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Abstract: Industrial defect detection methods based on deep learning can reduce the cost of traditional
manual quality inspection, improve the accuracy and efficiency of detection, and are widely used in
industrial fields. Traditional computer defect detection methods focus on manual features and require
a large amount of defect data, which has some limitations. This paper proposes a texture surface
defect detection method based on convolutional neural network and wavelet analysis: TSDNet. The
approach combines wavelet analysis with patch extraction, which can detect and locate many defects
in a complex texture background; a patch extraction method based on random windows is proposed,
which can quickly and effectively extract defective patches; and a judgment strategy based on a
sliding window is proposed to improve the robustness of CNN. Our method can achieve excellent
detection accuracy on DAGM 2007, a micro-surface defect database and KolektorSDD dataset, and
can find the defect location accurately. The results show that in the complex texture background, the
method can obtain high defect detection accuracy with only a small amount of training data and can
accurately locate the defect position.

Keywords: CNN; wavelet transform; surface defect detection; surface defect detection; small defects

1. Introduction

In the 1860s, human society began transforming from agricultural to industrial civ-
ilization. Machine production was gradually replacing manual labor. The development
of the industry significantly promoted the progress of society. Since the 1950s, computer
technology has made great progress and therefore was gradually combined with many
other fields. In industrial manufacturing, surface defects are inevitable in the production
process. There are many kinds of defects in the industry, such as scratches and cracks on
steel surfaces, wear and stains on fabrics, scratches and impurities on glass products. The
surface defects will not only affect the appearance and comfort of these products but also
cause security incidents. At the same time, for factories, the low product quality will not
only waste raw materials and increase production costs but also damage the reputation of
the factory. Therefore, product quality control has always been the focus of attention. In
the past, many factories used to use artificial methods to complete detection tasks, which
are inefficient and unreliable. It will also bring greater human cost to the factories. With the
development of computer technology, people focus on automatic detection technology and
want to use the computer to complete the task of product quality control.

In recent years, with the integration and application of Informatization and industrializa-
tion, many links of industrial production have been replaced by computers. Computer vision
technology has been successfully applied to the surface defect detection of industrial products.
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This paper proposes a texture surface defect detection approach based on CNN and
wavelet transform, which can detect tiny defects in complex texture backgrounds. Compared
with the existing approaches [1–3], this approach can achieve high detection accuracy with a
small amount of training data. The general process of this approach is shown in Figure 1.

The main contributions of this paper are listed below:

1. To solve the problem of tiny defect detection, a new method based on wavelet analysis
and patch extraction is proposed, which can detect and locate many kinds of tiny
defects in complex texture backgrounds with only a small amount of training data.
Experimental results have verified its good performance.

2. In the data preprocessing phase of our method, we propose a method which can automati-
cally extract defective patches based on binary label images. Experiments show that this
method can greatly reduce the workload of building a defective training dataset;

3. A judgment strategy based on the sliding-window is proposed, which can improve
the robustness of CNN networks. It can reduce the detection error probability in
complex backgrounds.

The remainder of this paper is organized as follows. In Section 2, we firstly introduce
the dataset and some theoretical background information, including the CNN network
and theories of wavelet analysis. Then the procedures of our approach are introduced in
detail, including the CNN network we used, the random-window method in the training
phase, the sliding-window method, and judgment strategy in the defect detection phase.
In Section 3, implementation details are illustrated. Experimental results are analyzed
and compared with other well-known defect detection methods in Section 4. Finally, the
conclusions are given in Section 5.

Figure 1. The general process of this paper’s method. The wavelet-transformed images are extracted
as defective and non-defective patches, respectively. Feed it into the network to train the model.
When testing, use a sliding window to input the wavelet-transformed image into the model for
judgment and decision-making.

