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Abstract: The spindle of a machine tool plays a key role in machining because the wear of a spindle
might result in inaccurate production and decreased productivity. To understand the condition of
a machine tool, a vector-based convolutional fuzzy neural network (vector-CFNN) was developed in
this study to diagnose faults from signals. The developed vector-CFNN mainly comprises a feature
extraction part and a classification part. The feature extraction phase encompasses the use of convolu-
tional layers and pooling layers, while the classification phase is facilitated through the deployment of
a fuzzy neural network. The fusion layer plays an important role by being placed between the feature
extraction and classification parts. It combines the characteristics and then passes the feature informa-
tion to the classification part to improve the model’s performance. The developed vector-CFNN was
experimentally evaluated against existing fusion methods; vector-CFNN required fewer parameters
and achieved the highest average accuracy (99.84%) in fault diagnosis relative to conventional neural
networks, fuzzy neural networks, and convolutional neural networks. Moreover, vector-CFNN
achieved superior fault diagnosis using spindle vibration signals and required fewer parameters
relative to its counterparts, indicating its feasibility for online spindle vibration monitoring.

Keywords: spindle vibration; vector convolutional neural network; feature fusion; fault diagnosis

1. Introduction

Machine tools are vital in modern industry, and the spindle impacts processing perfor-
mance and the accuracy of machine tools. Unexpected failure of spindle bearings might
result in financial loss. However, no universally accepted method exists for determining
the condition of a machine tool spindle. Therefore, a robust method is required to detect
bearing failures early to prevent costly repairs and machine downtime.

Researchers have proposed numerous methods for diagnosing faults from spindle
vibration signals, such as statistical methods, conventional machine learning methods,
and deep learning methods. Statistical methods include the fast Fourier transform [1],
short-time Fourier transform, Wiener process [2], and Markov model methods [3]. Machine
learning methods include those based on artificial neural networks (ANNs) [4], extreme
learning machines [5], and neuro-fuzzy networks. For instance, a trained ANN model and
an adaptive neuro-fuzzy inference system (ANFIS) were developed for diagnosing faults
in bearings. The features used for training were extracted by time- and frequency-domain
analysis of the vibration signals. The experimental results revealed that the ANFIS-based
framework was superior to the ANN-based framework in diagnosing fault severity [6].
Other scholars combined a statistical method and a machine learning method for classifying
the condition of milling tools. For instance, a discrete wavelet transform was employed to
extract features from vibration signals and a decision tree was performed to select signifi-
cant features. Subsequently, the features were identified by two support vector machine
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(SVM) kernel functions: C-support vector and ν-support vector classifiers. The results
revealed that C-support vector classification yields an accuracy of 94.5%, which is higher
than that of ν-support vector classification [7]. In addition, fuzzy neural network (FNN)
offers the advantages of both neural networks and fuzzy logic, making it a powerful hybrid
tool. FNN integrates expert knowledge into the system and adopts human-like fuzzy
reasoning, which makes the system outputs easier to interpret. A singular value decompo-
sition and FNN were adopted to extract and diagnose the fault features in diesel engine
crankshaft bearing [8]. While the aforementioned techniques exhibit greater versatility in
comparison to models based on physical principles, most of them rely on manual feature
extraction. Moreover, conventional machine learning methods cannot accurately interpret
large amounts of data. In this respect, deep learning approaches, which can extract features
automatically, have recently been employed in prediction and classification tasks.

