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Abstract: Enormous amounts of data are generated and analyzed in the latest semiconductor in-
dustry. Established yield prediction studies have dealt with one type of data or a dataset from one
procedure. However, semiconductor device fabrication comprises hundreds of processes, and various
factors affect device yields. This challenge is addressed in this study by using an expandable input
data-based framework to include divergent factors in the prediction and by adapting explainable
artificial intelligence (XAI), which utilizes model interpretation to modify fabrication conditions.
After preprocessing the data, the procedure of optimizing and comparing several machine learning
models is followed to select the best performing model for the dataset, which is a random forest (RF)
regression with a root mean square error (RMSE) value of 0.648. The prediction results enhance pro-
duction management, and the explanations of the model deepen the understanding of yield-related
factors with Shapley additive explanation (SHAP) values. This work provides evidence with an
empirical case study of device production data. The framework improves prediction accuracy, and
the relationships between yield and features are illustrated with the SHAP value. The proposed
approach can potentially analyze expandable fields of fabrication conditions to interpret multifaceted
semiconductor manufacturing.

Keywords: semiconductor manufacturing; yield prediction; XAI; SHAP value method

1. Introduction

In the highly competitive semiconductor manufacturing industry, yield analysis plays
a vital role in increasing production efficiency and reducing operating costs. This is because
yield is one of the most critical factors in profit, and yield analysis results are applied to
enhance yield and adjust settings for poor process conditions. If yield can be predicted in
advance, production planning efficiency would increase, and the accomplishment of the
yield enhancing plan would be confirmed punctually. Since modern electronic devices are
scaled and complicated, the overall manufacturing procedure takes over several weeks
from the input of wafers to the chip packaging. Briefly, the fabrication of a device generally
consists of three stages: (1) the wafer fabrication procedure constructs integrated circuits on
each wafer via hundreds of precise and well-controlled processes; (2) the assembly utilizes
wafer probing test results to sort dice and encases each die through multiple steps; and
(3) the final test stage includes electrical testing to verify the reliability and the quality of
produced chips. When there is a problematic situation that lowers the yield in the wafer
fabrication stages and the cause of the lowering yield is detected in the final test phase,
it lowers the profit and takes a considerable time to normalize the whole manufacturing
procedure [1]. Therefore, at the end of the wafer fabrication phase, there are probing and
testing steps to exclude wafers expected to have a low final test yield. Developing a model
to predict the yield and counteract the lowering yield procedures in a timely manner based

Appl. Sci. 2023, 13, 2660. https://doi.org/10.3390/app13042660 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042660
https://doi.org/10.3390/app13042660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9078-9337
https://doi.org/10.3390/app13042660
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042660?type=check_update&version=2


Appl. Sci. 2023, 13, 2660 2 of 14

on the induced knowledge, is one way to effectively utilize the intermediate test results. The
prediction models can strengthen the competitiveness of a semiconductor manufacturer.

In work-site operations, a substantial part of yield analysis is practiced manually by
experienced domain engineers. For instance, the wafers expected to have yield improve-
ment are analyzed to confirm yield-enhancing process conditions. After the confirmation,
the wafers with the modified process are predicted to have the same yield gain. On the
other hand, if an instrument malfunctions, the wafers processed in the machine for a certain
amount of time are predicted to have a lower yield. This method has a limit because there
are possibilities for engineers to miss yield-affecting circumstances and for the same condi-
tion of one step to affect each wafer differently. Moreover, there are overfull data to monitor
and examine manually in practical yield prediction. The various monitoring systems in
production lines include metrology and inspection tools for monitoring processes, sensors
on instruments to check the process conditions, and tests of properties for each wafer, such
as electric die sorting (EDS) yield, wafer acceptance test (WAT), and final test (FT) [2]. These
systems monitor only a limited number of wafers, a part of the area on chips, or certain
conditions due to limitations of time, capacity, and cost. Therefore, they are not enough
to identify multifaceted factors that enhance or lower the yield. Another limitation is that
various data are stored in several systems separately for individual areas and are organized
in different formats, while there are plenty of kinds of data, including numerical type,
categorical type, and serial type, among others. Additionally, practical yield analysis is re-
peatedly conducted for each stored data to screen the yield-related features. Consequently,
the yield analysis necessarily includes wide ranging data and needs to be expandable.