2. Related Work
2.1. Defect Detection

In traditional defect detection methods, people often design a specific algorithm for
a type of defect to complete the defect detection task. For fabric defects detection, a
detection method-based low-rank representation technique was proposed in the Ref. [4].
The technique can achieve good textile detection results without training data. Many
researchers also use Gabor filters to detect fabric defects [5–9]. To detect jean fabric,
the Ref. [5] proposed an improved algorithm based on the optimized Gabor filter. It
selected the optimal filter from 24 Gabor filter banks by the one-dimensional image entropy
algorithm and the two-dimensional image entropy algorithm. For wood defect detection,
the work of [10] designed a novel method to detect and measure defects on the surface
of trunks by using high-density 3D information. It used a segmentation algorithm to
detect singularities on the trunk surface and a Random Forests machine learning algorithm
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to find the defect area. The results show that the method has high accuracy in defect
detection and classification. For glass products, the Ref. [11] proposed a method to detect
fibreglass components in the marine environment using terahertz waves. For steel products,
a new Haar–Weibull variance model was proposed for steel surface defect detection in
an unsupervised manner [12]. In the Ref. [13], the researchers proposed a robust sparse
representation-based detection system to detect and classify hidden defects in radiographs
of castings. In the Ref. [14], a multi-pair pixel consistency model was developed to represent
the statistical relationship between each pair of pixels in a defect-free image. The algorithm
developed based on this method can achieve a 100% defect detection rate.

The above studies used traditional defect detection methods, often designed for specific
defects, and can obtain high accuracy. With the development of computing power and deep
learning, current researchers prefer to use convolutional neural networks to detect defects
automatically [15]. Convolutional neural networks have many advantages in the field of image
processing [16], and gradually occupy the leading position in image classification [17].

In the Ref. [18], researchers used CNN to detect concrete cracks. The results show that
the method performs well and can find concrete cracks in the actual situation. CNN is also
used in the field of medical detection. In the Ref. [19], researchers trained an 18-layer CNN
to detect glaucoma. In addition, there are also some people using CNN to detect fabric
defects [20,21].

However, CNN also has some disadvantages, such as requiring a lot of training data
and computing power. Furthermore, training a CNN using only original images may result
in losing some indistinguishable features. In order to improve the performance of CNN
networks, many researchers combine wavelet analysis with CNN and use the wavelet
transform to analyze the multi-scale characteristics of data.

The Ref. [22] proposed a new method called MSCDAE, which uses only defect-free images
for model training. The method utilizes CDAE to reconstruct image patches at different Gaussian
pyramid levels and utilizes the reconstruction residuals of training patches to display detection
results. The results show that the multimodal result fusion strategy can improve the defect
detection performance. In the Ref. [23], the researchers used information in the wavelet domain
as input to train a CNN model. Their method improves the learning ability, eliminates the
overfitting phenomenon, and improves the efficiency of object detection. In the Ref. [24], Cui et
al. fused multiple pyramid feature maps to enhance texture information in data preprocessing.
These methods brought us some inspiration.

We have recently noticed some new defect detection methods, and they have achieved
good performance. In the Ref. [25], a four-stage appearance defect detection model was
proposed, which uses a simplified UNet model to segment candidate regions and builds
a lightweight network based on candidate regions, achieving a fast inference speed. In
the Ref. [26], a texture defect detection method based on principal component analysis
and histogram-based outlier scoring was proposed, which requires only a small number
of unlabelled samples and has low computational complexity. In the Ref. [27], Shen et
al. developed a hybrid robust convolutional autoencoder to detect defection under noise.
They designed a new FDD loss function to suppress the noises and constructed the PCDF
module to enhance the robustness. In the Ref. [28], the researchers proposed a novel motor
fault detection scheme based on one-class tensor hyperdisk. They used wavelet packet
decomposition to extract feature tensors from motor novel multi-source signals for OCTHD
training and used the decision function obtained from OCTHD training for detection.

2.2. Convolutional Neural Network

The convolutional neural network (CNN) is one of the representative algorithms of
deep learning, which is already widely used in natural language processing [29,30], image
recognition [31–34], image segmentation [35–37], and so on. CNN can automatically extract
features from huge amounts of data and generalize the results to the same type of unknown
data. In digital image processing, CNN can effectively extract features from the image,
reduce the computation and improve the model’s efficiency.
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2.3. Wavelet Analysis

Wavelet analysis is the most powerful tool in the field of signal and information
processing, which is widely used in signal filtering, image denoising, image fusion, image
edge detection and so on [38]. In image processing, wavelet transform is usually used to
divide the image into different frequency bands. The image to be analyzed can be observed
from multiple scales. In large-scale space, only the general appearance of the image can be
observed; in small-scale space, we can observe the details of the image. The multi-scale
observation method can extract some features that are not easily observed in a single scale.

