
Citation: Chen, E.; Ye, T.; Jiang, J.;

Tong, L.; Ye, Q. Efficient

Re-Parameterization Residual

Attention Network for

Nonhomogeneous Image Dehazing.

Appl. Sci. 2023, 13, 3739. https://

doi.org/10.3390/app13063739

Academic Editors: Zheng Wang, Xian

Zhong, Liang Liao and Kui Jiang

Received: 1 February 2023

Revised: 26 February 2023

Accepted: 8 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Communication

Efficient Re-Parameterization Residual Attention Network for
Nonhomogeneous Image Dehazing
Erkang Chen 1,2,† , Tian Ye 1,†, Jingxia Jiang 1,†, Lihan Tong 1 and Qiubo Ye 1,2,*

1 School of Ocean Information Engineering, Jimei University, Xiamen 361021, China; ekchen@jmu.edu.cn (E.C.);
201921114031@jmu.edu.cn (T.Y.); 202021114006@jmu.edu.cn (J.J.); 202121301035@jmu.edu.cn (L.T.)

2 Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing,
Xiamen 361021, China

* Correspondence: qbye@jmu.edu.cn
† These authors contributed equally to this work.

Abstract: Real-world nonhomogeneous haze brings challenges to image restoration. More efforts are
needed to remove dense haze and thin haze simultaneously and efficiently. However, most existing
dehazing methods do not pay attention to the complex distributions of haze and usually suffer from
a low runtime speed. To tackle such problems, we present an efficient re-parameterization residual
attention network (RRA-Net), whose design has three key aspects. Firstly, we propose a training-
time multi-branch residual attention block (MRAB), where multi-scale convolutions in different
branches cope with the nonuniformity of haze and are converted into a single-path convolution
during inference. It also features local residual learning with improved spatial attention and channel
attention, allowing dense and thin haze to be attended to differently. Secondly, our lightweight
network structure cascades six MRABs followed by a long skip connection with attention and a fusion
tail. Overall, our RRA-Net only has about 0.3M parameters. Thirdly, two new loss functions, namely
the Laplace pyramid loss and the color attenuation loss, help train the network to recover details
and colors. The experimental results show that the proposed RRA-Net performs favorably against
state-of-the-art dehazing methods on real-world image datasets, including both nonhomogeneous
haze and dense homogeneous haze. A runtime comparison under the same hardware setup also
demonstrates the superior efficiency of the proposed network.

Keywords: image dehazing; nonhomogeneous haze; re-parameterization network; residual attention
block

1. Introduction

Clear visibility is crucial to the success of outdoor computer vision tasks [1]. However,
the quality of outdoor images often deteriorates due to haze, i.e., the existence of smoke,
dust, fumes, mist, and other floating particles in the atmosphere. Such haze reduces the
performance of a subsequent visual analysis. Moreover, haze distribution often has a non-
homogeneous character in many real scenes, posing additional challenges [2]. Single-image
dehazing as a fundamental low-level vision task aims to recover the latent haze-free image
and has attracted increasing attention in the computer vision community over the past few
decades [3–8].

In the early dehazing methods [9–11], image priors are usually used to estimate
important parameters of the imaging model for hazy scenes. Then, image dehazing is
fulfilled by solving the inverse problem of such an imaging model. However, these image
priors are not always valid in complex, real hazy scenes. Additionally, the nonhomogeneous
distribution of haze is certainly one factor that adds to the difficulties.

Recently, deep-learning-based methods [12–20] have directly learned the latent clean
image from a single hazy image in an end-to-end manner and have shown promising
performance in haze removal. However, the current deep-learning-based dehazing models

Appl. Sci. 2023, 13, 3739. https://doi.org/10.3390/app13063739 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063739
https://doi.org/10.3390/app13063739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1577-1732
https://orcid.org/0000-0003-2659-2377
https://doi.org/10.3390/app13063739
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063739?type=check_update&version=1


Appl. Sci. 2023, 13, 3739 2 of 16

often have a large number of parameters (e.g., the numbers of parameters of the recent
two-branch neural network (TBNN) [19] and the Dehamer [20] network are around 50.40M
and 132.45M, respectively) or suffer from a low runtime speed. In addition, to overcome
the complex distributions of non-homogeneous images, a lightweight network to deal
with nonhomogeneous haze effectively and efficiently is of great value. To this end, we
design an efficient re-parameterization residual attention network featuring a training-time
multi-branch esidual attention block, an end-to-end lightweight network structure and
two new loss functions to achieve a good balance between the dehazing performance and
model complexity. We conduct comparative experiments on both non-homogeneous and
homogeneous haze scenes to demonstrate the superiority of the proposed RRA-Net. An
ablation study is also conducted to validate the main modules of the proposed network.

