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Abstract: Automated retina vessel segmentation of the human eye plays a vital role as it can signifi-
cantly assist ophthalmologists in identifying many eye diseases, such as diabetes, stroke, arteriosclero-
sis, cardiovascular disease, and many other human illnesses. The fast, automatic and accurate retina
vessel segmentation of the eyes is very desirable. This paper introduces a novel fully convolutional
autoencoder for the retina vessel segmentation task. The proposed model consists of eight layers,
each consisting of convolutional2D layers, MaxPooling layers, Batch Normalisation layers and more.
Our model has been trained and evaluated on DRIVE and STARE datasets with 35 min of training
time. The performance of the autoencoder model we introduce is assessed on two public datasets,
the DRIVE and the STARE and achieved quite competitive results compared to the state-of-the-art
methods in the literature. In particular, our model reached an accuracy of 95.73, an AUC_ROC of
97.49 on the DRIVE dataset, and an accuracy of 96.92 and an AUC ROC of 97.57 on the STARE
dataset. Furthermore, our model has demonstrated the highest specificity among the methods in the
literature, reporting a specificity of 98.57 on the DRIVE and 98.7 on the STARE dataset, respectively.
The above statement can be noticed in the final blood vessel segmentation images produced by our
convolutional autoencoder method since the segmentations are more accurate, sharp and noiseless
than the result images of other proposed methods.

Keywords: deep learning; image segmentation; blood vessel detection; retinal fundus images;
convolutional autoencoder; medical imaging

1. Introduction

The eyes are very sensitive and numerous diseases are associated with them. Many
critical human diseases can manifest in the retina and originate from the eye, brain, or car-
diovascular system. First and foremost, cardiovascular or otherwise cardiological diseases
concern a whole set that affects the heart and the blood vessels. According to the World
Health Organization (WHO), over 17.1 million people die from cardiovascular diseases in
2019 [1] and the ones that can be studied and analysed through image representation of
the eye are arteriosclerosis and hypertension. Arteriosclerosis is a disease in which fats,
cholesterol and other substances are built up inside the walls of the arteries (the arteries
become thick and stiff), resulting in “narrowing” or even entirely restricting blood flow [2].
Generally, about 2.2 billion people around the world suffer from eye and vision problems.

Hypertension constitutes a chronic condition in which the blood pressure in the arteries
is elevated and the so-called Hypertensive Retinopathy (HR) constitutes another retina
disease caused by high blood pressure levels. Moving on, another equally important disease
is Diabetic etinopathy (DR), which constitutes a disease which affects the retinal vasculature,
resulting in loss of vision. Diabetic retinopathy is the most common cause of blindness
and vision loss in the western world in patients aged 20 to 65. It is caused by lesions in the
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vessels of the retina, as it occurs mainly in diabetic patients. Diabetic retinopathy caused by
elevated blood sugar levels, is a complication of diabetes in which retinal blood vessels leak
into the retina, accompanied by the swelling of the retinal vessels [3]. Diabetic retinopathy
can cause the growth of new blood vessels [4]. Another disease that sthe visualisation
of the retina can detect is a stroke, which is a condition where the blood supply stops in
a part of the brain. As a result, the brain cells do not receive oxygen and die. Scientists
have discovered the vessels of the ‘eye’s retina can help diagnose and treat stroke. In
addition, many pathological changes in the retinal vessels constitute direct reflections of the
fundus disease. An indicative example is glaucoma and age-related macular degeneration,
a condition of macular degeneration that can cause the progressive loss of central vision.
Lastly, glaucoma is caused by the high pressure of fluids in the interior of the eyes, causing
gradual destruction of the human optic nerve and, as a result, the absence of the peripheral
and the end of the ‘patient’s total vision. Thus, by analysing the length, width and branch
structure of retinal vessels, doctors can detect the above diseases early and provide a proper
cure for them.

The visualisation of the retina is now done with the help of fundus cameras. Gullstrand
developed back in 1910 the notable fundus camera, which is the main concept still used
today for image the retina [5]. With these cameras, there is a direct representation of the
condition of the retina and therefore documented diagnostic access to the most common
or rare diseases of the retina. Fundus cameras create a two-dimensional image from the
three-dimensional surface of the eyes using a system that contains a low-energy microscope
to which a CCD camera fits. The general procedure is as follows. First, the patient should sit
with the chin supported and the forehead positioned properly towards a bar. At the same
time, the device operator focuses and positions the camera correctly before pressing the
button and activating the photo flash. The resulting photo is mainly an upright, enlarged
photo of the retina with standard 30◦, 45◦, or even 60◦ imaging angles and magnification
up to 2.5 times, depending on the system settings [6]. The resulting image of a fundus
camera is illustrated in Figure 1.
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Figure 1. The original image (right), the corresponding ground-truth segmentation masks (middle),
and the corresponding field-of-view masks (left). Example cases from the DRIVE (top) and from the
STARE (bottom).

The retinal imaging procedure takes a digital picture of the back of the human eye. A
detailed representation of the back of the human eye helps ophthalmologists detect many
diseases, such as hypertension, diabetes, stroke and many other cardiovascular diseases.
The fundus camera is the most widely used tool for photographing the eye’s retina. Retina
vessel segmentation is the primary step for the early detection and treatment of various
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eye diseases. More specifically, the evaluation of fundus images has been done manually
and requires a highly skilled ophthalmologist. Through the morphological and topological
changes of the retinal vessels, the latter can detect the existence of pathological situations.

Moreover, manual segmentation can be challenging due to the variety of morphologi-
cal structures eye vessels can have [7]. Automatic segmentation of retinal vessels in fundus
images is crucial since manual segmentation can be time and cost-demanding. All things
considered, computer-aided detection systems for automatic vessel segmentation are in
high demand.

The work of Matsui et al. was one of the first efforts in the literature to present a
methodology for retinal image analysis, which is focused mainly on vessel segmentation [8].
Retinal imaging is now the primary way to care for patients with retinal and other systemic
diseases [9]. Segmenting the vessels from eye fundus photos constitutes a tedious and
demanding procedure in terms of time and carefulness that should be gotten and can
require up to three days for all the observations to be gathered accurately. Blood vessel
segmentation is a procedure performed manually by a specialist doctor and may be prone
to errors. In addition, the daily costs associated with the expert decisions (e.g. ophthal-
mologist) on eye care and the augmenting number of retinal photos to be examined and
analysed constitute the main reasons why an automatic vessel segmentation system should
be adopted.