A function ψ(t) is called a mother wavelet if it has finite energy and ψ(ω) satisfy the
condition given by Equation (1):

Cψ =
∫ +∞

−∞

|ψ(ω)|2
|ω| dω < ∞ (1)

where ψ(ω) is the Fourier transform of ψ(t). Then we generate a wavelet-set ψa,b(t) from
ψ(t) by dilating and translating Equation (2):

ψa,b(t) =
1√
|a|

ψ

(
t− b

a

)
a, b ∈ R, a 6= 0 (2)

where is the dilating factor and is the translating factor. For the one-dimensional continuous
function f (t), its wavelet transform is as follows:

W f (a, b) =
1√
|a|

∫ +∞

−∞
f (t)ψ

(
t− b

a

)
dt (3)

Image is a two-dimensional discrete signal. To transform it, we need to discretize the
dilating factor and translating factor, and then extend the one-dimensional wavelet transform to
two-dimensional. The multiresolution decomposition of an image is represented by a series of
approximations and details in sub-images. Figure 2 illustrates the results of applying one level
of wavelet decomposition, where L, H, V and D represent low-frequency coefficient, horizontal
high-frequency coefficient, vertical high-frequency coefficient and diagonal high-frequency
coefficient. The decomposition results of the real image are shown in Figure 3.

Figure 2. One level of wavelet decomposition. L, H, V, D represent low-frequency coefficient, horizontal
high-frequency coefficient, vertical high-frequency coefficient and diagonal high-frequency coefficient.

Figure 3. The decomposition results of the real image. The right side is the decomposed four different
frequency submaps.
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3. Method
3.1. System Overview

The dataset used in this approach is weakly labelled, and CNN can automatically
extract and learn the features from the image, so the CNN network is applied in this
work. In view of the previous work [1–3], because of the great differences between the
background texture in the dataset, researchers have to use a lot of data to train the CNN
network. However, In the field of deep learning, a large amount of training data is often
difficult to get. Additionally, it will not only greatly increase the training time, but also the
overall computation. To solve the above problems, this approach uses wavelet transform in
the data preprocessing phase. The low-frequency part obtained after the image wavelet
transform is the compression of the original image, which is only a quarter of the size
of the original image, but the defects in the original image are still visible. Using small
images can speed up model training and save resources. In order to speed up the training
speed, reduce the training data and improve the detection accuracy, this approach uses the
information in the wavelet domain as model input. In the model training phase, in order to
overcome the challenge that the defect area is small, this paper proposes a random-window
method to extract patches from the training images, and then uses the patches to train the
CNN network. In the defect detection phase, this paper uses the sliding-window method
and judgment strategy to solve the problem of background interference. First, we extract
patches from the image to be detected using the sliding-window method. Then, all the
patches are sent to the CNN network to judge whether there are defects. Finally, after
considering the defect condition of the original image, the step of the sliding-window
and other factors, we set a threshold. When the number of defective patches exceeds the
threshold, the image is considered defective. By adjusting the threshold to find the best
average accuracy, the best threshold is determined. Figures 4 and 5 show the process of
this approach in the model training phase and defect detection phase, respectively.

Figure 4. The process of this method in the model training phase. The original image and wavelet
image are divided into patches and sent to the network for training respectively.

3.2. CNN for Defect Detection

As shown in Figure 6, an 11-layer convolutional neural network is designed. The input
of this network are patches, which come from the training image. The size of the patch
is 64 × 64 pixels. The kernel size of each convolutional layer is always 3 × 3, and each
convolutional layer is followed by a pooling layer. The size of the pooling filters decreases
from 32 × 32 to 3 × 3, and the pooling strategy adopted in all the pooling layers is max-
pooling, which can learn the edge and texture structure of the image. In addition, to keep the
shape of the feature map, we apply the zero-padding strategy after each convolution. Finally,
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the dimension of the last fully connected layer is 2. The value of the output represents the
probability of a defective image and a non-defective image, respectively.

Figure 5. Into patches and then sent to the two models for judgment.

