
Citation: Hu, L.; Peng, J.; Zhao, T.;

Yu, W.; Hu, B. A Blind Image Quality

Index for Synthetic and Authentic

Distortions with Hierarchical Feature

Fusion. Appl. Sci. 2023, 13, 3591.

https://doi.org/10.3390/app13063591

Academic Editors: Rui Yao and

Hancheng Zhu

Received: 12 February 2023

Revised: 3 March 2023

Accepted: 4 March 2023

Published: 11 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Blind Image Quality Index for Synthetic and Authentic
Distortions with Hierarchical Feature Fusion
Lingbi Hu 1, Juan Peng 1, Tuoxun Zhao 2, Wei Yu 3 and Bo Hu 2,*

1 School of Software and Artificial Intelligence, Chongqing Institute of Engineering, Chongqing 400056, China
2 Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications,

Chongqing 400065, China
3 Engineering and Technical College, Chengdu University of Technology, Leshan 614000, China
* Correspondence: hubo90@cqupt.edu.cn

Abstract: Blind Image Quality Assessment (BIQA) for synthetic and authentic distortions has at-
tracted much attention in the community, and it is still a great challenge. The existing quality metrics
are mildly consistent with subjective perception. Traditional handcrafted quality metrics can easily
and directly extract low-level features, which mainly account for the outline, edge, color, texture, and
shape features, while ignoring the important deep semantics of the distorted image. In the field of
popular deep learning, multilevel features can be acquired easily. However, most of them either use
only high-level features, ignoring the shallow features, or they simply combine features at different
levels, resulting in limited prediction performance. Motivated by these, this paper presents a novel
BIQA for synthetic and authentic distortions with hierarchical feature fusion in a flexible vision-
Transformer framework. First, multiscale features are extracted from a strong vision-Transformer
backbone. Second, an effective hierarchical feature fusion module is proposed to incorporate the
features at different levels progressively. To eliminate redundant information, a simple but effective
attention mechanism is employed after each fusion. Third, inspired by the human visual system,
local and global features from the fusion features are extracted to represent different granularity
distortions. Finally, these local and global features are mapped to the final quality score. Extensive
experiments on three authentic image databases and two synthetic image datasets show that the
proposed method is superior to the state-of-the-art quality metrics for both single-database testing
and cross-database testing.

Keywords: vision-Transformer; image quality evaluation; synthetic distortion; authentic distortion;
feature fusion

1. Introduction

As the main carrier of data transmission and information acquisition, images play an
indispensable role in remote monitoring, medical and health care, digital entertainment,
and many other fields. However, images inevitably suffer different degrees of distortion
in acquisition, transmission, storage, and processing, which reduce the visual quality and
limit the application scope [1–7]. Therefore, it is important to study how to evaluate the
quality of a distorted image in order to monitor the image quality and provide reliable
evaluation feedback for image processing systems. Generally, Image Quality Assessment
(IQA) can be divided into two subcategories, subjective evaluation and objective evaluation.
Subjective methods are the most reliable and direct, but they take a long time, are laborious,
and cannot be applied to systems that require prompt feedback. The main idea of an
objective evaluation is to construct a quality prediction model by extracting the quality-
aware features of distorted images [8–11]. Compared with the former, it has the advantage
of real-time batch processing of a large amount of data so, great efforts have been made
to develop it in recent years. According to the use of clear images, objective assessment
can be classified as a no-reference (blind) quality metric (NR-IQA), a reduced-reference
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quality metric (RR-IQA), and a full-reference quality metric (FR-IQA) [12–20]. In FR-IQA,
in addition to the distorted image, a reference image without distortion is needed; in
RR-IQA, the distorted image and some information of the clear image are needed; so, there
is no complete reference image; and in NR-IQA, only the distorted image is given. In
practice, there is no ideal reference image most of the time, so NR-IQA is more favored by
researchers and is also the focus of this paper.

In the past decade, the research community has made great efforts, and numerous
traditional NR-IQA metrics have been proposed, which can be divided into opinion-
unaware and opinion-aware quality metrics. The former does not require the participation
of subjective scores in the model construction. The idea is to first construct a standard
quality model based on the clear images and then measure its distance from the distorted
image. IL-NIQE [21], which is a typical example, extracts five types of Natural Scene
Statistics (NSS) features from a series of clear images and uses these quality-aware features
to learn a multivariate Gaussian model of the clear images without distortion. Then, this
carefully designed model is used as a benchmark to measure the distance between distorted
image blocks. The latter generally follows a two-step framework, feature extraction based
on statistics and quality regression based on machine learning. A classic example is
the BRISQUE, which first extracts 36 NSS features to quantify the naturalness of the
distorted image in the spatial domain; then, the universal regression tool, the Support
Vector Regressor (SVR), is used for quality evaluation [22]. Although the above two kinds
of methods have achieved promising results in the evaluation of synthetic distortion, their
performance still has room for improvement because it is difficult for handcrafted features
to represent the semantic information, which is very important for the IQA. In addition,
when facing authentic distortion, their performance deteriorates obviously, and satisfactory
predictions are rare.