This article proposes a convolutional autoencoder model, a special stream of convolu-
tional neural networks used to segment retina images. The remainder of the article is as
follows. In Section 2, we present a complete review of the literature and examine recent
related works in the area of eye blood vessel segmentation. After that, Section 3 presents
our model, describes all the input data preprocessing steps, and illustrates the proposed ar-
chitecture of the convolutional autoencoder we designed and developed. The experimental
results of our study are presented briefly also in this section. Then, Section 4 explains the
experimental study and the assessment of the proposed architecture on different public
datasets. Furthermore, it provides a deep and complete comparison of our model with
other recent works in the literature. Finally, Section 5 provides our work’s main conclusions
and draws the main directions for future work.

2. Related Work

Automated vessel segmentation is generally an understandable and well-known
problem [10,11]. Basically, concerning the eye, the primary purpose is to separate the
pixels of a fundus image into two categories: vessel pixels and none vessel pixels. Several
research attempts have been made in the literature for accurate, automatic fundus image
segmentation and evaluation. A detailed overview of methods, systems and approaches
can be found in the works presented in [12,13].

The deep learning category mainly belongs to methods that solve the problem with
classification algorithms. The pixel classification with specific characteristics is a well-
known machine learning technique that classifies the pixels of an image into one or more
classes. The classification of the pixels is usually performed using a Supervised Learning
technique. Vessel segmentation with the help of supervised learning requires two main
steps for making the algorithm work properly. In the first step, the algorithm learns
statically to classify the pixels correctly from already known classifications. In the second
step, which tests how well our algorithm performs, the algorithm classifies images that
have never been examined. The first step concerns the training phase, and the second
one concerns the testing. Then, for the correct evaluation of the classification algorithm’s
supervised functionality, the data used for training and the one for the evaluation must be
completely different.

In the work presented in [14], the authors present an approach where they face the
vessel detection task as a classification problem and develop a CNN (Convolutional Neural
Network). Their network consists of two convolution layers, two pooling layers, one
dropout layer and a loss layer and is formulated to automatically extract the features
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without any preprocessing steps. The proposed CNN achieves 91.99% accuracy and
96.52 AUC on the DRIVE dataset and 92.20% accuracy and 94.40 AUC value on the STARE
data set, respectively.

Authors in the work presented in [15] present a fully convolutional neural network
model used for the blood vessel segmentation task. Moreover, the authors performed
five prepossessing steps on the RGB fundus images: extraction of the green channel,
normalisation, gamma adjustment, and contrast-limited adaptive histogram equalisation.
Finally, the reduction pixels value to the 0–1 range. Then the input given to the 1st
convolutional layer is mainly a 1 × 28 × 28 patch extracted from the preprocessed fundus
photo. Their model consists of 8 layers. The first two are convolutional layers with 32 filters,
the third is a max-pooling layer, and after that, the fourth and the fifth are convolutional
layers with 64 filters. The sixth one is an upsampling layer, and the seventh and the eighth
are convolutional layers with the same size padding and 32 filters. Finally, the output
dimensions are 1 × 28 × 28. The model reports high performance and significantly on the
DRIVE dataset reported 95.33% accuracy and 97.4% AUC score.

Mostafiz et al. introduced two efficient methods for vessel segmentation in retinal
images [16]. Their study approached the segmentation problem using a Fuzzy classifier and
a U-net autoencoder with Residual blocks. The Fuzzy classifier method extracted features
by considering a fundus image’s mean and median properties, using a fuzzy interface
to extract the vessels and post-processing with multi-level threshold and morphological
operation. The second technique utilised an autoencoder model to construct masked
versions of the retinal images, highlighting only the blood vessels. Both methods achieved
state-of-the-art performance, with the Fuzzy system algorithm achieving 95.72% accuracy
on the DRIVE test data and the autoencoder network achieving 96.75% accuracy. Their
work performed various preprocessing steps on the retinal fundus images, including green
channel extraction, complement operation, CLAHE to improve vessel contrast, Gaussian
filter to reduce noise, and normalisation by subtracting the background image from the
CLAHE applied to the image.

Another work was the construction of an ensemble of deep convolutional neural
networks by Maji et al. [17]. More precisely authors developed a computational imaging
framework for detecting blood vessels in fundus-coloured images using deep and ensemble
learning. They used an ensemble of 12 deep convolutional neural networks to segment
vessel and non-vessel areas of the image. Their work explained that ensemble learning
involves using multiple models to solve an artificial intelligence problem. Their model
consisted of three convolutional layers and two fully connected layers, and they trained it
using randomly selected patches from the training images. They evaluated their model on
the DRIVE dataset and achieved a maximum average accuracy of 94.7% and an area under
the curve of 92.83% for vessel detection.

Moreover, Jin et. al. [18] introduced the Deformable U-Net (DUNet), which uses
U-shape architecture to exploit local features of retinal vessels for end-to-end segmentation.
They applied three preprocessing steps to the original images: normalisation, CLAHE
operation, and gamma correction, and used 48x48 patches to reduce overfitting during
training. The DUNet consists of an encoder, a decoder, and a framework, with deformable
convolutional blocks, used to model vessels of various shapes and scales. The blocks
consist of a convolution offset layer, a convolution layer, a batch normalisation layer, and
an activation layer. The model was evaluated on four public datasets (DRIVE, STARE,
CHASE_DB1, HRF), achieving a global accuracy of 95.66, 96.41, 96.10, and 96.51 and an
AUC of 98.02, 98.32, 98.04, and 98.31 for vessel segmentation.