Fault diagnosis methods based on deep learning have become a key research topic.
In particular, convolutional neural networks (CNNs), which are capable of local feature
connection and weight sharing, have been employed for fault diagnosis. For instance,
a residual learning algorithm was built in a CNN model for alleviating the information
missing during back-propagation. The proposed architecture is able to handle vibration
signal with variable length, and minimal prior knowledge of fault diagnosis is needed. The
results revealed that the proposed CNN model offers a novel fault diagnosis technique
for rotating machinery [9]. Considering the feature extraction ability of deep learning
lacks time delay information caused by faults occurrence, a combination of CNN and long
short-term memory network (LSTM) model was developed in [10]. Finally, the results
were superior to those of CNN, LSTM, ANN, K-nearest neighbor, and support vector ma-
chine models. Furthermore, a CNN framework was applied with the proposed slope and
threshold adaptive tanh activation function to diagnose bearing faults. The relationship of
non-linear features and input signal was established corresponding to the shape of activa-
tion function. The experimental results demonstrated that average accuracy in two bearing
datasets reached 90.00% and 90.77%, respectively [11]. A one-dimensional (1D) CNN long
short-term memory architecture was adopted for predicting the operational life of machin-
ing tools. In that architecture, prior to prediction, an ensemble discrete wavelets transform
is applied to eliminate the noise of the vibration signals, and statistical feature extraction
is performed based on time and frequency domains [12]. A signal-to-image spatial trans-
formation technique was employed to generate grayscale images, thus decreasing the
computation time. In addition, they adopted an attention mechanism for improving the
accuracy and efficiency of the CNN, and their method achieved a classification accuracy of
over 99% [13]. A squeeze-and-excitation-enabled CNN model was proposed for diagnosing
faults in bearings. The model assigns learnable weights to each feature extraction channel,
allowing the model to focus on the major features. The framework achieved a classification
accuracy of over 99% in experiments [14]. A CNN model was integrated with an adaptive
batch normalization algorithm to resolve the drawbacks of the high computation time
and low versatility of deep CNN [15]. A distribution adaptive deep CNN model was
applied for fault diagnosis based on a 1D CNN and achieved an accuracy of 90.29% [16].
A multiscale CNN for feature extraction from signal data was developed for diagnosing
faults in bearings [17]. To solve the data imbalance problem, data augmentation techniques,
such as permutation and time-warping, have been used to fuse the location features of the
input data. The multiscale CNN not only learns better feature expression than conven-
tional CNN by means of multiscale convolution operation but also reduces the number of
parameters required and training time taken. Numerous studies have reported that deep
learning approaches have outstanding feature extraction ability and high classification
accuracy. However, approaches that require many learnable parameters require more
powerful hardware to run, which impedes their applicability.

Literature reviews have revealed that spindle vibration signals can be used to diagnose
bearing failures; however, those approaches have limitations, such as manual feature
extraction and the existence of numerous parameters during model training. Therefore,
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a proper and effective deep learning approach that is able to classify the bearing failures
from different signal conditions is important to ensure the safety of the automation process.
In this study, a vector-based convolutional FNN (vector-CFNN) was developed for fault
diagnosis of spindle vibration signals. Moreover, a fusion layer that connects the feature
extraction part and the classification part was introduced for fusing the characteristics of
feature maps to enhance the model’s classification performance. The contributions of this
study are as follows:

• The vector-CFNN model with fewer parameters was proposed to classify bearing
failure by using spindle vibration signals.

• The fusion layer was introduced to improve the model’s classification accuracy by
fusing the spatial and depth information of feature maps.

• Compared with other methods, vector-CFNN increases accuracy by up to 25% and
requires only approximately 1000 learnable parameters.

The remainder of this paper is organized as follows. In Section 2, the structure of
CNNs is described. In Section 3, the developed vector-CFNN is detailed. In Section 4,
the results of experimental evaluations of the proposed vector-CFNN against existing
approaches, such as ANN, FNN, conventional CNN, and CFNN, are presented. Finally, in
Section 5, the paper is concluded.

2. Conventional CNN

This section presents LeNet-5 [18], a classical CNN model, as an illustrative example
of a prototypical CNN architecture (Figure 1). The LeNet-5 model mainly comprises
an input/output layer, two convolutional layers, two pooling layers, two fully connected
layers, and a flattening layer that precedes the final fully connected layer. These layers are
detailed as follows.
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Figure 1. Architecture of LeNet-5.