An overview of the related literature is presented in this paragraph. In previous
studies, semiconductor yield analysis has a long history, and particular research on yield
modeling is summarized in the reference [3]. Various perspectives include defective yield
loss [4], statistical process control [5], and integrated process specification systems [6].
Recently, machine learning techniques have attracted much attention as they enable re-
searchers to handle large-scale data and automate analysis. In numerous prediction studies
in diversified fields including information technology, geographical science, industrial
manufacturing, and energy production, established regression models for each research
purpose are used through comparison and selection among various machine learning and
deep learning models [7–12]. In our study, we adopted the procedure of choosing the
most fitting model for the prediction. Specifically, the machine learning-based method
has been applied in various studies in the semiconductor industry [2,13–18]. In our view,
yield research mainly focuses on analysis with one kind of input variable. Various types
of independent variables exist; however, the most used variables are one type or from a
dataset obtained in one test procedure. One study focuses on non-normal distribution test
parameters to estimate the yield using the principal component analysis [19]. Considering
the delays of gates and paths on a chip, researchers predict parametric yield using statistical
timing analysis [20]. Machine learning-based root cause detection approaches are devel-
oped to target a specific circuit test yield [21]. The existing approaches for metrology data
usage for yield classification focus on the imputation of missing data and counteraction
of the imbalanced classes [22]. There are studies on back-end FT yield regression and
classification modeling based on front-end WAT data [1,23]. Some studies preprocess the
categorical input data using one-hot encoder or other encoders to utilize non-numerical
data as input data for machine learning models, and the categorical and numerical data
are recorded in the same step [1,24]. In previous research, big data analysis for low yield
validates its detection efficiency with simulation, especially for the development of new
devices [25]. There is a study to modify the gradient boosting algorithm model to analyze
multi-step data from semiconductor manufacturing [26].

Regarding XAI, a few studies have applied this method for semiconductor manufac-
turing. As discussed in the literature, XAI has been studied to apply artificial intelligence
with more transparency while maintaining high performance [27]. Additionally, the ex-
plainability makes the continuous improvement of models possible and approves AI-based
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decisions. The SHAP value method is adopted to improve process quality in the real
production of semiconductor devices [28]. SHAP analysis is used to rank the features that
affect the electrical test scores of the device [24]. To the best of our knowledge, few studies
cover machine learning-based modeling using various kinds of wafer fabrication data to
predict EDS yield and explain each wafer and feature with the XAI method. This study uses
different types of data from the whole wafer fabrication stage as input data to examine yield
impact. Multiple machine learning models are trained to compare prediction performance
for the wafer yield and the top model is explained on the basis of SHAP values. Brief
explanations of the utilized machine learning algorithms and the SHAP value method are
mentioned in the proposed framework part of this manuscript.

Less attention has been focused on the analysis of multiple kinds of data in the front-
end production stage to predict EDS yield. Therefore, this paper aims to predict wafer
yield based on combined fabrication data to include possible causes in investigating as
many fields as possible and speeding up the feedback. The framework is expanded by
interpreting the model to determine the yield-lowering factors and by explaining the
relationship between factors and yields. The XAI technique-based SHAP decomposes
individual attribution of target-affecting factors [29,30]. The main motivation for this
research is to build an automated yield prediction model, to enhance the effectiveness of
production scheduling, to report an analysis for adjusting the problematic condition of
processes, and to deepen the understanding of fabrication conditions. To sum, the work
presented here provides the highlights listed below:

• The yield prediction framework utilizes various types of fabrication data, allowing
input data expansion;

• XAI technology, i.e., SHAP, is implemented and improves the possibility of explanation
for the most performant model;

• Demonstration using a real-world dataset is analyzed by SHAP values, including the
discovery of factors affecting yield.