In recent years, more attention has been paid to deep-learning-based approaches, and
as a result, several good algorithms have been produced. Ma et al. proposed a quality
prediction model based on a multitask learning framework, called the MEON model [23].
It consisted of a distortion identification task and a quality regression task. First, the deep
features were extracted based on a conventional Convolutional Neural Network (CNN).
Then, the distortion identification network was trained by the image features. Finally,
the quality features and the output of the distortion identification network were used
to predict the visual quality. Bosse et al. proposed a weight-based quality metric, which
focused on the local information of the distorted images. The local quality and local weights
could be jointly learned [24]. With the support of CNN, the prediction performance of
these algorithms was further improved and proved to be significantly better than the
traditional handcrafted algorithms. However, most of them only used the features of a
single scale, that is, the features of the highest level, and ignored the effective description
of other scale features to the distortion. Therefore, this kind of method has much room for
improvement. To alleviate this problem, researchers have focused on research algorithms
based on multiscale features. For example, HyperNet [25] extracts deep features at each
level, capturing both local and global distortions. However, multilevel features are only
gathered together by a simple concatenation operation, and there is a lack of research
and exploration on the relationship between levels. Compared with the former, this kind
of algorithm can often obtain better performance. However, how to integrate multilevel
features effectively needs further research and discussion. Although deep learning-based
IQA methods have made significant progress in both synthetic and authentic distortions,
there is still much room for improvement.

Inspired by the above, we propose a novel blind image quality index for synthetic
and authentic distortions with hierarchical feature fusion, dubbed HFNet. First, multiscale
quality-aware features are extracted in a strong vision transformer network. Then, an
effective hierarchical feature fusion module is proposed to incorporate features at different
levels progressively. In order for the model to focus on more important information during
learning, an attention mechanism is used after each fusion process. Then, to simulate human
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visual characteristics, local and global features from the fusion features are extracted to
represent different granularity distortions. Finally, these elaborate features are mapped to
the quality of the distorted image. Extensive experiments on synthetic distortion datasets
and authentic distortion datasets show the superiority of the proposed HFNet in terms of
both single-database testing and cross-database testing. The contributions of the proposed
HFNet are summarized as follows:

• Different from the previous simple stitching-based method, the proposed HFNet
gradually integrates the features of different levels; so, the low-level features to high-
level features can be used to represent the different types and degrees of distortion
more effectively.

• It has been proved in the literature that people always view images in a combination of
local and global ways in order to better understand the content of images. To simulate
this visual property, we propose to extract local and global features to understand the
distortion more comprehensively.

• We conducted extensive experiments on both synthetic and authentic distortion
datasets, and the proposed HFNet is compared with both the traditional and deep
learning state-of-the-art quality metrics. The superiority of the proposed HFNet is
verified by extensive experiments.

This paper consists of five sections, first introducing the motivation for this work and
then describing two types of related work, providing some of the early groundwork. Then
the main modules of the proposed HFNet are introduced in detail, and its performance is
verified by extensive experiments. The last section summarizes this paper.

2. Related Work

In this section, the two areas most relevant to the research in this paper are briefly
reviewed, blind image quality assessment and the vision transformer network. These
contents are expected to help readers quickly understand the background and foundation
of the research in this paper. The details are described as follows.

2.1. Blind Image Quality Assessment

Traditional quality metrics rely on extracting discriminating handcrafted features to
construct prediction models. BRISQUE [22] extracts multiple sets of features to represent
all kinds of distortions; thus, in theory, it can deal with all the distortions. CORNIA [26]
verified the possibility of learning to distinguish the quality-aware features directly from
the original pixel information and adopted unsupervised feature learning methods, soft
task coding, and a maximum pooling layer to obtain image representation, which achieved
good image prediction results. In [27], the authors constructed a quality evaluation method
that did not require subjective scores or prior knowledge, NIQE for short. Based on
codebook construction and high-order statistics aggregation, the authors constructed an
image quality evaluation method called HOSA [28]. BLIINES-II [29] uses DCT coefficients
as features and combines coefficients with statistical models of natural scenes to enrich
the extraction of image features. Feature vectors are directly mapped to subjective scores
through regression methods. The above quality metrics to study the various possible
feature extraction methods used different regression strategies and tools (such as SVR and
RF), but the handcrafted features do not completely conform to the vision mechanisms, and
it is difficult to express image semantic information. Thus, the improvement in performance
of the NR-IQA metrics was limited, so researchers began to explore quality metrics based
on deep learning.