Figure 6. The architecture of our CNN networks for defect detection.

3.3. Random-Window Method

In the model training phase, we need to extract defective and non-defective patches
(64 × 64 pixels) from the training image, and then we use the patches to train the CNN
networks. For the non-defective patches, they can be randomly extracted from the non-
defective images. For the defective patches, they must be extracted near the defect area
to ensure that the patches contain the defect area. There are 2100 defective images in the
DAGM2007 dataset in total, and the defect area of some images is not obvious. Therefore,
there will be a huge amount of work if the defective patches are extracted by humans. In
addition, the process of extracting defect patches is actually a process of gathering defect
parts, and the defected parts will occupy the main area of the patch. Training with these
patches improves model recognition accuracy.

In Figure 7, it can notice that the label image in the DAGM2007 dataset is a binary
image, the background is black, and the defect area is marked with a white ellipse. We can
scan the label image along the x-axis and y-axis, respectively, and find four points which
are tangent to the ellipse. According to this, we can find the center of the ellipse which
is also the center of the random-window. Then we generate a series of random numbers
as an offset of the random-window in the x-axis and y-axis directions, respectively. The
value of the offset should match the defect area’s size and the random-window’s size to
ensure that there are defect areas in the random-window. Results show that this random-
window method is very effective under the appropriate offset and can automatically extract
defective patches which are required in our approach.
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Figure 7. Label image (left) and defect image (right) in DAGM. The black spot is the center of the
defect, the red rectangle is the defect patch we extracted after offset.

3.4. Sliding-Window Method

In the defect detection phase, each image to be detected needs to extract several patches
(64 × 64 pixels) using the sliding-window method. Then the patches are detected one by
one using the CNN networks. Using the sliding window can comprehensively extract
image features, and combined with the proposed decision strategy it can effectively solve
the problem of background interference. Figure 8 shows the segmentation method using
the sliding-window. The size of the window is 64 × 64 pixels. In the DAGM2007 dataset,
the window moves along the rows and columns over the image with a 32-pixel stride. In
this way, 225 patches can be extracted from the original image (512 × 512 pixels), and
49 patches can be extracted from the low-frequency sub-image in the wavelet domain
(256 × 256 pixels). In the micro-surface defect database, the stride is set to 16 pixels.
Therefore the patch number of the low-frequency sub-image in the wavelet domain
(240 × 320 pixels) is 204.

Figure 8. The sliding-window method in DAGM 2007. Extract all 64 × 64 patches in the image in 32
strides for prediction.

3.5. Judgment Strategy

In the defect detection phase, the patches are detected one by one using the CNN networks.
After that, each patch corresponds to an output, which also represents the defect probability
of the patch. As shown in Figure 9, each element of the matrix represents the probability that
there are no defects in the patch. On the right of Figure 9 is the low-frequency sub-image in
the wavelet domain (256× 256 pixels) to be detected. It can be seen that our method can not
only judge whether there are defects in the image, but also roughly find the location of defects.
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It should be noted that the size of the sliding-window is 64 pixels, and the step is 32 pixels in
DAGM, so there is partial overlap between patches. That means the element position in the
probability matrix does not match the position of the patch in the image.

If the prediction probability of 0.5 is used as the threshold to distinguish defective images
from non-defective images, it can be found that the element in the lower right corner of the
probability matrix of Figure 9 is 0.23, which means the CNN model predicts the patch is
defective. However, as you can see from the right image in Figure 9, the patch in the lower right
corner is non-defective. In our judgment strategy, the prediction error of a few patches will
not affect the final judgment. Because of the overlap in the process of extracting patches by the
sliding-window method, at least four defective patches are extracted from each defect area in
DAGM. In the judgment strategy of the defect detection stage, a threshold can be determined
by comprehensively considering the size of the defect area, the accuracy of model, the step of
the sliding-window and other factors. When the number of defective patches is greater than the
threshold, it is considered that the image to be detected is defective. Under this strategy, the
defect detection method is robust to background interference. Figure 10 shows a non-defective
image and its probability matrix as a comparison.

Figure 9. A defective image (right) and its probability matrix (left). The number in the box indicates
the probability that the patch is non-defective.