A noticeable related work in the field concerns the RV-GAN model introduced by Kam-
ran et al. [19]. More specifically, the RV-GAN architecture has a new multi-scale generative
architecture, which uses two generators and two multi-scale autoencoding discriminators
for better micro-vessel localisation and segmentation. They used two generators since it
produces high-quality domain-specific retinal image synthesis. The proposed generators
and discriminators consist of both downsampling and upsampling blocks. The downsam-
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pling block comprises a convolution layer, a batch-norm layer and a Leaky-ReLU activation
function consecutively. In contrast, the upsampling block consists of a transposed convolu-
tion layer, batch-norm, and Leaky-ReLU activation layer successively. To avoid the loss of
fidelity, Kamran et al. introduced novel weighted loss, which incorporates and prioritises
features from the ‘ ’ discriminator’s decoder over the encoder. By this, combined with
the fact that the ‘ ’ discriminator’s decoder attempts to determine actual or fake images
at the pixel level, it better preserves macro and microvascular structure. The evaluation
metrics of RV-GAN are very promising for DRIVE, STARE and CHASE_DB1 datasets. The
model achieves AUC of 98.87, 99.14, and 98.87 and global accuracy of 97.90, 96.97 and
97.54, respectively.

Another GAN architecture proposal was introduced in the work presented in [20],
where authors introduced the M-GAN model. This new conditional generative adversarial
network uses ACE preprocessing and a generator and discriminator to conduct retinal
vessel segmentation. A preprocessing based on ACE is applied to the input fundus image.
ACE mimics appropriate adaptive behaviours of the human visual system, such as colour
constancy and lightness constancy [21]. The M-generator has deep residual blocks for
robust segmentation, and the M-discriminator has a deeper network for efficient adversarial
model training. A multi-kernel pooling block is added to support scale invariance, and
the M-generator and M-discriminator both have downsampling layers to extract features.
The M-generator also has upsampling layers to create segmented retinal blood vessel
images, while the M-discriminator has a fully connected layer for decision-making. The
performance of the M-GAN model was verified on DRIVE, STARE, CHASE_DB1 and HRF
datasets and reported a global accuracy of 97.06, 98.76, 97.36, 97.61 and an AUC of 98.68,
98.73, 98.59, 98.52 on each dataset respectively.

Ultimately, Zhang et al. introduced a pyramid U-Net for the segmentation task of
vessels task [22]. The structure of the encoder and decoder part of pyramid U-Net has
pyramid-scale Aggregation blocks based on the widely used ResNet blocks. Two optimisa-
tions are applied to pyramid-scale aggregation blocks (PSABs) to enhance performance:
pyramid inputs enhancement and deep pyramid supervision. In the encoder, scaled input
images are added as extra inputs to PSABs, while in the decoder, scaled intermediate
outputs are supervised by the scaled segmentation labels. To assess the performance of
their approach, authors run experiments on the DRIVE and the CHASE_DB1 datasets. The
performance of the pyramid model on the DRIVE dataset got a global accuracy of 96.15%
and an AUC of 98.15, while on the CHASE_DBE dataset, the accuracy and the AUC were
96.39% and 98.32, respectively.

3. Methodology
3.1. Datasets

In the context of our work, we train and evaluate our auto-encoder with two publicly
available datasets, the DRIVE [23] and the STARE [24]. The DRIVE dataset is the acronym
for the Digital Retinal Images for Vessel Extraction and has been used for comparative
studies on the segmentation of retinal blood vessels. The images that the DRIVE dataset
consists of have been obtained from a diabetic retinopathy program in Holland. In total,
40 images have been selected; more specifically, 33 of those images do not show any sign of
diabetic retinopathy, while 7 show some signs of diabetic retinopathy. Specifically, these
images were captured using a Canon CR5 non-mydriatic 3CCD camera with a 45-degree
FOV (Field of View). The plane resolution of DRIVE is 565 × 584 pixels and a 24-bit grey
scale resolution. The dataset’s images have been appropriately cropped around the Field of
View and a mask image is also provided that delineates the Field of View of each image. The
40 images we used to create two sets, the training and the test set, and each one of those two
sets has 20 images. Also, for images of the training set, there is available a single manual
segmentation of the vasculature of each image. So, the testing set has 20 images, some
masks, and manually labeled vessel structures. Specifically, for the testing set images, two
manual segmentations are given; one is used as golden-standard, and the other one aims to
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assist in comparing the segmentations of the computer method to those of an independent
expert. In addition, a mask image is also available for each one of the retinal images and
indicates the same region of interest. An experienced ophthalmologist participated in the
study to instruct all human observers to segment the vasculature manually. They were
requested to mark the pixels for which they were confident for at least 70% that these pixels
were vessels.

The STARE (Structured Analysis of the Retina) Project was created at the University of
California in 1975. The project was supported by the U.S. National Institutes of Health [24].
Around thirty individuals from various backgrounds contributed to the project, including
medicine, science, and engineering. The Shiley Eye Center at the University of California,
San Diego, and the Veterans Administration Medical Center in San Diego provided the
clinical data and images. The STARE dataset includes 20 colour fundus images with a
resolution of 700 × 605 pixels, captured using a TopCon TRV-50 fundus camera. The
dataset also contains the manually labeled vessel structure for each image, with two sets of
annotations provided by two experts in the field. The first set of annotations is considered
to be the ground truth. Half of the images in the STARE dataset depict healthy retinas,
while the other half depict retinas with various diseases..

3.2. Image Preprocessing and Data Preparation

In this section, we explain the seven preprocessing steps we applied to our fundus
images to improve the performance of our method. The first step concerns the conversion
of the image of the eye retina to a greyscale image. This image conversion is suitable since
it can produce detailed characteristics of the vessels. Retaining the optical characteristics
in medical images to detect the most important features is essential. In the context of eye
fundus images, examining blood vessels is crucial in diagnosing eye disorders. While the
RGB images of the retina are sufficient for further analysis, converting them to grayscale
images has shown more promising outcomes. Previous experiments have shown that
single-channel images can produce better contrast between the vessels and background
than RGB images [25]. It is essential to be noted that the original-coloured images have
the dimensions of: (image_height, image_width, 3) due to the three channels- Red, Green,
and Blue. In contrast, after the greyscale conversion, the images have the dimensions of:
(image_height, image_width, 1).

After the greyscale conversion, our next step is to normalise our images. In statis-
tics and statistical applications, normalisation can have many meanings. Generally, the
normalisation of values refers to rescheduling them to a different scale. Normalising data
is a crucial step in machine learning, as it ensures that each input, such as the pixels in
each image in this case, has a similar distribution of data. Normalisation makes our model
converge faster in the training phase. Data normalisation is performed by subtracting the
average from each pixel and dividing the result by the standard deviation. This procedure
will result in a centred Gaussian curve distribution around zero. The pixel values of our
images must be positive, so we choose to normalise our data in the range [0, 255].