With the success of deep learning in computer vision, researchers have applied it
to IQA. The research community has been working to build high-performance high-
generalization quality prediction models. In [23], the authors constructed some convolu-
tional layers as shared feature extractors and then designed distortion discriminator and
quality regression subnetworks. To obtain better performance, the features of the discrimi-
nant network were integrated into the prediction network to provide more information.
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DeepBIQ [30] extracted image features by using the pretraining model in ImageNet and
then returned the image features to the image quality score. In [31], the feature extractor
consisted of several groups of residual blocks, and multilevel features were extracted by a
simple encoder. Then, these multiscale features were stitched together and used as quality
regression. In [32], the model extracted multiscale deep features from a CNN network to
describe the macro and micro information of the images, respectively, and then predicted
the quality score through full connection or traditional regression. In [33], the authors
conducted quality evaluation by constructing a CNN containing some general operations.
Finally, the features of different layers were fused together to obtain more distinctive
features. The fusion of local and global features is not studied further for IQA in this
paper. BIECON [34] first predicts the scores of the image blocks and then aggregates the
scores together. In [35], a probabilistic quality representation (PQR) was proposed. During
training, a more robust loss function was employed. For the distorted image, the generated
adversarial network was used to generate the restored image, and the distorted image and
the restored image were input into the evaluation network together to generate the quality
score [36]. In [37], the paper paid more attention to the influence of the content variation
of the image on the NR-IQA quality models. Some unique opinions were analyzed in the
experiments. To take advantage of traditional handcrafted features, a naturalness-aware
BIQA metric was designed in [38]. This metric took the prediction of the handcrafted
features as a subtask to assist in the quality prediction subtask. In [39], a two-stream BIQA
model was proposed for both synthetic and authentic distortions. As discussed in [39],
the two-stream model was versatile and extensible. Wu et al. proposed a cascade model
based on biological vision to deal with different types of distortion [40]. Based on image
restoration, Pan et al. proposed a high-performance algorithm for BIQA. A restoration
task was used to aid the image quality evaluation. In this restoration network, multilevel
features of an encoder and decoder were extracted to account for the distortions. More
recently, quality metrics based on vision transformer have also been proposed for higher
performance [41].

2.2. Vision Transformer Network

VTN is derived from Transformer, and it is a encoder–decoder framework and self-
attention mechanism. Due to Transformer’s remarkable achievements in Natural Language
Processing (NLP), it has replaced Recurrent Neural Networks (RNN). RNN was the most
used in NLP before Transformer was produced. RNN is a weak neural network for parallel
computing, resulting in its inability to process very long sequences, whereas Transformer
uses a self-attention structure to process sequences. Therefore, the largest advantage of
Transformer compared to RNN is that it can compute in parallel.

The success of Transformer in computer vision has attracted the attention of re-
searchers. Compared with the current mainstream network CNN, which obtains infor-
mation through convolution and cannot obtain global information in a shallow network,
Transformer’s multihead attention mechanism can well obtain global features. So far, the
research community has conducted a series of studies around VTN, which have achieved
remarkable results; for example, DETR [42] was the first proposed for end-to-end object
detection with transformers. SegFormer [43] was designed based on transformers and is
a semantic segmentation model. A transformer-based network called Trackformer [44]
was proposed for multiobject tracking. DALL-E [45] was a transformer-based network,
utilized to generate images from text. All these transformer-based methods have achieved
impressive performance.

ViT [46] is one of the most popular networks out of all the Transformer-based networks
and was designed to block and splice images for image classification. In view of the problem
that the improved ViT needs to be trained first in the JFT-300M dataset, DeiT [47] proposed
a token-based distillation strategy, which achieved good results even when only trained
on ImageNet. The T2T-ViT [48] solved the problem of the ViT having a poor effect due
to the redundant attention structure in the pretraining of medium data sets. PVTv1 [49]
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partitioned the image intensively and achieved high output resolution. At the same time,
a progressively shrinking pyramid was used to reduce the computation of large feature
maps. On the basis of the PVTv1, PVTv2 [50] modified the linear complexity attention
layer, overlapping patch embedding and a convolutional feedforward network to reduce
the computational complexity. In order to solve the deficiency of the patch embedding
module, the structure of the transformer in transformer was introduced in TNT [51], and
SW-MSA was designed in Swin Transformer [52].

3. Proposed Method

The use of multiscale features can effectively improve the performance of the algorithm,
which has been proved in object detection and person re-identification. In addition, a
desired IQA metric should simultaneously consider both the local content and the global
distortion, which is also consistent with the human vision in terms of the perceptual
characteristics. With these considerations in mind, as shown in Figure 1, we propose
a novel Vision-Transformer-based BIQA method with hierarchical feature fusion, called
HFNet. The proposed HFNet consists of four cleverly designed modules: a multiscale
feature extraction module, a hierarchical feature fusion module, a local and global feature
aggregation module, and a deep quality regression module. They are described in detail in
the following subsections.

Figure 1. The framework of the proposed metric. It consists of four elaborate modules: (1) a PVT-
based multiscale feature extraction module; (2) a hierarchical feature fusion module; (3) a local and
global feature aggregation module; and (4) a deep quality regression module.