2.1. Convolutional Layer

A convolutional layer [19] utilizes a sliding-window mechanism to perform the dot
product operation with the convolution kernel. The convolution results are then calculated
by a sigmoid function to obtain feature maps. The convolutional operation [20] can be
expressed as follows:

Ol
r,c = s

(
n

∑
k=1

kh

∑
i=1

kw

∑
j=1

Ik
(r−kh+i,c−kw+j) ×Wkl

i,j + bl

)
(1)

s(x) =
1

1 + e−x (2)

where Ol
r,c represents the lth feature map; c and r are the column and row of the feature

map, respectively; n denotes the number of input channels; kw and kh are the width and
height, respectively, of a kernel; Wk

i,j is the weight of the ith row and jth column convolution

kernel in the kth channel; Ik
i,j is the input of the ith row and jth column in the kth channel;
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b is the bias; and s(x) is the sigmoid activation function. In a deep network, the gradient
of the sigmoid function becomes smaller as |x| increases. Therefore, in vector-CFNN, the
rectified linear unit (ReLU) function is used in place of the sigmoid function. The ReLU
function can be expressed as follows:

R(x) = max(0, x) (3)

2.2. Pooling Layer

A pooling layer can conduct in only one channel at a time; however, it condenses
the activation levels locally in each channel [21]. Pooling not only reduces the number of
dimensions and volume of computation but also decreases the possibility of overfitting
because fewer trainable parameters are required, resulting in greater tolerance and reduced
distortion. Max pooling and average pooling can be expressed as follows:

Pr,c =


Max pooling

(
MAX

(
Ii,j
)∣∣∣∣ r ≤ i < r + Ph

c ≤ j < c + Pw

)
Average pooling

(
r+Ph
∑

i=r

c+Pw
∑

j=c
Ii,j/(Pw × Ph)

) . (4)

where Pr,c is the result of the pooling calculation corresponding to the feature map; Ii,j is the
input feature map; and Ph and Pw are the height and width, respectively, of the pooling size.

2.3. Flattening and Fully Connected Layer

The flattening process involves a conversion of a 2D feature map into a 1D array by
concatenating the constituent feature vectors. This long vector is then linked to the fully
connected layer, where every neuron is connected to every other neuron, resulting in a high
number of parameters in the CNN model.

3. Vector-CFNN

In this section, a prototypical CFNN architecture is described prior to the developed
vector-CFNN. Furthermore, various fusion methods used in the fusion layer are discussed.

3.1. CFNN

The structure of a CFNN [22], as depicted in Figure 2, can be divided into two parts:
feature extraction and classification. The feature extraction part is similar to a conventional
CNN and comprises convolutional layers and pooling layers. The classification part
comprises an FNN instead of a fully connected layer. In summary, fuzzy logic provides
a symbolic representation of syntactic rules, whereas neurons offer the capability to perform
logical inferences, and the numerical membership function serves as an interface between
the two. The fuzzy rule used in CFNN defines a nonlinear mapping involving linguistic
variables that encapsulate localized process knowledge. Each neuron can be interpreted as
a specific fuzzy membership function, while each link represents the weight of the fuzzy
rule, which means CFNN is able to use fewer parameters in comparison with conventional
neural network [23].
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3.2. Fuzzification Layer

Fuzzy operation is performed in this layer by using IF-THEN rules. The IF-THEN rule
is determined as follows:

Rj = IF u1 is S1j . . . ∧ un is Snj, THEN yj = wj (5)

where Rj represents a fuzzy rule; Sij represents fuzzy sets; and wj is a zero-order Takagi–
Sugeno–Kang weight. A fuzzy set is governed by a Gaussian membership function that
can be expressed as follows:

Sij = exp

{
−
(
ui −mij

)2

2σ2
ij

}
(6)

where exp(·) is the exponential function and mij and σij are the mean and standard deviation
of a fuzzy set Sij, respectively.

3.3. Rule Layer

The firing strength of a fuzzy rule is determined via a product operation of each member-
ship function, and the following equation formally expresses the algebraic product operation:

Rj =
n

∏
i=1

Mij (7)

3.4. Defuzzification Layer

This layer carries out a defuzzification operation, in which the crisp values are com-
puted by aggregating the results of each rule. Subsequently, to determine the output
probability for classification, the softmax function is applied. The defuzzification and
softmax equations are, respectively, presented as follows:

di =
r

∑
j=1

Rjwij (8)

yi = So f tmax(di) = f (di) (9)

f (di) =
edi

∑n
j=1 edj

(10)

where d is the crisp output computed by the defuzzification operation; Rj denotes the firing
strength of jth fuzzy rule; w represents the learnable weight; yi is ith class probability; and
f (·) is the function for normalizing the value to be within 0 and 1.