The third step of our proposed preprocessing is using the morphological operation
Erosion. The natural effect of this operator is to erode the boundaries of regions with
foreground pixels, in this context, the pixels representing the vessels. What we actually do
with the Erose function is to enlarge the retinal blood vessels to make them more visible
and emphasise the small vessels that are difficult to segment.

Histogram Equalization is a computer image processing technique to enhance image
contrast. It is applied as the fourth step in preprocessing. This method typically increases
the overall contrast in images when the data has similar contrast values. As a result, areas
with low local contrast are given a higher contrast. This step significantly improves the
performance of our model since, after this step, the blood vessels in the images are far
more visible. So our model can recognise them much easier. So far, in the original fundus
images, we have applied greyscale conversion, normalisation, morphological operation,
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and histogram equalisation [25]. An example case of the preprocessing steps is illustrated
in Figure 2.
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Feature scaling is a method used to change the range of the data to another scale.
As the range of the data values can vary widely, feature scaling is a necessary step in
data preprocessing when using algorithms in machine learning. After the previous four
preprocessing steps, the pixel values of the images have values in [0, 255], where a value
of 0 represents a black pixel, and 255 represents a white one, respectively. It is essential to
state that after this step, the pixels of our images are in the range [0, 1], where 0 represents a
black pixel, and 1 represents a white one. The reason why we escalate pixel values to [0, 1]
is that deep network learning usually shares many parameters, and if we do not scale our
entry in a way that results in values fluctuating in similar scope, sharing them within the
network will not be easy, because for example in a part of the image, the weight w will be
huge and in another very small.

In the first five steps, we improved the quality of our fundus images to make the retinal
blood vessels more discernible, especially the smaller ones, which are extremely difficult
to segment. In the following two steps, we enlarge our database due to the pretty small
original dataset (for example, the DRIVE dataset consists of only 20 images for our training
phase). To do so, we create random patches from our images. We chose our patches to have
the size of 48 × 48 and be cropped each time from the processed fundus images randomly.
It must be noted that the corresponding patches are made in the manual segmentation of
blood vessels in images since we will later use them as labels for the supervised training
phase. The size of the patches was selected after experimentation. Due to the smaller size, it
is more efficient to work in patches rather than work on the entire photo given to our model.
In fact, in the training phase, our proposed model has better results in distinguishing the
background of images from FOV (Field of View) since more attention is paid to details
and small blood vessels, which are difficult to segment. After experimental evaluation,
we found that the number of patches with the highest performance is around 100.000. In
Figure 3, example of the patches are illustrated.
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The last step in our preprocessing phase is the data augmentation technique, which
is used to create artificial variations on the existing images to augment the size of our
data. To be more specific, data augmentation generates new and unique images from the
existing dataset using transformation techniques such as zooming or rotating the existing
images. Convolutional Neural Networks (CNNs) require a significant number of images to
train the model effectively. Data augmentation helps our model to outperform and reduce
the chance of overfitting. In the previous step, we created 100.000 random patches from
the eye fundus images, and, in this step, we increased the total number of our dataset to
200.000 patches in total, which significantly improves the metrics that we use to evaluate
the performance of our model, such as accuracy under the curve, global accuracy, specificity,
precision and others. The size of the patches that we use is 48 × 48.

3.3. Methodology and Autoencoder Formulation

As we mentioned before, we approach vessel segmentation as a classification problem.
Indeed, in the context of our work, we built a convolutional neural network, and more
specifically, an autoencoder, which classifies the pixels of a given fundus image to be either
vessel or non-vessel pixels. Our model was trained using supervised learning, meaning
that the manually segmented images helped our network to learn how to detect the vessels
more easily (see Figure 4 for an overview of the process). In the following two sections, we
explain the theoretical background of this unique type of Neural network and present the
layers of our proposed structure.
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Figure 4. The training process: (a) Original image; (b) Random cropped patches with the corre-
sponding cropped manual segmentation for the Supervised training; (c) Snapshot of the proposed
autoencoder; (d) Classification of the image pixels.

3.3.1. Background

Autoencoder is a specific deep learning architecture and, more precisely, a specific
type of feedforward neural network, where both the input and output data are the same
size. With the help of its layers, this network compresses the given input data to a lower-
dimension code and then reconstructs the output based on this representation. Autoencoder
architecture consists of 3 components: the encoder, the bottleneck and the decoder. As
we mentioned above, the encoder is responsible for compressing the input into a coded
representation. This representation is called bottleneck and ‘ ‘it’s the layer where the input
data has lower compression. Finally, in the decoding phase of the autoencoder, the model
learns how to reconstruct the compressed data from the bottleneck layer so that the output
has the exact dimensions as the input. There are many autoencoders, such as feedforward
or LSTM networks. The type of encoder we will build is a fully convolutional autoencoder.

Modelling data that consists of images requires a particular approach in the world of
neural networks. Autoencoders constitute a particular stream of neural networks whose
input possesses the same dimension as the output. Since our input data is images of the
eye retina, it makes sense to use Convolutional Neural Network (convnet) as the encoder
and the decoder, respectively. The autoencoders used for images are large convolutional
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autoencoders due to their significantly better performance. We see a considerable loss of
information when we are stacking our data. Instead of stacking the data, convolutional
autoencoders preserve the dimensions of the input images and extract information gently
and with the help of a layer called Convolutional. In convolutional autoencoders, the
encoding part consists of hidden layers. The decoder has the same layers as the encoder
but is mirrored. So, the encoder and the decoder are symmetrical with each other. This
is not mandatory but is usually how we build our networks. We need to configure four
parameters before continuing with the training phase. These are the number of nodes at
the bottleneck layer (the smaller the number, the bigger the compression is), the number
of hidden layers (it depends on how “deep” we want our network to be), the number of
nodes in every dense layer as well as the loss function too. Below, we explain the types of
layers that we used in our proposed structure.