3.1. Multiscale Feature Extraction

Transformer has been a great success in the field of natural language processing and
has naturally attracted extensive attention from researchers in the field of computer vision.
Recently, many Transformer networks have been proposed for computer vision tasks,
and encouraging progress has been shown. Compared to CNN, one advantage of vision
transformer is that it can freely extract the different depth global information of an image,
which is vital to IQA. Inspired by this, a feature extraction module is designed in the vision
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transformer framework. Specifically, we use a universal Pyramid Vision Transformer v2
(PVTv2) [50], which has great advantages in both accuracy and model size.

The input of the PVTv2 is an image with a size of H×W×3, which passes through four
stages and outputs four features of different scales, namely F1, F2, F3, and F4. Each stage has
a similar structure and is composed of overlapping patch embedding and a Transformer
encoder. In the first stage, the input is an image, and the output is the first feature F1. In the
other stage, the feature map obtained in the previous stage is used as input to obtain the
feature map. So, at stage i, the input is feature map Fi−1 with the size of Hi−1×Wi−1×Ci−1,
which is divided into Hi−1×Wi−1

P2
i

patches, each of which has a size of Pi × Pi × Ci−1. Then,

convolution is used to implement overlapping patch embedding, where the stride of the
convolution is Si, the kernel size is 2Si − 1, the padding size is Si − 1, the number of kernels
is Ci, and the output size is Hsi ×Wsi × Ci. After that, we feed the embedded patches to
a Transformer encoder, each of which is composed of a linear spatial-reduction attention
(SRA) layer and a feed-forward layer.

From the above processes, we can extract the preliminary feature Fi (i = 1, 2, 3, 4) from
the distorted image. These features contain the detailed and semantic information, which
is crucial for image quality perception.

3.2. Hierarchical Feature Fusion

Features from the PVTv2 have preliminary quality perception ability, which can deal
with slight distortion to a certain extent. However, they find it difficult to handle complex
distortion; hence, how to effectively use these features is extremely important. A direct
processing method is to perform concat operations by upsampling or downsampling
features to a unified scale. The effect of this processing method is generally not good, and
the features are not fused. The features of different scales contain different information,
and the fusion between features can mine more useful information.

Based on the above analysis, we propose a hierarchical feature fusion module to
cope with this challenge; the diagram of this module is shown in Figure 2. We adjusted
the feature scale to always by deconvolution, concat the two features and then use one
convolution to reduce the feature channel; finally, we used an attention module to enhance
the features and obtain the fused features. Only feature F4 does not need to be fused with
the other features, and f4 can be obtained directly through the attention operation, the size
of F4 is 512× 7× 7, and the size of f4 is 128× 7× 7. Feature F3 needs to be fused with the
features of F4, and the size of F3 is 320× 14× 14. Initially, the size of F4 is deconvolved
to 512 × 14 × 14. After that, the F3 and F4 are concated, and the size of the feature is
832× 14× 14. Then, the number of channels is reduced by a 1× 1 convolution. At last, the
attention operation is performed to obtain the fusion feature f3 of F3 and F4, and the size
of f3 is 32× 56× 56. In the same way, the feature F2 and f3 are fused to obtain the fusion
feature f2, and the size of f2 is 64× 28× 28; the feature F1 and f2 are fused to obtain the
fusion feature f1, and the size of f1 is 128× 14× 14. Taking the fusion of features F1 and F2
as an example, the whole process can be described by:

f
′
i+1 = ConvTran(fi+1), i = 1, 2, (1)

F
′
i = Conv(f

′
i+1©Fi), i = 1, 2, (2)

fi = Attention(F
′
i), (3)

where ConvTran is the deconvolution operation, Conv is the convolution operation, and
“©" denotes the concat operation.
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Figure 2. The architecture of the proposed hierarchical features fusion module.

Among them, the attention module mainly included two important aspects of the
feature maps, the channel-domain module and spatial-domain module; the detailed process
is shown in Figure 3. The input feature map is Fi ∈ RC×H×W . Firstly, the channel attention
module aimed to explore “what” the image is by extruding the spatial dimension of the
input feature. Two one-dimensional vectors were obtained by the maximum pooling and
average pooling of the input features. The two vectors were forwarded to a shared network
containing a multilayer perception and a single-layer hidden layer, and the channel was
generated by mapping MC ∈ RC×1×1. Secondly, the spatial attention module was a channel
axis, which squeezes the input features, focusing on the image information as the “where”.
The maximum pooling and average pooling operations were applied to the input features
along the channel axis, and they were connected together to obtain the feature map with
two channels. A convolution operation was used to obtain MS ∈ R1×H×W . In short, the
attention module was computed as:

Fc
i = MC(Fi)

⊗
Fi, (4)

Fs
i = MS(Fc

i )
⊗

Fc
i , (5)

Fa
i = Fi

⊕
Fs

i , (6)

where
⊗

denotes the element-wise multiplication, and
⊕

stands for the element-wise
addition. Fc

i is the feature after the spatial attention manipulation. Fs
i is the feature after

the spatial attention and the spatial attention manipulation. Fa
i denotes the feature of the

final output.