3.5. Vector-Based Convolution

Although the CFNN can reduce many learnable parameters by replacing fully con-
nected layers, matrix kernels can also produce a great deal of parameter redundancy by
the convolution operation [24]. Vector-CFNN employs a vector-based convolution instead
of a conventional convolution. For instance, a convolutional layer with a kernel size of
(k× k, c) can be convoluted by a kernel size of (k× 1, m) followed by a kernel size of
(1× k, c). Figure 3 presents a schematic of a vector-based convolution. It can effectively
reduce parameters and floating-point operations per second without suffering the loss of
recognition accuracy rate.
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3.6. Fusion Layer

The fusion layer is mainly used to characterize features from feature maps to in-
crease classification accuracy. In this study, five fusion methods (global average pooling
(GAP) [25], global max pooling (GMP), channel average pooling (CAP), channel max pool-
ing (CMP) [26], and network mapping) were adopted. GAP inherently reflects the spatial
information of feature maps, which indicates the robustness of the interpretation of input
images. By contrast, GMP can enhance the local spatial information of feature maps, which
is also important in classification tasks. Furthermore, the generalization ability of a network
can be significantly improved by learning the discriminative features among channels.
Finally, network mapping assigns each feature element a weight and fuses all elements into
a new feature. Network mapping can be expressed using the following equation:

f j =
n

∑
i=1

wzi × xi (11)

where x is a feature element; f is the network mapping result; w is the feature’s weight;
and n is the number of features.

4. Experimental Results
4.1. Data Acquisition

The bearing data provided by Case Western Reserve University were used in experi-
ments [27]. According to the specifications of the bearing data, the faults were intentionally
introduced to the motor bearings via an electrical discharge machining procedure. The
faults were seeded at the inner raceway, outer raceway, or rolling element (i.e., ball). The
actual test conditions of the motor and the bearing fault status were documented for each
experiment. The apparatus is depicted in Figure 4, and the 12-kHz vibration signals of
normal bearing, fault in the inner race, fault in the ball, and fault in the outer race are
illustrated in Figure 5a–d, respectively. The various signal conditions were applied as input
data in different deep learning models (ANN, FNN, CNN, CFNN, and vector-CFNN) and
the output was the fault classification results. Finally, the accuracy and the parameters used
for each model were compared with the vector-CFNN model.
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4.2. Data Pre-Processing

To determine the condition of a bearing, a total of sixty-four 12-kHz vibration signals
were pre-processed to establish a bearing fault diagnosis model. Each signal was split into
several nonoverlapping fragments containing 1024 points. Subsequently, each fragment
was formed into a 32× 32 image as the CNN input data. The data pre-processing procedure
is illustrated in Figure 6. The total number of fragments in each category is listed in Table 1,
and the corresponding fragments and processed images are presented in Figure 7.
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Table 1. Total number of fragments in each category.

Category Numbers of Fragments

Normal bearing 1657
Fault in inner race 1893

Fault in ball 1894
Fault in outer race 3324

Total 8768
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4.3. Evaluation of Fault Diagnosis

The vibration signals were randomly divided into training (70%) and testing (30%)
datasets to assess the stability and generalization capabilities of the vector-CFNN. Addi-
tionally, during model training, the training data (70% of datasets) were split into 8:2 for
model training and validating. Following that, k-fold cross-validation was employed to
validate the efficiency of the model across various subsets. The architecture of the devel-
oped vector-CFNN is displayed in Table 2, and the layer of the fusion method was adjusted
corresponding to GAP, GMP, CAP, CMP, and network mapping. Finally, the performance of
the vector-CFNN was compared with that of ANN, FNN, conventional CNN, and CFNN.
The total parameters used in the models are provided and improvement in the accuracy of
different fusion methods is also presented in Table 3.
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Table 2. The architecture of vector-CFNN.