Moreover, this work possibly contributes to developing procedures of advanced
devices, including frequent evaluation of various process modifications in the wafer fabri-
cation, with the determination of yield-affecting factors.

The remainder of this paper is as follows: Section 2 describes the framework and
methods used in this study. Section 3 provides main findings of a case study and fur-
ther discussion. Finally, Section 4 provides the conclusion, which contains the possible
application of this proposal and the suggestion for future studies.

2. Proposed Framework

The previous section reveals that earlier studies have not included mostly diversified
fabrication data in modeling or the XAI techniques for explaining models. To solve the
addressed problems, we propose a method, i.e., building models with four different types of
data to predict EDS yield and interpreting the chosen model with SHAP values. Although
the input and output data are selected for practical use in the field, the framework is
adoptable for expansion and various investigations. The framework includes (1) data
preparation with preprocessing, (2) model optimization and selection, and (3) prediction of
yield and explanation of the model. Figure 1 shows the overall framework proposed in this
paper. To confirm the stability of the expandable framework, the framework is applied to
each dataset, and the extracted yield-related features are compared.
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Figure 1. Overall flowchart of yield prediction and explanation with multi-type fabrication data.

2.1. Data Preparation with Preprocessing

The input variables consist of various data subsets related to wafer fabrication, in-
cluding process operating conditions, time spans, equipment units, and some sensor
parameters. These are common fields of investigation for practical yield analysis. Vari-
ous fabrication data are combined with each wafer to organize the input variables into a
two-dimensional form.

The numerical data include the time spans from process steps to a designated step,
sensor parameters measured for each processed wafer on several steps, and EDS yield data
as target variables. Each data item has a different scale of values; hence, standardization is
necessary to prevent models from being biased. The categorical data include the settings
of conditions for process operation and units of instruments on several processes. These
are string-type data that need to be converted into numeric values for machine learning
applications [1]. The one-hot encoding method is used to transform data and maintain
the information on column names, which is useful in the explanation stage. The encoding
procedure is chosen since most of the categorical data have no rank order, and the same
degree separating ordinal encoding possibly delivers unintended meaning. The Pearson
correlation coefficients are calculated, and the dimensions of input data are reduced in case
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of coefficient values exceeding 0.95 [23]. We split the dataset into training and test sets and
used the only training set for model optimization and selection.

2.2. Model Optimization and Selection

In this research, ten popular and high-performance regression models were hired for
comparison. The ten machine learning algorithms consist of a linear-based learner, four
tree-based models, two kernel-based learners, a neural network-based learner, an instance-
based learner, and a sample consensus algorithm [8]. The training dataset was used for
training and validation, adopting the cross-validation method which splits the training set
multiple times to obtain different training and validation datasets and avoids overfitting.
The lasso algorithm is a linear model using a regularizer of L1, with strength in excluding
useless variables [31]. The adaptive boosting (AdaBoost) regression model is a decision
tree-based model that uses multiple regressors trained according to the errors of the prior
regressors [32]. Two more tree-based boosting models are extreme gradient boosting (XG-
Boost) regression and light gradient boosting model (LightGBM) regression. XGBoost uses
a gradient boosting mechanism and is well-known for efficient computing [33]. Light-
GBM is well-known for its speed and leaf-wise expanded growth strategy [34]. The RF
regression algorithm uses bagging techniques to build trees using subsamples and random
subsets of predictors, and RF aggregates multiple tree models to avoid overfitting [35].
The two kernel-based regression models are the support vector regression (SVR) model
and the Gaussian process regression (GPR) model. SVR, or support vector machine-based
regression problem solving, employs the kernel trick of mapping input vectors to higher-
dimensional feature spaces [36]. GPR is a nonparametric machine learning model based on
the Bayesian approach, which is beneficial for measuring uncertainty over prediction [37].
Multilayer perceptron (MLP) is a feedforward artificial neural network algorithm that trains
models with the backpropagation technique [38]. By using neighborhood interpolation, K
nearest neighbor (KNN) regression predicts the target [39]. Random Sample Consensus
(RANSAC) is an algorithm that generates putative solutions with the most points in a
consensus set through random sampling iteration and is suitable for datasets with a high
number of outliers [40]. In this study, sklearn in Python was used for Lasso, AdaBoost,
RF, SVR, GPR, MLP, KNN, and RANSAC modeling. The Python packages xgboost and
lightgbm are used for XGBoost and LightGBM modeling.