Figure 10. A non-defective image (right) and its probability matrix (left). The number in the box
indicates the probability that the patch is non-defective.
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4. Experiments
4.1. Dataset
4.1.1. DAGM2007

The German Association for Pattern Recognition (DAGM) and the German Chapter
of the European Neural Network Society (GNNS) launched a competition for industrial
defect detection. They provided a dataset called “Weakly Supervised Learning for Indus-
trial Optical Inspection”, including 10 classes’ images. The first six classes of images are
composed of 150 defective images and 1000 non-defective images, while the last four kinds
of images are composed of 300 defective images and 2000 non-defective images. The image
samples of 10 classes with size 512 × 512 pixel are shown in Figure 11, where each of them
is generated by different texture models and defect models, and the defect areas have been
circled with ellipse labels. At present, many algorithms have been tested on this dataset,
but there is still room for improvement. The main reason is that: (1) The defect area is only
weakly labelled by an ellipse, which means there are some non-defective images in the
ellipse; (2) compared with the whole image, the defect area is very small, and most of them
are not obvious; and (3) the background texture of some images varies a lot.

Figure 11. The image samples of 10 classes in DAGM2007 dataset. Defects are marked with red ellipses.

4.1.2. Micro-Surface Defect Database

The micro-surface defect database was collected by Song et al. [39]. There are two classes
of images in this dataset, where one is called the spot-defect image (SDI) and the other is
called the steel-pit-defect image (SPDI). There are 20 images in the first class and 15 images in
the second class, where some images may contain more than one defect. The image samples
of this dataset with a size of 640 × 480 pixels are shown in Figure 12, where the defect area is
marked with a red ellipse. In the silicon steel strip, the spot-defect is one of the most common
defect types in the micro-surface defect, and the defect in SDI is only 6× 6 pixels. As for SPDI,
the defect is a strip-shaped hollow, and the defect area is relatively bright. It can be found that
there are many strong interferences in the background of this kind of image.

Figure 12. The image samples of two classes in the micro-surface defect database. Defects are marked
with red ellipses.
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4.1.3. KolektorSDD Dataset

The KolektorSDD dataset [40] contains 50 folders, each containing about eight images
of metal surfaces with their corresponding labels. The entire dataset has 399 images, of
which 52 are defective and 347 are non-defective. The image’s width is 500 pixels, and the
height varies from 1240 pixels to 1270 pixels. A partial image of the dataset is shown in
Figure 13, where the defect area is marked with a red ellipse. Most of the defects in this
dataset are obvious, but there are many fine-grained spots in the image, which are easy to
interfere with defect detection. In addition, there are only 52 defective pictures, which is
less than the non-defective data. Thus, the data enhancement is required.

Figure 13. The image samples in the KolektorSDD dataset. Defects are marked with red ellipses.

4.2. Experiment Settings

Our model was trained on a Windows computer with NVIDIA GTX1660ti 6G GPU.
The language utilized for the proposed method was Python 3.7. The CNN network was
trained in the framework of Keras 2.0.6 and Tensorflow 1.3.0.

According to the work of He et al. [41], the Kaiming Initialization method is used in
this model, which means the weight parameters are initialized from a Gaussian distribution
with mean 0 and variance, and here N is the number of connections between two layers.
As for the activation function, the ReLU function is used in each layer except the last layer.
The last layer uses the Softmax function as the activation function.

As for the loss function, we chose the cross-entropy function to evaluate the difference
between the predicted probability and the actual probability. In the gradient descent
algorithm, the widely used Adam optimization algorithm was selected. The initial learning
rate was set to 0.000001, and in order to reduce the training time of the model and prevent
the oscillation of loss, the learning rate decay method was also applied.

This method was verified on the DAGM2007 dataset, the micro-surface defect database,
and KolektorSDD dataset. We trained two CNN networks for each class of image with the
same parameters, where one uses the original image, and the other uses the high-frequency
sub-image after one-level wavelet decomposition of the original image.