Figure 3. The architecture of the attention module.
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3.3. Local and Global Feature Aggregation

The human visual system perceives the global area roughly first and then perceives the
image quality of the local area in detail [41]. To simulate this mechanism, after the process
mentioned above, this module further processed the features of multisize aggregation to
obtain a more robust and expressive representation. Specifically, it included two parts, the
local feature extraction and the global feature extraction.

3.3.1. Local Feature Extraction

To be specific, after passing through a convolution layer, the Local Average Pooling
(LAP) and the Local Max Pooling (LMP) were carried out, which are formulated as:

li = View(Conv(LAP(F′i)
⊕

LMP(F′i))),

i = 1, 2, 3, 4.
(7)

where li denotes the local feature of F′i,
⊕

denotes the element-wise addition, and the View
operation turns a parameter into a vector.

3.3.2. Global Feature Extraction

Similar to the local feature extraction, the Global Average Pooling (GAP) and the Global
Max Pooling (LMP) were carried out after the convolution layer, which are formulated as:

gi = View(GAP(F′i) + GMP(F′i)), i = 1, ..., 4. (8)

where gi denotes the global feature of F′i.
After obtaining the local representation and the global representation of the distortion,

we combined these two aspects as the final distortion representation. Finally, the concat op-
eration was performed on the local extraction feature vectors l1−4 and the global extraction
feature vectors g1−4.

3.4. Deep Quality Regression

How to map the extracted features to quality scores is an important part of constructing
an image quality evaluation model. Most of the traditional methods use machine learning
tools to complete the quality regression task. In contrast, deep-learning-based approaches
can accomplish this with the help of simple fully connected layer. In this paper, the extracted
deep features were input into the fully connected layer, and the number of nodes of the
fully connected layer was set according to experience. Finally, we just needed to set the
node to 1 as the output, namely, the predicted score. The mean square error function, which
is commonly used in the field of image quality evaluation, was adopted [53,54]:

L =
1
N

n

∑
i=1

(pi − yi)
2, (9)

where pi and yi are the predicted score and the subjective score of the i-th image.

4. Experiments
4.1. Databases

The objective of this work was to design a high-performance BIQA metric for both
the synthetic distortion and authentic distortion. Therefore, we conducted experiments
on both the synthetic distortion and authentic distortion databases. To be specific, the
synthetic image databases included the CSIQ [55] and the TID2013 [56]; the authentic image
databases included the BID [57], the LIVE Challenge (LIVEC) [58], and the KONIQ-10k [59].
The details of these datasets are described below and are also shown in Table 1.
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• The CSIQ consists of 866 synthetically distorted images, which contain a total of
six distortion types. The database was rated by 25 observers, with a DMOS value
ranging from 0 to 1. The higher the DMOS value, the lower the quality of the image.

• The TID2013 contains 3000 synthetically distorted images, with four times the number
of distortion types of the CSIQ. The database was rated by 971 observers from five
different countries with an MOS ranging from 0 to 9, with a higher MOS associated
with better image quality.

• The BID was scored by about 180 observers; it is a distorted image dataset with blur.
It contains 586 images with realistic blur distortions, such as the common out of focus
and motion blur, etc.

• The LIVEC consists of 1162 distorted images, which were rated by 8100 observers; the
MOS value of each image was averaged by 175 observers individually.

• The Konik-10k consists of 10,073 distorted images that were rated by 1459 observers.
The MOS values of both databases were between 0 and 100, and the higher the MOS
value, the better the image quality.

Table 1. Detailed information of five distorted image databases. RIN: number of reference images;
DIN: number of distorted images; DTN: number of distortion types; SST: subjective score’s type; SSR:
subjective score’s range.

Database RIN DIN DTN SST SSR Year

CSIQ [55] 30 866 6 DMOS [0,1] 2010
TID2013 [56] 25 3000 24 MOS [0,9] 2013

BID [57] N/A 585 authentic MOS [0,5] 2011
LIVEC [58] N/A 1162 authentic MOS [0,100] 2016

KONIQ-10k [59] N/A 10,073 authentic MOS [0,100] 2020

4.2. Implementation Details and Evaluation Criteria

The present mainstream framework PVTv2 was selected as the feature extractor for
the experiment. PVTv2 is less computationally complex than other networks such as
Swin [52] or Pyramid Vision Transformer (PVTv1) [49]; yet, it provides better performance
in computing tasks. The backbone of the proposed HFNet was the PVTv2-b5, which was
pretrained in Imagenet-1K [60]. The Adam optimization model with a weight decay of
5× 10−4 was used, the batch size was set to 24, the learning rate was set as 1× 10−4, and
there were 16 epochs.