The RMSE and mean absolute error (MAE) are the metrics for calculating model
performance [7,12]. The formulas are as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (2)

where n denotes the total quantity of data points, yi denotes the empirical yield values
in the dataset, and ŷi denotes the predicted yield values from the model. The grid search
with a cross-validation method is used to determine the optimal hyper-parameters for
each model. RMSE and MAE values of hyper-parameter tuned models are compared to
select the best model. The scores are measured multiple times with N-fold cross-validation
method to enhance the robustness of models.

2.3. Prediction and Explanation

The tuned models are applied for the prediction of the test dataset, which is separated
from the model optimization and selection procedure. The scores of prediction performance
can prove the feasibility of the model selection procedure. The best performing model is
combined with the XAI method, i.e., SHAP. Originating from game theory in economic
science, the Shapley value is the relative contribution of a factor to the outcome [29]. The
SHAP value is a calculated attribution value combining conditional expectation and the
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Shapley value [30]. As shown in the following Equation (3), the SHAP value for each
feature is defined as

φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]
(3)

where F is the set of input features, S ⊆ F\{i} is the subset with feature i, f is the model
prediction, and fS∪{i}

(
xS∪{i}

)
− fS(xS) denotes the marginal contribution of feature i

to the prediction. There are several reasons to paying attention to SHAP, such as local
accuracy, consistency, model agnostic nature, and ability to visualize the interpretation.
The computed SHAP values show the contribution of each instance to the prediction.
The explanation model f̂ (x), which approximates the model, is the summation function
of feature attributions, and the sum is equal to the model output of a single instance x,
following the local accuracy property [30,41–43]:

f (x) ≈ f̂ (x) = φ0 +
M

∑
i=1

φi(x) (4)

where φ0 is E
[

f̂ (x)
]

expected value of the function. The method also calculates the rank of
features, specifically the averaged absolute SHAP values on features. The SHAP values for
a specific parameter illustrate the relationship between the parameter and target values in
the model [44]. The Python package shap is adapted in this manuscript.

3. Results and Discussion

The purpose of this experiment is to confirm the proposed method with the recent
empirical data. The fabrication and yield data are provided from the device processes of
a manufacturer of semiconductors. For proprietary reasons, the exact names of variables
and the device are not revealed. The data are restricted by the wafers of a specific device
with EDS yield data to use them in supervised modeling. The organized dataset has 352 pa-
rameters and 327 wafers for specific device production. After input data preprocessing,
including one-hot encoding and Pearson correlation coefficient-based dimension reduction,
the number of input parameters becomes 983. Table 1 summarizes the counts of the overall
dataset and each type of dataset during preprocessing and after the train test split. The
distributions of target variables are similar and not skewed, as statistically summarized
in Table 1.

Table 1. Summary of the dataset.

Preprocessing
Count of Parameters

Numerical Data Categorical Data Total Data

Original dataset 176 176 352
One-hot encoding - 1276 -

Dimension reduction 62 921 983

Dataset
symbol Brief explanation Type

Original One-Hot Encoding Dimension Reduction

Steps Max Label/Step Steps Features

R Operating Condition Categorical 142 7 37 75
U Equipment Unit Categorical 34 58 34 846
T Process Time Numerical 142 - 28 28
P Sensor Parameter Numerical 34 - 34 34
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Table 1. Cont.