Layer Kernel Size

Feature extraction

Convolution1 (9, 1), channel = 6
Convolution2 (1, 9), channel = 6
Max_pooling1 (2, 2)
Convolution3 (9, 1), channel = 6
Convolution4 (1, 9), channel = 6
Max_pooling2 (2, 2)

Classification
Fusion Method

Fuzzy Layer
Output Layer

Table 3. Accuracy of fault diagnosis and parameters used in each model.

Model Fusion Method Lowest Accuracy Highest Accuracy Average Accuracy Parameter

ANN - 71.77% 77.32% 75.78% 533,008

FNN - 82.38% 93.98% 88.76% 132,368

CNN - 91.62% 93.77% 92.43% 22,854

CFNN

- 98.68% 98.8% 98.80% 3890
GAP 95.92% 99.86% 97.68% 3578
GMP 95.61% 99.75% 98.06% 3578
CAP 91.82% 99.32% 96.17% 3674
CMP 95.57% 99.58% 98.11% 3674

Network Mapping 99.25% 99.67% 99.49% 6106

Vector-CFNN

- 97.76% 99.61% 98.89% 1910
GAP 99.81% 99.91% 99.84% 1214
GMP 98.73% 99.39% 99.11% 1214
CAP 99.52% 99.79% 99.68% 1502
CMP 99.63% 99.78% 99.71% 1502

Network Mapping 99.61 99.82 99.69% 5278

The average accuracy of ANN and FNN were 75.78% and 88.76%, respectively; how-
ever, the average accuracy of CNN reached 92.43%, which revealed a 3.67% improvement.
The images formed by the time domain signals (Figure 7) have been clearly distinguished
by their image pattern, as the CNN series algorithms showed superior performance than
those of ANN and FNN because of their capacities for strong correlation and characteristic
extraction in image classification tasks. By contrast, CFNN, a combination of CNN and
FNN, increased the classification ability, and achieved around 96~99% average accuracy
when using different fusion methods due to the fuzzy logic’s ability to mimic human
reasoning. Although network mapping fusion method showed 99.49% average accuracy
in CFNN, it needed more parameters than other fusion methods. In order to decrease the
parameter usage in a model, the developed vector-CFNN was evaluated against CFNN; the
accuracy of vector-CFNN improved by 2.16%, 1.05%, 3.51%, 1.60%, and 0.20% while using
GAP, GMP, CAP, CMP, and network mapping fusion methods, respectively. Moreover,
vector-CFNN reduced the number of parameters by 66.07% in comparison with CFNN.

Additionally, various sizes of damage diameter classification (including 0.007, 0.014,
and 0.021 inches) provided by the bearing dataset of Western Reserve University were
examined by vector-CFNN. The lowest, highest, and average accuracy were 95.13%, 98.02%,
and 96.69%, respectively, and the confusion matrix is given in Figure 8. Overall, while
diagnosing the bearing faults, without the addition of a fusion method, the average accuracy
of vector-CFNN was 98.89%, and with fusion methods, the average accuracy of vector-
CFNN was over 99%, which was higher than that of other models. Moreover, in classifying
bearing faults based on different fault diameters, the vector-CFNN can also reach over
95% average accuracy, which showed the capability of fault diagnosis. Specifically, the
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advantages of vector-CFNN are that few parameters are needed while retaining a high
accuracy rate, and the fusion methods can greatly improve the network classification
performance in diagnosing faults.
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5. Conclusions

This study developed vector-CFNN for diagnosing faults in spindles from vibration
signals. The use of vector-based convolution and FNN reduced the number of parame-
ters required during model learning and improved classification accuracy. Furthermore,
five fusion methods were used to improve the feature characterization ability of the model.
In experiments, vector-CFNN with GAP required only approximately 1000 parameters
and achieved the highest average accuracy (99.84%) when evaluated against ANN, FNN,
CNN, and CFNN. In future research, the model can be embedded into portable machines
owing to the fewer parameters required in vector-CFNN; moreover, various kernel sizes
and bearing motor speeds will be considered. Furthermore, different bearing databases can
be used to verify the robustness of the proposed model.
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