Spearman’s rank order correlation coefficient (SRCC) and Pearson’s linear correlation
coefficient (PLCC) were adopted to measure the prediction monotonicity and the prediction
accuracy. The SRCC is computed as:

SRCC = 1− 6 ∑N
i=1 di2

N(N2 − 1)
, (10)

where N represents the image number in the testing database, and di is the difference
between the i-th image’s ranks in the objective and subjective evaluations. The PLCC
calculates the accuracy between the predicted scores and the ground truths, which is
defined as:

PLCC =
∑i(qi − q)(si − s)√

∑i(qi − q)2
√

∑i(si − s)2
, (11)

where si and si are the i-th image’s subjective rating and the mean of the overall si, respec-
tively; qi and q are the i-th image’s converted objective score after nonlinear regression and
their mean value, respectively. The higher the two indices, the better the performance of
the quality metric.
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4.3. Performance Evaluation on Synthetic Distortion

In this subsection, we describe the verification of the performance of the proposed
HFNet on the synthetic distortion datasets. For performance comparison, this paper
selected 18 state-of-the-art BIQA algorithms to perform the same test. Among them,
there were six handcrafted quality methods, including DIIVINE [61], BRISQUE [22], COR-
NIA [26], NIQE [27], ILNIQE [21], and HOSA [28], and 12 representative deep-learning-
based quality metrics, including BIECON [34], PQR [35], WaDIaM-NR [24], RAN4IQA [36],
SFA [37], NSSADNN [38], HyperNet [25], DBCNN [39], CaHDC [40], UNIQUE [62],
CLRIQA [63], and VCRNet [64]. The experimental results of the synthetic image databases
are shown in Table 2, where the top two results are shown in bold.

It can be seen from these results that the proposed HFNet achieved excellent perfor-
mance. For the CSIQ database, the proposed HFNet achieved the highest SRCC value and
the second best PLCC value. The WaDIaM-NR [24] achieved comparable performance
to the proposed HFNet. Further observation shows that the performance of the DBCNN
and VCRNet were similar and better than other algorithms. For the TID2013 database, the
proposed HFNet obtained the optimal SRCC and PLCC of 0.893 and 0.911, respectively.
Although the proposed HFNet ranked first, its performance value was far lower than its
performance on CSIQ database. This is not hard to understand, as the TID2013 contains
more distortion types and levels, which itself is more challenging. In addition, most of the
deep-learning-based quality methods were superior to the traditional handcrafted methods.
From the results in the table and the above analysis, it can be seen that the proposed metric
showed excellent performance in evaluating the synthetic distortion.

Table 2. Experimental results of the proposed HFNet and the compared algorithms on the synthetic
image databases.

Method Published CSIQ TID2013
SRCC PLCC SRCC PLCC

DIIVINE [61] TIP11 0.777 0.743 0.535 0.664
BRISQUE [22] TIP12 0.746 0.829 0.604 0.694
CORNIA [26] CVPR12 0.678 0.776 0.678 0.768

NIQE [27] SPL13 0.821 0.865 0.521 0.648
ILNIQE [21] TIP15 0.806 0.808 - -
HOSA [28] TIP16 0.741 0.823 0.735 0.815

BIECON [34] JSTSP17 0.815 0.823 0.717 0.762
PQR [35] ICIP18 0.873 0.901 - -

WaDIaM-NR [24] TIP18 0.955 0.973 0.761 0.787
RAN4IQA [36] AAAI18 0.914 0.931 0.820 0.859

SFA [37] TMM19 0.796 0.818 - -
NSSADNN [38] TMM19 0.893 0.927 0.844 0.910
HyperNet [25] CVPR20 0.923 0.942 - -
DBCNN [39] TCSVT20 0.946 0.959 0.816 0.865
CaHDC [40] TIP20 0.903 0.914 0.862 0.878

UNIQUE [62] TIP21 0.902 0.927 - -
CLRIQA [63] TMM22 0.915 0.938 0.837 0.863
VCRNet [64] TIP22 0.943 0.955 0.846 0.875

HFNet 0.956 0.964 0.893 0.911

4.4. Performance Evaluation on Authentic Distortion

An excellent quality metric should not only achieve good performance in synthetic
distortion but also evaluate authentic distortion accurately. Therefore, the performance of
the proposed HFNet was evaluated on the authentic distortion datasets, which is described
in this subsection. For performance comparison, the same verification was conducted by
20 representative quality metrics. Specifically, it contained the same six handcrafted quality
methods as in the previous subsection and 14 deep-learning-based quality metrics, includ-
ing BIECON [34], PQR [35], WaDIaM-NR [24], RAN4IQA [36], SFA [37], NSSADNN [38],
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HyperNet [25], DBCNN [39], CaHDC [40], UNIQUE [62], CLRIQA [63], VCRNet [64],
MetaIQA+ [8], and IEIT [41]. The experimental results of the authentic image databases are
shown in Table 3, where the top two results are shown in bold.