Preprocessed
Target Data

Training Data Test Data

Count 261 66
Average 0.012 (−) 0.048

Standard deviation 1.021 0.926

3.1. Model Selection and Prediction

During the model optimization and selection procedure, grid search tunes hyper-
parameters, which vary depending on the model algorithms as shown in Table 2. The
hyper-parameters include the number of estimators, max depth, subsampling size, learning
rate, kernels, regularization factors, activation functions, max iterations, etc. The ten tuned
models are compared using MAE and RMSE scores, which are obtained dozens of times
by the cross-validation method to select the model of the best performance. As shown
in Figure 2, the RF model has the smallest MAE and RMSE average, and the standard
deviation of RF records good scores among the ten models. The KNN model shows the
second-best performance with the training and test datasets. In terms of validation and
prediction scores, the RANSAC and MLP models are ranked at the bottom. Other models,
which are SVR, LightGBM, GPR, XGBoost, AdaBoost, and Lasso, have similar validation
and prediction performances for estimating EDS yield with the combined fabrication data.
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Table 2. Prediction performance of 10 regression models and their tuned hyper-parameters.

Models MAE RMSE ** Tuned Hyper-Parameters

RF 0.520 0.648 n_estimators = 400, min_samples_leaf = 2, max_features = ‘sqrt’,
max_depth = 12

KNN 0.542 0.653 n_neighbors = 8, p = 1, weights = ‘distance’
SVR 0.531 0.682 kernel = ‘sigmoid’, gamma = ‘auto’, coef0 = 0, C = 0.5

LightGBM 0.557 0.692 colsample_bytree = 0.4, learning_rate = 0.01, max_depth = 5,
n_estimators = 200

GPR 0.549 0.693 kernel = RationalQuadratic(alpha = 1, length_scale = 1), alpha = 0.5
XGBoost 0.559 0.696 learning_rate = 0.03, n_estimators = 100, subsample = 0.25
AdaBoost 0.566 0.716 learning_rate = 0.1, n_estimators = 300

Lasso 0.567 0.726 alpha = 0.1, tol = 0.001, max_iter = 2000, selection = ‘random’
RANSAC 0.614 0.800 stop_probability = 0.999, min_samples = 5, max_trials = 500

MLP 0.667 0.825 max_iter = 200, hidden_layer_sizes = (200, 2), activation = ‘logistic’
Statistical estimator * 0.744 0.919

* Statistical estimator predicts target values of test dataset as the average value of training data set. ** This table is
sorted in ascending order by the RMSE value.

The prediction of EDS yield with the tuned models is executed using the test dataset.
The MAE and RMSE values of each model are compared, as shown in Figure 3. The
prediction results reveal that the performance of the RF model is the best among all the
models in both metrics, with MAE and RMSE values of 0.520 and 0.648, respectively.
The result shows a similar order to earlier cross-validated scores in the model selection
phase. RMSE values show constantly larger values than MAE because RMSE uses squared
differences, and larger differences enhance RMSE more. As reference scores, a statistical
estimator predicts target values as an average value of the training dataset. The scores of
the estimator are 0.744 for MAE and 0.919 for RMSE, and they are inevitably poorer than
the scores of machine learning models, as presented in Table 2.
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Figure 3. Comparison results of the performances of 10 regression models (RF, KNN, SVR, LightGBM,
GPR, XGBoost, AdaBoost, Lasso, RANSAC, and MLP) for an expandable yield prediction.

To conclude the building yield model part, the case study shows how the multi-
fabrication data are delivered as input data and how the optimization and comparison of
models work. Through the suggested framework, the EDS yield of the device is predicted
more accurately by 30.1% in the MAE score compared with the simple statistical prediction.
The RF algorithm-based model ranks first for the case and is explained with SHAP values in
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the following chapter. The XAI method illustrates a chosen model and itemizes important
features with visualization.