3.3.2. Hidden Layers

As mentioned, CNNs are a particular network type used on two-dimensional image
databases. The critical feature of convolutional neural networks and hence of convolutional
autoencoders is the convolutional layer that gives the network its name. Convolution is the
simple filter applied to an input that results in activation. Convolution is a linear operation
that involves multiplying a set of weights with the input data using a two-dimensional
array of weights called a filter or kernel. The filter is smaller than the input data, and the
multiplication is performed using a dot product between the filter-sized patch of input and
the filter. This systematic application of the same filter across an image allows the filter to
detect a specific type of feature in the input, allowing it to discover that feature anywhere
in the image. When a filter is multiplied with the input array, it produces a single value.
A two-dimensional array of output values is obtained by repeatedly applying the same
filter to different parts of the input, known as a feature map. The feature map represents
a filtered version of the input [26]. The feature map implicitly depends on the learning
model class used and on the input space where the data lies. Feature maps are produced
using feature detectors or filters on either the input image or the feature map generated by
the previous layers. These feature maps can provide useful information about the internal
representations of the input for each Convolutional layer in the model. Visualising these
feature maps can help gain insight into these representations. Convolutional layers also
have a parameter which is called stride. The stride is the number of pixels the filter moves
over the input array. When the step equals one, the filters are shifted by 1 pixel at a time.

When we build a neural network, we need an activation function that takes the linear
neuron output as input and generates a non-linear output based on it. The activation
function can be a step transfer function, a linear transfer function, a non-linear transfer
function or a stochastic transfer function. ReLU is one of the most widely used activation
functions in neural networks today. It is usually added to some layers in neural networks
to add nonlinearity, which is required to handle ‘ ‘today’s complex and non-linear datasets.
ReLU is more well-known than older activate functions, such as Sigmoid or Tanh, because
it can be computed without a considerable cost, although it faces various problems when
we use it. Its output is ReLU (x) = max (0, x). First, ReLU is not continuously differentiable.
The gradient cannot be computed at x = 0, the breaking point between x and 0. Being
unable to compute the gradient is not a big problem, but it can very lightly impact training
performance. Second and graver, ReLU set all values < 0 to zero. This is beneficial regarding
sparsity, as the network will adapt to ensure that the most critical neurons have values of
>0. However, this is also a problem since the gradient of 0 is 0. Hence neurons arriving at
large negative values cannot recover from being stuck at 0 [27]. What if we cause a small
but significant leak of information to the left part of ReLU, i.e., where the output is always
stuck to 0? The answer is the Leaky ReLU (rectified linear activation function), widely used
in many machine learning applications. Specifically, it is an improvement of the traditional
ReLU, and we recommend it be used more often. So, the activation function that we use is
Leaky ReLU and is mathematically defined as f(x) = {0.01x if x < 0 or x otherwise}.
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Deep learning neural networks will likely quickly overfit a training dataset with few
examples. This phenomenon happens when the model fits very well in the training dataset.
Therefore, it becomes difficult for the model to adapt to new examples that do not belong
to the training dataset. To make it more understandable, our model can recognise specific
images from the training dataset, not general patterns. Overfitting affects our model
resulting in deficient performance when the model is evaluated on new data. Dropout
layers can help us to prevent overfitting. The term “Dropout” refers to leaving out some
nodes in the neural network. Using Dropout in a neural network makes the training process
more turbulent, which compels nodes in a layer to randomly accept or reject responsibility
for the input data [28]. In other words, the Dropout layer refers to ignoring a set of nodes
during the training phase which are randomly selected. Therefore, the Dropout layer forces
a neural network to learn more about the key features and on top of that, the training time
of each epoch is shorter.

When we have features with values in the range 0–1 and some others in the range 1–100,
we suggest normalising these values, so the training process of our model becomes faster. If
this technique benefits the input layer, why do we not do the same for the values inside the
dense layers of our convolutional autoencoder that constantly change? Batch normalisation
layers reduce the overfitting effect and, similar to the Dropout layer, add a little noise to the
activations of each hidden layer. Therefore, if we use batch normalisation layers, we will
use fewer Dropout layers, which is good because we lose much information. However, we
should not rely solely on the Batch normalisation layers as using a combination of Dropout
layers is more efficient.

The convolutional autoencoder consists of the encoder and the decoder. In the de-
coding part, the model learns how to reconstruct data from the compressed encoder
representation by having the same layers the encoder has but mirrored. As we explained
before, the MaxPooling layer helps us compress the input image (Downsampling), so
now it makes sense that we must restore the compressed image to its original dimensions.
Here is where the Upsampling layer takes over action. The upsampling layer is a simple
version of Unpooling (the opposite of the pooling layer), where it repeats the input’s rows
and columns.

Finally, the need for transposed convolutions generally arises from the desire to use
a transformation going in the opposite direction of a standard convolution, i.e., from
something that has the shape of the output of some convolution to something that has
the shape of its input while maintaining a connectivity pattern that is compatible with
said convolution. Hence, choosing a convolutional autoencoder would be a good idea in
the decoding part of our model to use the Conv2Transpose layer. There are convolutional
transpose layers for two and three dimensions; we chose the ones for two because our
images have two dimensions. The Conv2DTranspose layers learn many filters, similar
to the superficial Convolutional layer. We used multiple times the Conv2DTranspose
layer in the decoder of our proposed model, reflecting the Convolutional layers of the
encoder. We could use the superficial Convolutional layer in the Decode part as well, but
the performance of our model was significantly lower.

3.3.3. Autoencoder

The proposed model consists of eight layers. Each comprises convolutional2D layers,
MaxPooling layers, Batch Normalisation layers and more. Our autoencoder includes the
encoder, the decoder and the bottleneck. The encoder consists of the first 4 big layers and
the decoder of the rest 4. The immense layers in the network are the input and output
layers located at the beginning and end of the network, respectively. The input of our
model are the patches that we cropped in the preprocessing steps, so the input has (48,48,1)
dimensions. As for the output, it has the exact dimensions as the input (definition of
autoencoder). Also the second layer consists of 3 levels. The first level has a Convolution
layer with a number of filters equals to 8 and a LeakyReLU layer, the second level has a
convolutional layer which has 32 filters, a LeakyReLU and also a Batch Normalization layer,
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and the third level has a convolutional layer with 32 filters and parameter strides = (2,2)
which act like a MaxPooling layer, a LeakyReLU and a Batch Normalisation layer. The
compression our patches have so far is from their original to 24 × 24. Then the second layer
consists of 3 levels. The first level has a convolutional layer with a number of filters equal
to 256 and a LeakyReLU layer, the second level has the previous two layers again, but with
the addition of a Dropout layer, and finally, the third level is a MaxPooling layer with size
(2,2), which means it compresses our patches to 12 × 12.