4.2.1. DAGM2007

There are 150 defective and 1000 non-defective images in the first six classes of the
DAGM2007 dataset. In the last four classes, the numbers are 300 and 2000, respectively. For
the defective patches in the training set, first, we apply the random-window method to extract
6–10 defective patches with a size of 64× 64 pixels from each defective image. Then the patches
are increased by rotations and radial symmetry. For the non-defective patches, we extract
patches from non-defective images randomly. Finally, the training set for our wavelet model has
about 1800 defective patches and 3200 non-defective patches in the first six classes, and about
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3400 defective patches and 7200 non-defective patches in the last four classes. The image and
patch distribution of each class are shown in Tables 1 and 2, respectively.

Table 1. The image distribution of each class.

Class Class2 Class3 Class6 Class7 Class8 Class9 Class10 Total

Train(P/N) 1 120/970 100/800 100/800 200/1800 200/800 200/1800 200/1800 1120/9770
Test(P/N) 1 30/30 50/200 50/200 100/200 100/200 100/200 100/200 530/1230

1 Here “P” indicates defective images, “N” indicates non-defective images.

Table 2. The number of training patches of each class in the wavelet model.

Class Class2 Class3 Class6 Class7 Class8 Class9 Class10 Total

Defective patches 1503 1758 2370 3690 2814 2930 4504 19,589
Non-defective patches 3880 3200 2400 7200 7200 6000 5400 35,280

4.2.2. Micro-Surface Defect Database

In this dataset, we still use the random-window method to create defective patches
and non-defective patches. In our wavelet model, we extracted 885 defective patches
(64 × 64 pixels) and 1146 non-defective patches (64 × 64 pixels) from SDI. As for SPDI, the
number is 703 and 873. In the defect detection phase, here we set the sliding-window step
size to 16 pixels, so each defect area will be extracted by at least 9 patches. For the defect
threshold in SDI, when the number of defective patches in an area was more than 3, we
judged that there were defects. Because the defect in SDPI is bigger than the SDI, we set
the defect threshold to 4 in the SDPI.

4.2.3. KolektorSDD Dataset

Since the heights of the images in the KolektorSDD dataset are inconsistent, we first
scale the images to 1024 × 256 to ensure that the images and labels are scaled with the
same regularity. The dataset is divided into a training set (containing 256 non-defective
and 36 defective) and a test set (containing 91 non-defective and 16 defective). After that, a
random window method is used to extract 64 × 64 patches from the defective and non-
defective images. Since the defect-free data are relatively small, the data enhancement
methods of up–down, left–right, and inversion are adopted. A total of 798 defect-free
patches and 684 defect patches were extracted, and all patches were 64 × 64 pixels in
size. In the defect detection stage, we set the sliding window step size to 32 pixels and
the judgment threshold to 0. As long as there is a patch abnormality, it will be judged as
defective.

4.3. Results and Discussion
4.3.1. DAGM2007

As for the evaluation criteria, we use the true positive rate (TPR), true negative
rate (TNR) and average accuracy rate (AVEACC) as metrics. These metrics are defined
as follows:

TPR =
TP

TP + FN
× 100% (4)

TNR =
TN

FP + TN
× 100% (5)

AVEACC =
∑ TNi + TPi

∑ TNi + TPi + FPi + FNi
× 100% (6)

where TP and FN refer to the number of defective images detected as defective and
non-defective, respectively. TN and FP refer to the number of non-defective images
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detected as non-defective and defective, respectively. AVEACC is the total number of
correctly predicted images in all classes divided by the total number of images in all classes.
TNi refers to the number of non-defective images detected as non-defective in class i.

Figure 14 illustrates our detection results of this method. The non-defective areas are
covered by the black image in the results. It should be noted that the step of the sliding-
window method in the detection phase is 32 px, which is less than the size of patches 64 px, so
some areas of the image to be detected may be judged as both defective and non-defective at
the same time. The results shown in Figure 14 consider the above situation as defective. It can
be found that this method can detect small defects in the image with large texture differences
in the background, and also can roughly determine the location of the defects.

Figure 14. The examples of detection results in the DAGM2007 dataset. The red ellipse marks the
location of the defect. The left image is the image to be detected, and the right image is the detection
result. Our model judges that areas without defects are covered with black images.
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To show the high efficiency of this approach, we trained the wavelet and non-wavelet
models for each class of the DAGM2007 dataset under the same parameters. Here we take
the class 10 images as an example. Figure 15 shows the accuracy curve and loss curve of
the wavelet model and non-wavelet model during the training process. It can be found that
the wavelet model is better than the non-wavelet model in accuracy and learning speed.