3.2. Explanation of the Model Using the SHAP Value Method

In the following interpretation part, the selected RF model is applied for SHAP analy-
sis, i.e., TreeSHAP, a specialized method for tree-based models [30,41]. Much research is
actively conducted regarding XAI because there is uncertainty in decision-making based
on the machine learning results. In this study, the SHAP value method is adopted, enabling
granular explanations of the contribution of each feature [24,27]. Figure 4a is the SHAP
summary plot, showing how the top parameters affect yield prediction. The plot lists in
descending order the average of absolute SHAP values and shows the correlation between
input variables and the output. For a numerical feature example, as the “step_aa_T” pa-
rameter value decreases, the SHAP values decrease to −0.06 where a negative SHAP value
means a negative impact on prediction as shown in Equation (4). To examine partial depen-
dency, SHAP value scatterplots describe the effect of changing an individual feature [41,42].
In Figure 5, the SHAP values scatterplot with the “step_aa_T” parameter shows the details of
the nonlinear relationship, in which the EDS yield is roughly proportional to the parameter
values and differs only near the peak value. As shown in the other plot of Figure 5, the
“step_ax_P” feature implies that low and high sensor values are related to lowering yield
relatively. As an example of a categorical parameter, the “step_s_R_53” parameter shows
its yield-enhancing influence with the SHAP value up to 0.04 on the summary plot, as
shown in Figure 4a and on the individual feature’s SHAP value scatter plot in Figure 5.
The “step_s_R_52” parameter is the other category processing condition of “step_s_R_53”
converted from one-hot encoder, and they show opposite responses in the summary plot,
as shown in Figure 4a. As shown in the waterfall chart of Figure 4b, these two categorical
parameters share SHAP values, while they mean the wafer is processed with the operating
condition presented by “52” instead of “53.” As shown in Figures 4 and 5, the “53” process
condition is supposed to increase yield in the prediction model. Practically, these parameters
represent process design change, and the influence on yield is consistent with the domain
knowledge that “53” is the advanced process of the step.
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The waterfall charts indicate how each feature influences the expected target prediction
for a specific data point as shown in Figure 4b–d. In other words, SHAP waterfall charts
illustrate how the explanation model decomposes the model output for an instance (i.e., a
wafer) as the summands of plus and minus SHAP values of each feature as Equation (4).
The basic prediction yield of the RF model is E

[
f̂ (x)

]
, and the predicted yield according to

the summation of SHAP values for each example wafer is f̂ (x) [30,44]. This approach can
help analysts perform investigations on specific low-yield wafers. For example, Figure 4c
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shows that a specific low-yield wafer is processed by a specific unit, as represented by the
plus value for “step_ac_U_8” and it has a yield lowering effect of −0.04. The sum of all
the SHAP values of 983 parameters for the wafer, f̂ (x) of Figure 4c, is −0.694, and the
predicted yield of the wafer by the RF model, f (x), is −0.673. The SHAP value method
decodes the model well for the data point and illustrates the stepwise prediction. The
top parameters identified in the expandable framework overlap with those of individual
dataset-based models, as shown in Figure S1. The proposed approach can replace iterative
modeling for each dataset and save effort and time.

3.3. Discussion and Limitation

The proposed framework to predict EDS yield with extensive wafer fabrication data
is demonstrated with real-world data. The dataset consists of diverse data applied for
practical yield analysis in the field. The 10 different machine learning models are optimized
and compared, to select the best performing prediction model for the data. The chosen
RF model shows improved prediction scores, which are 0.520 for MAE and 0.648 for
RMSE. We employ the XAI method, i.e., SHAP, to explain the model and present the
relationship between the key features and the yield. Thus, this study raises the possibility
of practical yield prediction with expandable fabrication data and interpretation through
SHAP analysis.