The third layer has two levels: a convolutional layer with 512 filters, a LeakyReLU layer,
and a Dropout layer. Then, in the second level of our third layer, we use a MaxPooling layer
for further compression, and now our patches have the most significant compression sized
as 6 × 6. Then, as we mentioned before, the decoding part of an autoencoder reconstructs
the data and, more importantly, has the same layers as the encoder but mirrored. For
example, the fourth layer has the same layers as the third, but we replace the MaxPooling
layers with the Upsampling layers for the reconstruction. Also, it is important to mention
that we replace all the Convolutional layers except the last one with the Conv2DTranspose
layer in the decoding part. The architecture of our proposed method is presented in
following in Figure 5.
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Figure 5. The architecture of the proposed autoencoder. Each column of hidden layers represents a
bigger layer.

Our database’s final size, the patches’ dimensions, the number of epochs our model
will be trained, and the batch size will be chosen after experimentation. We chose to crop
200.000 patches randomly from the original fundus images since we did not see any further
improvement of our model in the training phase. Then, the most efficient combination of
the parameters above is: patch size = (48, 48, 1) (the third dimension is one because our
patches are greyscaled), number of epochs = 4 and batch size = 8.

4. Experimental Study
4.1. Performance Evaluation

For the evaluation procedure of our convolutional autoencoder, we used several
metrics, which are the following: global accuracy, AUC_ROC, which is the Area-Under-
Curve (AUC) of Receiver-Operating-Characteristic (ROC), specificity, f1-score, sensitivity
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and precision. We also represented the ROC curve for each dataset. These evaluation
metrics were calculated based on the True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN) rates. Global accuracy is a metric used to measure the ratio of
correctly classified pixels to the total number of pixels in the dataset. Specificity measures
the proportion of the negatives correctly identified, while sensitivity, also known as recall,
measures the proportion of the positives correctly identified. Finally, F1-score concerns
the recall’s harmonic mean (average) and precision [29]. Those metrics have the following
mathematical definitions:

ACC =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

F1Score =
2 × (Recall × Precision)

Recall + Precision

The final results of our proposed model are promising. We tested our autoencoder
on both the DRIVE and the STARE databases. First, the DRIVE dataset’s metrics are
AUC_ROC = 97.49, accuracy = 95.73, specificity = 98.57, f1-score = 81.0, precision = 88.0 and
sensitivity = 75.0. On the STARE dataset, the metrics are AUC_ROC = 97.57, accuracy = 96.92,
specificity = 98.7, f1-score = 79.0, precision = 82.0 and sensitivity = 75.45. Finally, the ROC
curves of our introduced model on each of the databases mentioned above are presented in
Figure 6. Also, an example segmentation case of our methodology is illustrated in Figure 7.
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Figure 6. ROC curves of our model. On the left is the ROC curve for the DRIVE dataset and the ROC
curve for the STARE on the right.

4.2. Comparison against Existing Methods

A deep and concrete comparative study has been performed to provide insight into
the performance of our introduced method and compare its performance towards recent
related works in the field. Comparing our autoencoder with other models (see Tables 1
and 2), we notice that our proposed autoencoder is trained in fewer epochs and performs
quite well. Also, it has the highest specificity. It should be noted that the training process of
other models lasts many hours since they are trained with 100–150 epochs. Specifically, the
SA-UNet proposed by Guo et al. [30] is the newest model with the best overall performance
trained in 150 epochs. On the other hand, our proposed convolutional autoencoder is
trained significantly faster (within 35 min), and its results are very competitive, with the
specificity surpassing any other model’s. Specificity essentially measures the percentage of
correct black pixels in evaluation images. This can be seen from the final result, after which
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the images are pretty “clean” without the noise we observe in other models. For example,
an attempt at automatic segmentation of the blood vessels by the model of Fan et al. is
shown in Figure 8. On the left, we can observe that the octave convolutional neural network
adds enough noise in the final attempt to segment the retina image.
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On the contrary, our convolutional autoencoder has a more precise result without
noise. These photos belong to the STARE database. It is important to emphasise that
in the DRIVE database, each image’s masks are available, allowing us to calculate the
performance metrics only in the FOV (field of view) and not in the pixels of the background.
In the STARE database, the masks are unavailable; therefore, the metric evaluation results
include all the images’ pixels.

Table 1. Performance comparison of the introduced convolutional autoencoder on the DRIVE dataset.

Model AUC_ROC ACC SPEC F1 SCORE PREC SENS

Guo et al. [14] 96.52 90.64 92.83 90.66 92.47 89.90

Jin et al. [18] 98.02 95.66

Park et al. [21] 98.68 97.06 98.36 83.24 83.46

Zhang et al. [22] 98.15 96.15 98.07 82.13

Hou et al. [31] 96.10 94.10 96.90 73.50

Cheng et al. [32] 96.48 94.74 97.98 72.52

Zhao et al. [33] 84.80 94.40 97.80 71.60

Fu et al. [34] 95.23 76.03
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Table 1. Cont.

Model AUC_ROC ACC SPEC F1 SCORE PREC SENS

Azad et al. [35] 97.88 95.59 97.84 82.22 80.12

Guo et al. [30] 98.64 96.98 98.40 82.63 82.12

Roychowdhury et al. [36] 96.20 95.20 98.30 72.50

OUR MODEL 97.49 95.73 98.57 81.27 88.00 78.40

Table 2. Performance comparison of the introduced convolutional autoencoder on the STARE dataset.

Model AUC_ROC ACC SPEC F1 SCORE PREC SENS

Guo et al. [30] 98.75 97.13 97.98 81.91 86.64

Alom et al. [37] 99.14 97.12 98.62 84.75 82.29

Mou et al. [38] 98.58 96.85 97.61 83.91

Lei et al. [39] 98.12 96.48 97.68 82.75

Tian et al. [40] 94.92 97.71 70.19

Yang et al. [41] 95.16 97.31 67.13

Shukla et al. [42] 95.73 98.63 70.23

Orujov et al. [43] 86.50 88.06 83.42

Mahapatra et al. [44] 96.01 98.02 68.46

OUR MODEL 97.57 96.92 98.70 79.00 82.00 75.45
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Hou et al. [31] 96.10 94.10 96.90   73.50 

Cheng et al. [32] 96.48 94.74 97.98   72.52 

Zhao et al. [33] 84.80 94.40 97.80   71.60 

Fu et al. [34]  95.23    76.03 

Azad et al. [35] 97.88 95.59 97.84 82.22  80.12 

Guo et al. [30] 98.64 96.98 98.40 82.63  82.12 

Roychowdhury et al. [36] 96.20 95.20 98.30   72.50 

OUR MODEL 97.49 95.73 98.57 81.27 88.00 78.40 

Table 2. Performance comparison of the introduced convolutional autoencoder on the STARE dataset. 