It can be observed from the table that the proposed HFNet achieved promising results.
For the BID dataset, the HFNet was superior to all the other compared algorithms, produc-
ing 0.883 and 0.897 for the SRCC and PLCC, respectively. Although HyperNet achieved
second place, both indexes were significantly lower than the two indexes of the proposed
HFNet. In contrast, the other algorithms achieved only modest results. For the LIVEC,
the performance of the proposed HFNet was higher than that of the other algorithms.
It achieved 0.901 for the SRCC and 0.908 for the PLCC, both of which were significant
improvements over the previous algorithms. The MetaIQA+ and DBCNN achieved similar
results. For KonIQ-10k, both NSSADNN and the proposed HFNet showed promising
results. HyperNet and MetaIQA+ achieved similar results. In addition, the traditional
methods had lower results than the deep-learning-based methods in terms of the average
performance. As summarized in the section on the related work, they have difficulty
dealing with complex authentic distortion. From the above analysis and results, it can be
confirmed that the proposed HFNet achieved a SOTA performance, which depended on
the proposed hierarchical feature fusion strategy and the mechanism of simulating the
human visual system.

Table 3. The experimental results of the proposed HFNet and the compared algorithms on the
authentic image databases.

Method Published BID LIVEC KonIQ-10k
SRCC PLCC SRCC PLCC SRCC PLCC

DIIVINE [61] TIP11 - - 0.523 0.551 0.579 0.632
BRISQUE [22] TIP12 0.562 0.593 0.608 0.629 0.665 0.681
CORNIA [26] CVPR12 - - 0.618 0.662 0.738 0.773

NIQE [27] SPL13 - - 0.594 0.589 - -
ILNIQE [21] TIP15 0.516 0.554 0.432 0.508 0.507 0.523
HOSA [28] TIP16 0.721 0.736 0.640 0.678 0.761 0.791

BIECON [34] JSTSP17 - - 0.595 0.613 - -
PQR [35] ICIP18 0.775 0.794 0.857 0.882 0.880 0.884

WaDIaM-NR [24] TIP18 0.725 0.742 0.671 0.680 0.797 0.805
RAN4IQA [36] AAAI18 - - 0.586 0.612 0.752 0.763

SFA [37] TMM19 0.826 0.840 0.812 0.833 0.856 0.872
NSSADNN [38] TMM19 - - 0.745 0.813 0.912 0.887
HyperNet [25] CVPR20 0.869 0.878 0.859 0.882 0.906 0.917
DBCNN [39] TCSVT20 0.845 0.859 0.851 0.869 0.868 0.892
CaHDC [40] TIP20 - - 0.738 0.744 - -

UNIQUE [62] TIP21 0.858 0.873 0.854 0.890 0.896 0.901
CLRIQA [63] TMM22 - - 0.832 0.866 0.831 0.846
MetaIQA+ [8] TCSVT22 - - 0.852 0.872 0.909 0.921
VCRNet [64] TIP22 - - 0.856 0.865 0.894 0.909

IEIT [41] TCSVT22 - - 0.833 0.865 0.892 0.916
HFNet 0.883 0.897 0.901 0.908 0.910 0.928

4.5. Ablation Studies

In a quality metric, the selection of the backbone network and the design of the main
modules are very important to the performance. So, we conducted an ablation studies
experiment in two parts, the impact of the backbone on the performance and the local and
global features on the performance.

The first part tested the effect of different versions of backbone on the performance of
the proposed HFNet. According to the existing literature reports, PVT-V2 is outstanding
in computer vision tasks. However, it has several different versions, depending on the
network configuration. To be specific, this network included PVTv2-b0, PVTv2-b1, PVTv2-
b2, PVTv2-b3, PVTv2-b4, and PVTv2-b5 [50]. The performances (SRCC and PLCC) of
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the different backbones on the LIVEC database are shown in Figure 4. As seen in the
figure, the performance values were highest when using the PVTv2-b5 as the backbone.
In contrast, the PVTv2-b0 had the worst performance due to its inadequate configuration.
Based on these results, the PVTv2-b5 was selected as the backbone and was applied in all
the experiments.

The second part of the experiment was to study the influence of the experimental
results of the local and global features in the feature fusion module. When testing the
contribution of the local features to the measurement, we extracted only the local features
for fusion in the fusion module but not the global features, and the opposite was true when
testing the global features. The experiments were carried out on five databases, namely,
two synthetic distortion databases (CSIQ and TID2013) and three authentic distortion
databases (BID, LIVEC, and KONIQ-10K). The experimental results of the synthetic distor-
tion databases are shown in Table 4, and the experimental results of the authentic distortion
databases are shown in Table 5, where the best performances are shown in bold. As can be
seen from the table, both the local and global features achieved a moderate performance.
The performance was further improved when the two parts were combined. The results
of the ablation experiments showed that the capture of both the local and global features
was necessary to evaluate the image quality. Moreover, it also proved the necessity of
combining the local feature and global feature in the proposed HFNet.

