accuracy and generalization
characteristics are given while reducing the

training time.

Establish the optimization model
of path loss [76] ANN, FNN ANN with the highest prediction accuracy by

changing the number of hidden layer neurons.

Several super parameters of the
RBF model are adjusted [52] SVM

By comparing the performance of SVR and RBF
machine learning with the other five empirical

models, it is concluded that the performance of the
machine learning model is higher than that of the

empirical model.

Congestion
control

Detect the congestion of the
transport layer sink node [82] ANN

It can accurately detect the degree of congestion in
wireless sensor networks and can better reflect the

congestion state.

An effective method to
determine the best parameters of

classifier model selection
[53] SVM Improve accuracy through optimal parameters.
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4. Future Work

The future network architecture still has a lot of performance difficulties to overcome
because high-speed network access is no longer an extravagance and because network
demand is only expected to increase. Traditional network models and processing techniques
are no longer able to satisfy people’s demands for network efficiency due to the slow pace of
network innovation. A recent research hotspot, the ML approach reflects its role as a catalyst
for network innovation and development. Early attempts at artificial intelligence aimed
to improve the logical reasoning capabilities of machines, but as technology advanced,
it became clear that this was far from enough. Some academics think that knowledge
is essential for solving complicated situations more effectively. After 1980, ML emerged
as a distinct field and advanced quickly. It has gradually been used in several different
fields. The execution capability of the system, exemplified by Samuel’s chess program,
was primarily researched in the 1950s. Hayes Roth and Winson’s systematic approach to
structural learning serve as a good example of the 1960s’ goal of studying how to replicate
human learning in computers. For ML, the 1970s were a time of great growth. A surge
in ML research and development has resulted from the integration of learning systems
with numerous particular applications using a variety of techniques and tactics. Assisted
learning by Mostow is an example of his work. Several new disciplines that incorporate ML
are starting to take shape. A consensus has progressively emerged on several fundamental
ML and AI issues.

4.1. Future ML in Network Measurement

Many widely used methods have been generated by the development of ML. The
optimum method is still defined by the dataset that researchers need to process, the data’s
features, the processing goals, etc. The ML approach needed for special cases is, in a sense,
specific. The requirements of a particular scenario are thus a very crucial aspect in obtaining
higher performance in network measurements, and this study illustrates the abstract level
of ML in Figure 3. The data preparation module, which is at the first level, consists of data
selection, analysis, and pre-processing. The model is created, trained, and continuously
adjusted and optimized in the second layer. The trained model is then utilized in real-world
settings by task requirements.
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4.1.1. Dataset

For the development of machine learning models or data-driven real-world systems,
the availability of data is seen as essential [83]. Data preparation is at the lowest level
of abstraction, as seen in Figure 3. High-quality data has always been the most crucial
component in employing the ML approach to solve problems, regardless of the industry.
The end outcome is greatly influenced by the data source and data label used. In most
cases, the datasets obtained cannot be used directly in dealing with practical problems
because the sample data may have issues, such as missing labels, too high dimensions, too
low dimensions, and the inability to accurately distinguish between validation data and
test data. If these factors are ignored, it is frequently difficult for the final result to reflect the
real situation. When it comes to solving difficulties, a decent dataset can be of considerable
assistance to researchers; in other words, the dataset’s quality directly affects how far the
results can go. The dataset, in general, reflects the network’s overall architecture.

4.1.2. Define and Express Problems

We frequently break down real-world issues into their parts or other mathematical
issues. When examining issues, it is important to identify the root causes and find remedies.
Many issues with the model selection will arise from inaccurate problem analysis or poor
comprehension of the problem’s purpose. Additionally, the outcomes of the flawed goal
were invalid. Additionally, this study discovered that several algorithms, including SVM
and RF, have good performance and versatility in terms of algorithm selection. We also
discovered that neural networks, such as FNN and logical regression, may produce better
results in particular cases, even though these algorithms can address the majority of the
requirements. In order to explain issues to be solved as correctly as possible in mathemat-
ical language, which will become the key to the ML approach in network measurement
applications, it is erroneous to pursue algorithms with strong performance mindlessly.
Because ML model training takes a lot of time, setting the right goal at the outset will
prevent researchers from wasting time.

4.1.3. Model Establishment and Optimization

A modeling issue was resolved once the issue was stated. The ML model was created
using rules and was abstracted from the data. The model can be trained, the technology
and technique can be learned from the data, different models produce different results,
and applying different approaches to the same model will produce different results when
the data are available after processing, and the problem is properly specified. The ML
model with the best performance may not be the best option, and a successful model
establishment does not guarantee a successful outcome. The model’s final findings will be
impacted by concept drift, high deviation or high square error, and regularization settings.
A major issue now is how to demonstrate that your model performs better than other
models. The same topic may be approached by different researchers in several ways, and
the optimization process is particularly important. Typically, the findings of the training
model are taken into account when optimizing the model. Common techniques include
choosing a better algorithm, addressing the issue of overfitting and underfitting, and
optimizing super parameters.