Model AUC_ROC ACC SPEC F1 SCORE PREC SENS 

Guo et al. [30] 98.75 97.13 97.98 81.91  86.64 

Alom et al. [37] 99.14 97.12 98.62 84.75  82.29 

Mou et al. [38] 98.58 96.85 97.61   83.91 

Lei et al. [39] 98.12 96.48 97.68   82.75 

Tian et al. [40]  94.92 97.71   70.19 

Yang et al. [41]  95.16 97.31   67.13 

Shukla et al. [42]  95.73 98.63   70.23 

Orujov et al. [43]  86.50 88.06   83.42 

Mahapatra et al. [44]  96.01 98.02   68.46 

OUR MODEL 97.57 96.92 98.70 79.00 82.00 75.45 
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suitable for producing reconstructed images without noise, and it was very efficient. So, 

Figure 8. Comparison against existing method. (a) An attempt of automatic segmentation by the
Octave Convolution Neural Network [45]. (b) The corresponding automated vessel segmentation of
our proposed convolutional autoencoder.

Therefore, our initial idea was to build an automatic encoder by specifying a structure
suitable for producing reconstructed images without noise, and it was very efficient. So, we
built a convolutional autoencoder, a unique stream of a neural network, for the blood vessel
segmentation task. Through the evaluation of our model, we saw that it is competitive with
other proposals using past models and has the best specificity value. Another advantage
of our autoencoder is the short time the training process takes. More specifically, our
model takes up to 35 min to learn to automate segment fundus images. Practically, our
model differs in the final results since the images produced are much cleaner without
noise and without the creation of vessels that do not exist. In Tables 1 and 2, performance
comparisons of our model towards works in the literature are presented. Finally, it is worth
indicating that we designed, formulated and evaluated our model in a machine with the
characteristics in Table 3.
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Table 3. Hardware Characteristics.

Operating System Ubuntu 16.04.7 LTS

CPU Intel (R) Core (TM) i7-5960X 3.00 GHz

RAM 62 GB DDR4

GPUs GPU0: G-FORCE GTX 1080 8 GB
GPU1: G-FORCE GTX 1080 8 GB

The experimental results reveal pretty impressive findings. First, the results highlight
the quite good performance of our model. Our autoencoder achieved quite good accuracy.
Our model’s quite good performance is the architecture we designed and the balanced
number of layers it consists of. In addition, the results also point out that our model reports
the best performance among the models in the literature in terms of specificity. Indeed,
in this regard and to the best of our knowledge, the best performance is achieved by our
model on both the STARE and DRIVE datasets. Finally, our model achieves a quite good F1
score while the sensitivity is on a good level compared to the related works in the literature.
Last but not least, it is worth indicating that we designed, formulated and evaluated our
model in a machine with the characteristics in Table 3.

5. Discussion and Conclusions

Through this research, we understood the vital role of bioinformatic applications in
modern times. Fast, automatic and accurate vessel segmentation for diagnosis can even
save lives. We approached the challenge of segmenting retinal blood vessels by treating
it as a classification task. Since our work involves image processing, we chose the model
of automatic encoders. For the construction of our auto-encoder, we chose convolutional
layers. With its gradual construction, we understood what is more efficient for the model
due to the variety of morphological structures eye vessels can have. The final convolutional
auto-encoder, therefore, is trained on two datasets in a concise amount of time (35 min),
having a competitive performance compared to other models that have been proposed
in the past. The specificity metric has the highest value compared to all other models in
both databases. This metric calculates the percentage of true negatives, and to be more
understandable, it expresses how many pixels were correctly predicted as black, i.e., as
non-vessels. The high specificity value can also be perceived practically through the images
produced in the testing process. More specifically, as we have discussed in the comparison
section, the corresponding images produced by our model are accurate, sharp and “cleaner”
in the lines of the vessels and without excess noise.

Our research and the model we introduced could be applied in real situations since
the proposed convolutional auto-encoder is efficient enough compared to other models. In
particular, it would be possible to construct a system that would have as input the auto-
matically segmented images of the retinal blood vessels and as an output the information
regarding the patient and if they are suffering from a disease or not.

There are some directions that future work could examine. First, a more extensive scale
evaluation could be designed, and additional datasets such as the High-resolution fundus
and the CHASE-DB1 image databases to get an even better insight into the performance of
our proposed method. Moreover, a deeper investigation-study of the layers could be the
key to increasing the performance. Adding noise, such as Gaussian, could be examined to
improve the model since it could help it better distinguish the vessels from the background.
Also, another future work direction is the examination of techniques for creating the feature
maps such as spatial pyramid networks. The examination of this direction concerns an
essential aspect of our future work. Finally, the formulation of a web application with an
interface to facilitate ophthalmologists in using our method in real-time easily constitutes
another direction for future work..
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14. Guo, Y.; Budak, Ü.; Vespa, L.J.; Khorasani, E.; Şengür, A. A retinal vessel detection approach using convolution neural network
with. Measurement 2018, 125, 586–591. [CrossRef]

15. Dasgupta, A.; Singh, S. A fully convolutional neural network based structured prediction approach towards the retinal vessel
segmentation. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), IEEE, Melbourne,
Australia, 18–21 April 2017; pp. 248–251.

16. Mostafiz, T.; Jarin, I.; Fattah, S.A.; Shahnaz, C. Retinal blood vessel segmentation using residual block incorporated U-Net
architecture and fuzzy inference system. In Proceedings of the 2018 IEEE International WIE Conference on Electrical and
Computer Engineering (WIECON-ECE), IEEE, Chonburi, Thailand, 14–16 December 2018; pp. 106–109.