Figure 4. The performances (SRCC and PLCC) of the different backbones on the LIVEC database.

Table 4. The experimental results of the local feature and the global feature on the synthetic distortion
databases. Local: local feature; Global: global feature.

CSIQ TID2013
Method SRCC PLCC SRCC PLCC

Local 0.958 0.962 0.866 0.862
Global 0.945 0.952 0.845 0.861
HFNet 0.956 0.964 0.893 0.911

Table 5. The experimental results of the local feature and the global feature on the authentic distortion
databases. Local: local feature; Global: global feature.

BID LIVEC KonIQ-10k
Method SRCC PLCC SRCC PLCC SRCC PLCC

Local 0.863 0.880 0.825 0.837 0.868 0.872
Global 0.877 0.883 0.891 0.899 0.892 0.909
HFNet 0.883 0.897 0.901 0.908 0.910 0.928



Appl. Sci. 2023, 13, 3591 13 of 17

4.6. Generalization Ability Study

An excellent quality evaluation algorithm should not only achieve good performance
in the single dataset experiment but also perform well in the face of unknown distortion,
which is the premise for its successful application. To this end, we tested the generalization
capabilities through cross-database experiments on internal databases that were either
authentic distortions or synthetic distortions. The results of the cross-database tests of the
synthetic distortion are shown in Table 6, and the results of the cross-database tests of the
authentic distortion are shown in Table 7.

For the synthetic cross-database tests, we selected seven methods for comparison,
namely DIIVINE [61], BRISQUE [22], BLIINES-II [29], HOSA [28], WaDIaM-NR [24],
PQR [35], and DBCNN [39]. The proposed HFNet achieved the best performance with
0.531, when the CSIQ was the training set, and 0.823, when the TID2013 was the training
set. The other compared algorithms were obviously inferior to the proposed HFNet. With
the same synthetic distortion, the performance of these two cases was quite different. One
of the main reasons is that the TID2013 contained more distortion types and categories, so
that it was difficult for the models trained on CSIQ to obtain high performances. For the
authentic distortion, the three most competitive methods, the PQR [35], the DBCNN [39],
and HyperNet [25], were selected for comparison. In six authentic cross-database tests, the
proposed HFNet achieved the best performance five times; in particular, the SRCC, when
using the LIVEC as the training set and the BID as the testing set, was 0.045 higher than
that of the second metric. From these results, it is indicated that the proposed HFNet has
strong generalization ability, which is desired in real-world applications.

Table 6. The SRCC of the cross-database tests on the synthetic distortion.

Training CSIQ TID2013
Testing TID2013 CSIQ

DIIVINE [61] 0.417 0.583
BRISQUE [22] 0.461 0.586

BLIINES-II [29] 0.453 0.593
HOSA [28] 0.341 0.609

WaDIaM-NR [24] 0.315 0.683
PQR [35] 0.524 0.637

DBCNN [39] 0.520 0.807
HFNet 0.531 0.823

Table 7. The SRCC of the cross-database tests on the authentic distortion.

Training LIVEC BID KonIQ-10k
Testing BID KonIQ LIVEC KonIQ LIVEC BID

PQR [35] 0.714 0.757 0.680 0.636 0.770 0.755
DBCNN [39] 0.762 0.754 0.725 0.724 0.755 0.816
HyperNet [25] 0.756 0.772 0.770 0.688 0.785 0.819

HFNet 0.807 0.780 0.781 0.734 0.765 0.820

5. Conclusions

No-reference image quality assessment is a basic problem in the field of computer
vision and also a research hotspot. The research community has put a lot of effort into
building high-performance models. Despite the strides made in this field, there is still much
room for improvement. To this end, we proposed a novel blind image quality index for
synthetic and authentic distortions with hierarchical feature fusion. The underlying idea of
the proposed metric was to simulate the hierarchical information processing mechanism
and the local and global combination mechanism of the human visual system. A flexible
vision transformer framework was used to extract the preliminary features, and then an
efficient fusion module was proposed to integrate the features of different scales. Unlike
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the previous quality metrics, not only were the features at the highest level used for quality
regression, but the features at every level were used for quality regression. In order to more
realistically simulate human observation, local features and global features were extracted
and input into the quality regression network. Sufficient experimental results showed
that the proposed metric was superior to the compared algorithms in terms of both the
prediction performance and the generalization ability.

Although the proposed method achieved good performance, it cannot indicate where
and what kind of distortion exists in the distorted image, which is of great concern in the
industrial community. Therefore, we will study how to construct a model that can mark
the distortion region and type in the future. In addition, the hierarchical feature fusion
methods that are usually used on top of deep architectures, such as DCA and CCA, will
be explored for more robust performance. Finally, time complexity is important for an
algorithm, and it is very much expected in applications. To this end, studying lightweight
CNN architectures (e.g., PCANet [65] and MDFNet [66]) will help improve the efficiency of
the algorithm.
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