4.1.4. Algorithm Selection

In general, comparing different algorithms can enhance model performance. For
various datasets, different methods have been developed. Methods were used to implement
ML, and in the sections before this one, we described how ML algorithms were used to
measure networks. We cover a variety of angles on algorithm selection in this section. In
order to choose an algorithm for training after creating a model without having to halt the
process, we generally need to be aware of the situations and constraints of an algorithm or
its powerful functions. Before selecting an algorithm, one should determine the issue that
they are trying to resolve, such as when employing a recommendation system to address
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a particular issue. Logic regression and supervised learning can be used to create more
comprehensive models or find anomalies in other open problems. The understanding
of the data, the categorization of the problems, and the knowledge of the software and
hardware are the primary factors that influence the choice of algorithms. Whether a high
number of classification models or clustered data can be saved depends on the system’s
storage capacity. Model optimization and algorithms go hand in hand, and it is frequently
the case that the best method is demonstrated during this process.

4.1.5. Discussion on Future ML Methods

We list the issues that must be solved using the ML approach in this section. Although
these issues appear straightforward, they can be gradually adjusted to fit the particular
circumstance. A thorough comprehension of the issues that need to be resolved in ML
methods will aid researchers in their work, speed up the development of ML in the field
of network measurement, and increase the usability and dependability of future ML
algorithms. There is yet no established optimum method to resolve this set of issues, even
though many academics are researching the application of machine learning to the subject
of network measurement. For the time being, the study only focuses on adapting one or
more machine learning algorithms to handle certain challenges. The two main challenges
for network management in the future will be how to gather a huge amount of high-
dimensional data in a real network for analysis and how to create a network management
system through network measurement. In general, the future will see a new stage of
development in the interaction between machine learning and network measurement.
Network measurement will be autonomous and intelligent thanks to the use of machine
learning in picture identification, traffic prediction, and other areas. Examples of these
capabilities include:

• Congestion control;
• Automatic extraction of the most important features;
• Network routing;
• Time-series analysis;
• Network layer analysis.

The ML approach is now the most successful and promising method for addressing
network measurement challenges. It is supported by ML framework theory and the
data of each study. ML assists decision-makers in deriving knowledge from the data
and choosing the best course of action. There is no conclusive evidence that the ML
approach is not practical for network measurement and that supervised learning is the
most popular method for network measurement, despite the claims of certain academics
that the application of ML in network measurement is still insufficient. Because supervised
learning makes use of prior experience to forecast results, it aids students in altering their
model of prior experience and can offer a precise grasp of the category of objects. Because
unsupervised learning has no corresponding output, and the input data are not marked on
the algorithm outputs; it cannot produce the desired findings that researchers are hoping
to see. Due to its lengthy development process and scant conceptual underpinning, semi-
supervised learning is still less common in the field of network measurement. Deep learning
models are a black box, even though they are frequently employed in a variety of contexts.
It is challenging to comprehend their functions, which makes it challenging to comprehend
the input traits that result in these outcomes. This is one reason why deep learning’s
capacity to address network issues is somewhat constrained. Reinforcement learning and
transfer learning perform less well than supervised learning in some applications because
of the lengthy sampling period and the fact that they are only relevant to familiar settings.

5. Conclusions

In this paper, the ML algorithm and its practical use in network measurement are
discussed about the viability of using the ML approach to network measurement. This
article introduces various ML algorithms used for network monitoring from the standpoint
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of classifying ML methods. It concentrates on using ML algorithms for network measure-
ment, though. Most academics prefer supervised learning over other learning techniques,
including unsupervised learning, semi-supervised learning, reinforcement learning, and
migration learning, because of its high accuracy and the fact that the majority of datasets in-
clude labeled samples. Currently, supervised learning will continue to be a key component
of future machine learning algorithms used in network monitoring. The challenges and
potential possibilities for ML algorithms development in the area of network measurement
are also noted. Due to the lesser complexity and expense of dealing with available band-
width compared to some other network characteristics, the majority of research directions
in the application of network measurement concentrate on this factor. Furthermore, the
challenges that the ML algorithm faced when measuring networks are identified, as well as
potential future study areas. The complexity of the model and the limits of the training data
make it challenging to find the most efficient ML method, which is why the ML algorithm
occasionally performs below expectations, even though it has made enormous strides in
the field of network measurement. As network measurement using the ML method plays a
significant role in future network construction and network performance improvement,
including congestion control, resource management, and real-time monitoring, it is hoped
that the discussion in this paper can offer straightforward assistance for scholars in related
fields to apply the ML algorithm to network measurement. This will help researchers in
different fields master some basic problems. The main issues raised by this study will be
thoroughly investigated in the future.
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