17. Maji, D.; Santara, A.; Mitra, P.; Sheet, D. Ensemble of deep convolutional neural networks for learning to detect retinal vessels in
fundus images. arXiv 2016, arXiv:1603.04833.

18. Jin, Q.; Meng, Z.; Pham, T.D.; Chen, Q.; Wei, L.; Su, R. DUNet: A deformable network for retinal vessel segmentation. Knowl.
-Based Syst. 2019, 178, 149. [CrossRef]

19. Kamran, S.A.; Hossain, K.F.; Tavakkoli, A.; Zuckerbrod, S.L.; Sanders, K.M.; Baker, S.A. RV-GAN: Segmenting retinal vascular
structure in fundus photographs using a novel multi-scale generative adversarial network. In Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2021; pp. 34–44.

20. Park, K.B.; Choi, S.H.; Lee, J.Y. M-gan: Retinal blood vessel segmentation by balancing losses through stacked deep fully
convolutional networks. IEEE Access 2020, 8, 146308. [CrossRef]

21. Rizzi, A.; Gatta, C.; Marini, D. A new algorithm for unsupervised global and local color correction. Pattern Recognit. Lett. 2003, 24,
1663–1677. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://en.wikipedia.org/wiki/Arteriosclerosis
http://doi.org/10.1259/bjr.20130832
http://www.ncbi.nlm.nih.gov/pubmed/24936979
http://www.ncbi.nlm.nih.gov/pubmed/4594062
http://doi.org/10.1109/RBME.2010.2084567
http://doi.org/10.1007/s10439-022-03058-0
http://doi.org/10.3390/s21062027
http://doi.org/10.1016/j.cmpb.2018.02.001
http://doi.org/10.1016/j.media.2020.101905
http://doi.org/10.1016/j.measurement.2018.05.003
http://doi.org/10.1016/j.knosys.2019.04.025
http://doi.org/10.1109/ACCESS.2020.3015108
http://doi.org/10.1016/S0167-8655(02)00323-9


Appl. Sci. 2023, 13, 3255 17 of 17

22. Zhang, J.; Zhang, Y.; Xu, X. Pyramid u-net for retinal vessel segmentation. In Proceedings of the ICASSP 2021–2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Toronto, ON, Canada, 6–11 June 2021;
pp. 1125–1129.

23. RIVE, Digital Retinal Images for Vessel. 2004. Available online: https://drive.grand-challenge.org/ (accessed on 20 January
2023).

24. Goldbaum, M. STructured Analysis of the Retina, STARE Dataset. Available online: https://cecas.clemson.edu/~ahoover/stare/
(accessed on 20 January 2023).

25. Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld,
K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [CrossRef]

26. Brownlee, J. How Do Convolutional Layers Work in Deep Learning Neural Networks? Machine Learning Mastery, 17 April 2019.
Available online: https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/ (accessed on
20 January 2023).

27. Chris, Leaky ReLU: Improving Traditional ReLU, Machine Curne, 15 October 2019. Available online: https://www.machinecurve.
com/index.php/2019/10/15/leaky-relu-improving-traditional-relu/ (accessed on 20 January 2023).

28. Brownlee, J. A Gentle Introduction to Dropout for Regularizing Deep Neural Networks, Machine Learning Mastery, 3 December
2018. Available online: https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/ (accessed on 20
January 2023).

29. Ghoneim, S. Accuracy, Recall, Precision, F-Score & Specificity, Which to Optimize on? Towards Data Science, 2 April 2019.
Available online: https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3
f11124 (accessed on 14 March 2022).

30. Guo, C.; Szemenyei, M.; Yi, Y.; Wang, W.; Chen, B.; Fan, C. Sa-unet: Spatial attention u-net for retinal vessel segmentation. In
Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, Milan, Italy, 10–15 January 2021;
pp. 1236–1242.

31. Hou, Y. Automatic segmentation of retinal blood vessels based on improved multiscale line detection. J. Comput. Sci. Eng. 2014, 8,
119–128. [CrossRef]

32. Cheng, E.; Du, L.; Wu, Y.; Zhu, Y.J.; Megalooikonomou, V.; Ling, H. Discriminative vessel segmentation in retinal images by
fusing context-aware hybrid features. Mach. Vis. Appl. 2014, 25, 1779–1792. [CrossRef]

33. Zhao, Y.; Rada, L.; Chen, K.; Harding, S.P.; Zheng, Y. Automated vessel segmentation using infinite perimeter active contour
model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 2015, 34, 1797–1807. [CrossRef]

34. Fu, H.; Xu, Y.; Lin, S.; Kee Wong, D.W.; Liu, J. Deep vessel: Retinal vessel segmentation via deep learning and conditional
random field. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention;
Springer: Cham, Switzerland, 2016; pp. 132–139.

35. Azad, R.; Asadi-Aghbolaghi, M.; Fathy, M.; Escalera, S. Bi-directional ConvLSTM U-Net with densley connected convolutions. In
Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27 October–2
November 2019.

36. Roychowdhury, S.; Koozekanani, D.D.; Parhi, K.K. Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 2015,
62, 1738–1749. [CrossRef]

37. Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med.
Imaging 2019, 6, 014006. [CrossRef]

38. Mou, L.; Chen, L.; Cheng, J.; Gu, Z.; Zhao, Y.; Liu, J. Dense dilated network with probability regularized walk for vessel detection.
IEEE Trans. Med. Imaging 2019, 39, 1392–1403. [CrossRef] [PubMed]

39. Wu, H.; Wang, W.; Zhong, J.; Lei, B.; Wen, Z.; Qin, J. Scs-net: A scale and context sensitive network for retinal vessel segmentation.
Med. Image Anal. 2021, 70, 102025. [CrossRef] [PubMed]

40. Tian, F.; Li, Y.; Wang, J.; Chen, W. Blood vessel segmentation of fundus retinal images based on improved frangi and mathematical
morphology. Comput. Math. Methods Med. 2021, 2021, 4761517. [CrossRef] [PubMed]

41. Yang, J.; Huang, M.; Fu, J.; Lou, C.; Feng, C. Frangi based multi-scale level sets for retinal vascular segmentation. Comput. Methods
Programs Biomed. 2020, 197, 105752. [CrossRef] [PubMed]

42. Shukla, A.K.; Pandey, R.K.; Pachori, R.B. A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed.
Signal Process. Control. 2020, 59, 101883. [CrossRef]
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