The cautious application of feature analysis is necessary because these relationships,
inferred from the SHAP value scatterplot over feature values, do not guarantee causality.
Therefore, the counteraction on the fabrication process should be considered carefully with
domain knowledge and proper experiments to establish possible causation. Knowledge
derived based on the XAI analysis is possibly considered a controlling factor in the wafer
fabrication processes, although the physical or chemical background of this phenomenon
needs to be discussed and examined through further research. The framework goes beyond
simply predicting the yield and listing important features, that is XAI informs how each
feature is reflected in the yield prediction and how the yield of each wafer is predicted based
on the correlation in the model. Therefore, the XAI method increases the transparency of
the model to improve usability.

The limitations of this study must be acknowledged. For new trial operating condi-
tions, modification and retraining of the model are necessary. Some datasets from wafer
fabrication are not included in the analysis because of their characteristics. As a typical
example, metrology and inspection data have a high missing rate, making the utilization of
these data challenging in this framework. Nevertheless, there is research that proposes a
method for identifying the key steps in fabrication processes using missing value imputa-
tion [22] and other studies that focus on advanced imputation mechanisms, such as virtual
metrology (VM) [45,46]. Moreover, there is various information related to quality control,
e.g., line condition, equipment maintenance [17,47], source material change, and engineers’
notes. Without wafer information, these datasets necessitate a complicated conversion
in order to serve as the input dataset for this modeling. To counteract the expansion of
input variables in future studies, the principal component analysis can improve dimen-
sion reduction efficiency during preprocessing [13,19,48]. Another limitation is that the
yield-improving action based on the analysis results needs to consider various aspects of
manufacturing, such as production efficiency, equipment maintenance costs, and serial
changes to other features. For example, some time span parameters affect the yield, as
shown in Figure 5; however, the restriction on the features would affect prior and later
steps and require advanced scheduling [49,50]. In addition, deep learning models are not
studied in this paper due to the limited number of data points but are necessarily included
in future research [12,51]. Furthermore, a study of the SHAP method with non-tree-based
models is required, considering other candidate models such as KNN and SVR [42,52].
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4. Conclusions

This paper proposes an EDS yield prediction and interpretation framework with
different types of variables amassed from the wafer fabrication procedure. To test and
validate the framework, real fabrication data from a semiconductor manufacturer covering
general investigation fields of yield analysis is used. In this case study, the model using the
RF algorithm is selected as the best performing prediction model, following the evaluation
process. The results provide experimental evidence of improved prediction scores, and
the XAI-based analysis specifically provides insight into the relationship between wafer
fabrication conditions and EDS yield. The analysis results identify the key features, the
explanation of low or high yield wafers, and the relationship between features and yield
values. Furthermore, the granular SHAP values enhance the understanding of the influence
on yield by the principal features.

The findings of this study have several important implications to improve the man-
ufacturing yields of various products with diverse fabrication data. The attempt to use
different kinds of data as input variables is important not only to increase the prediction
performance but also to have knowledge from every corner related to wafer fabrication.
This method is expandable to cover a broad database of complex manufacturing environ-
ments. Moreover, XAI assisting scrutiny would bring progress on yield enhancement and
manufacturing management.

The limitations of this study are explained here: Despite the inclusion of various
manufacturing factors, numerous factors possibly related to yield are not part of this
investigation. Some factors are mentioned at the end of the previous section, datasets with
missing values and the other factors need to set the way to handle the data, including
the condition of the fabrication line, the condition of source material, and information on
preventive maintenance or excursions of equipment, among others. Another limitation
is that the analyzed yield lowering factors, such as specific units of equipment, were not
experimentally implemented in real chip production.

In future work, the various factors need to be explored and included to build more ex-
panded models. Practical experiments in semiconductor manufacturing are also suggested
to validate the yield prediction model and the impact of the features, and the possibility of
yield enhancement in the field can be tested. Another objective of further research would
be the development of an integrated yield enhancement system containing automated
yield analysis on the basis of this study. The system can help domain engineers in the field,
including non-expert machine learning users, make data-driven decisions.

Supplementary Materials: The supporting files can be downloaded at: https://www.mdpi.com/
article/10.3390/app13042660/s1, Figure S1: SHAP value plots for the top parameters of individual
dataset models, Example code.
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