Figure 15. The accuracy curve and loss curve of the wavelet model and non-wavelet model.

As for the accuracy of detection, the results and comparisons are shown in Table 3.
Table 3 shows the TPR and TNR of each class in the wavelet model and non-wavelet model. It
can be seen from the comparison between the wavelet model and non-wavelet model that
except Class 8, the performance of the wavelet model is better than the non-wavelet model in
the same training environment. Compared with the work of other researchers, the average
accuracy of our wavelet model is only slightly lower than the method In the Ref. [1,2,25]. In
terms of TPR and TNR, the performance of this method is better than the traditional defect
detection methods proposed in the Ref. [42–44] in most cases, similar to the CNN model
proposed in the Ref. [3], slightly lower than the method proposed in the Ref. [1,2,25].

Table 3. The results of our methods in the DAGM2007 dataset and the comparison of others. Here,
TPR and TNR are recorded by adjusting the threshold of the judgment strategy to make the acc
maximum.

Class
Our Non-
Wavelet
Model

Our
Wavelet

Mode

Xie’s
Model [25]

Racki’s
CNN [1]

Wang’s
CNN [2]

Weimer’s
CNN [3]

Statistical
Features [42]

SIFT and
ANN [43] Weibull [44] Zhang’s

Model [26]

TPR (%)
2 95.8 97.5 100 100 100 100 94.3 95.7 - * 92.5
3 87.0 100 100 100 100 95.5 99.5 98.5 99.8 89.6
6 100 99 100 100 100 100 100 99.8 94.9 93.8
7 66.5 97.5 100 100 - - - - - 95.9
8 100 96.5 100 100 - - - - - 95.9
9 74 99.5 100 100 - - - - - -
10 51 92 100 100 - - - - - -

TNR (%)
2 97.5 99.4 100 99.8 100 97.3 80 91.3 - -
3 98.8 99 100 96.3 100 100 100 100 100 -
6 100 99.9 100 100 100 99.5 96.1 100 100 -
7 100 99.5 100 100 - - - - - -
8 100 98.9 100 100 - - - - - -
9 95.9 100 100 99.9 - - - - - -
10 99.9 99.8 100 100 - - - - - -

AVEACC (%)
96.1 99.3 100 99.7 99.8 99.2 95.9 98.2 97.1 -

* The Refs. [2,3,42–44] only tested the first six classes, so the rest use “-” representations.

Table 4 shows the comparison between our method and others in accuracy and the
amount of training data. Both the methods proposed in the Ref. [1–3] and our method
use CNN to detect defection. Although the accuracy of our method is not much higher
than the above three, the amount of training data in our method is far less than theirs.
For the first six classes of images, our wavelet model has 5037 patches (64 × 64 pixels) on
average for each class. The total training set had 20,631,552 pixels in each class. In the
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Ref. [1–3], the total training set had 209,190,912, 867,631,104 and 221,729,792 pixels in each
class, respectively. As for the last four classes of images, the numbers of our model and
that of the Ref. [1] were 40,710,144 and 419,430,400 pixels, respectively.

Through comparison, it can be found that although the average accuracy of the Ref. [1]
is 0.4% higher than our method, the total training pixels In the Ref. [1] is 10 times bigger
than ours. In the Ref. [2], the average accuracy is 0.5% higher than our method, but their
total training pixels is 42 times bigger than ours. Compared with the Ref. [2], the average
accuracy of our method is not only 0.1% higher than that of them, but the total pixels of our
training set is also one-tenth of them. In the field of deep learning, models usually have
better performance on the trained data. Therefore, the extensive use of data as training sets
can help to improve the prediction accuracy of their model, but it will also increase the
amount of calculation and the training time. The Ref. [25] proposed a four-stage appearance
defect detection model which can achieve high detection accuracy. They used U-Net to
segment those candidate defect regions the image and then make corrections and decisions,
while ours only uses the basic convolutional neural network. In contrast, our focus is on
data processing and judgment, and the complexity of the model is low.

Table 4. The number of pixels in each training set between our method and others.

Class Our Wavelet Model Racki’s CNN [1] Wang’s CNN [2] Weimer’S CNN [3]

Class1–6 20,631,552 px 209,190,912 px 867,631,104 px 221,729,792 px
(5037 × 64 × 64) * (798 × 512 × 512) (52,956 × 128 × 128) (216,533 × 32 × 32)

Class7–10 40,710,144 px 419,430,400 px - -
(9939 × 64 × 64) (1600 × 512 × 512) - -

Ratio 1 10.24 42.05 10.75
AVEACC (%) 99.3 99.7 99.8 99.2

* “5037 × 64 × 64” means in the first six classes of training data, there are about 5037 patches (64 × 64 pixels) in
each class.

4.3.2. Micro-Surface Defect Database

In this dataset, we use Recall and Precision as evaluation criteria. These metrics are
defined as follows:

Recall =
TP

TP + FN
× 100% (7)

Precession =
TP

TP + FP
× 100% (8)

where TP and FN refer to the number of defective areas detected as defective and non-defective,
respectively; and FP refers to the number of non-defective areas that are detected as defective.
Table 5 illustrates the performance of our method in detecting micro-surface defect databases.
Figure 16 illustrates the real detection results. As above, the area detected as non-defective is
covered with a black image. It can be seen from the results that our method has good detection
performance for tiny defects (6× 6 pixel) in a complex background, and only a small amount of
data is needed to meet the training requirements of the model.

Table 5. The performance criteria of detecting SDI and SDPI.

Class TP FP FN Recall (%) Precession (%)

SDI * 24 0 2 92.3 100
SDPI * 24 1 1 96 96

* SDI and SPDI refer to the pot-defect image and Steel-pit-defect image in this dataset, respectively

4.3.3. KolektorSDD Dataset

In this dataset, we still use recall and precision to evaluate model performance, which
are defined as Equations (7) and (8). Table 6 illustrates the performance of our method in
detecting the KolektorSDD dataset.
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The results of the model detection are shown in the Figure 17. The non-defective area is
automatically covered with black, and the defective area is manually marked with a red ellipse.

Figure 16. The examples of detection results in a micro-surface defect database. The red ellipse
marks the location of the defect. The left image is the image to be detected, and the right image is the
detection result. Our model judges that areas without defects are covered with black images.

Figure 17. The examples of detection results in the KolektorSDD dataset. The red ellipse marks the
location of the defect. The left image is the image to be detected, and the right image is the detection
result. Our model judges that areas without defects are covered with black images.
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Table 6. The performance criteria of detecting the KolektorSDD dataset.

TP FP FN Recall (%) Precession (%)

16 0 4 80 100

5. Conclusions

This paper proposed a defect detection method based on CNN networks and wavelet
transform, which can achieve a very high level of accuracy only with a small amount of
training data. The method is evaluated on the DAGM2007 dataset, micro-surface defect
database and KolektorSDD dataset, and the results show that it has a good detection
ability for most defective images and can locate the location of the defect. In addition, by
comparing the wavelet model with the non-wavelet model, it can be found that this method
has faster learning speed and detection accuracy than traditional detection methods. The
method used in this paper to extract defect patches with random windows greatly saves the
time of data preprocessing. There are also sliding window methods and judgment strategies
that can effectively extract image features and make defect judgments. These methods can
also be applied to other detection fields. In the task of small target detection, researchers
can increase the proportion of the target area by extracting patches from the original image,
and can also use wavelet analysis to improve the performance of the CNN model.

At the same time, this method also has some room for improvement. The detection
ability of this method is not good for the image with great background texture difference.
The reason is the random-window method only uses a little information from non-defective
images, which is not enough for CNN training. For the images with great background
texture difference, such as Class 1 and Class 4 in DAGM2007 dataset, the sliding-window
method proposed in the Ref. [2] can be used to extract non-defective patches. In addition,
only using the low-frequency sub-images may lose some important information for the
image which is changing rapidly, such as Class 8. It can consider using high-frequency
images or using high-frequency and low-frequency fusion to process training data. As for
the threshold setting in the judgment strategy, we do not propose specific rules, but set
them based on experience. In the follow-up research, additional experiments can be set up
for different application scenarios and defect sizes to select appropriate thresholds.
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