Our main contributions are summarized as follows:
(1) A training-time multi-branch residual attention block is designed for coping with

the non-uniformity of haze.
(2) An end-to-end lightweight network structure (with only about 0.3M parameters) is

proposed, which cascades six MRABs followed by a long skip connection with attention
and a fusion tail.

(3) Two novel loss functions, namely the Laplace pyramid loss and the color attenua-
tion loss, are employed to train our RRA-Net.

2. Related Works

There are mainly two types of methods for single-image dehazing: prior-based meth-
ods and deep-learning-based methods.

2.1. Prior-Based Methods

This type of dehazing method utilizes prior-information based on observations about
characteristics of haze-free images or haze-degraded images in order to solve the inverse
problem of the atmospheric scattering model. He et al. [9] proposed the dark channel prior
(DCP) for single-image haze removal. The DCP is based on the observation that the pixels
of a haze-free image tend to have very low intensity in at least one color (red, green, or blue)
channel. Tan [10] developed a cost function in the framework of Markov random fields,
which was based on two basic observations: haze-free images have more contrast, and the
airlight tends to be smooth. Zhu et al. [11] presented the color attenuation prior which
states that the relationship among the scene depth, the brightness, and the saturation is
linear. They estimated the depth map of the scene using this prior and a supervised linear
model. Berman et al. [21] observed that the pixels of a haze-free image in a given cluster
are often non-local, which was dubbed as the non-local prior. Bui et al. [22] constructed
color ellipsoids that were statistically fitted to haze pixel clusters in the RGB space and
then calculated the transmission values through color ellipsoid geometry. Yuan et al. [23]
proposed a confidence prior to accurately estimate scene transmissions for image dehaz-
ing. However, these hand-crafted priors do not always hold true for diverse real-world
scenes with different haze statistics. For example, the DCP is unreliable for sky regions or
white objects.

2.2. Deep-Learning-Based Methods

With the availability of large scale datasets and the development of deep neural
networks, data-driven deep-learning-based methods have achieved promising results in
single-image dehazing.

At first, deep learning was used to estimate variables of the atmospheric scattering
model in Equation (1) or certain derived variables [24–27]. For example, Cai et al. [24]
proposed DehazeNet, which takes in a hazy image and outputs its transmission map.
Apart from the transmission map, the global atmospheric light also needs to be estimated
separately in order to recover a haze-free image via the atmospheric scattering model.
Li et al. [25] reformulated the atmospheric scattering model and designed the all-in-one
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dehazing network (AOD-Net) to estimate a K variable that effectively combines the global
atmospheric light and transmission map into one.

Later on, end-to-end convolutional neural networks (CNNs) were devised to directly
estimate the haze-free image from a haze-degraded image [12–19]. Liu et al. [12] proposed
GridDehazeNet, which implements a novel attention-based multi-scale estimation on a grid
network for single-image dehazing. Qin et al. [13] presented the feature fusion attention
network (FFA-Net) in which features at different levels are fused by an attention-based
feature fusion structure combining channel attention with a pixel attention mechanism.
While FFA-Net considers different channel-wise features and an uneven haze distribution,
it carries out convolutional operations at the resolution of the original image, resulting in a
large amount of calculation. Dong et al. [14] designed the multi-scale boosted dehazing
network (MSBDN) with dense feature fusion based on the U-Net architecture, which in-
corporates the strengthen–operate–subtract boosting strategy in the decoder of the model.
Das et al. [15] proposed a fast deep multi-patch hierarchical network (DMPHN) to restore
non-homogeneous hazed images by aggregating features from multiple image patches
from different spatial sections of the hazed image. Yu et al. [19] introduced a two-branch
neural network to separately deal with non-uniformly distributed haze and the limited data
challenge and fuse features from these two branches. Bu et al. [16] designed a generative
adversarial network with residual guided filters that effectively obtains the contour infor-
mation of a hazy image. Apart from designing more powerful CNNs, advanced learning
techniques are also exploited for single-image dehazing. For example, contrastive learning
is used to exploit both the information of hazy images and clear images as negative and
positive samples [18]. While achieving promising dehazing results, these networks often
have a large number of parameters or perform poorly on nonhomogeneous haze situations
in the real world. Unlike the representative end-to-end CNN-based dehazing techniques,
the proposed method takes into consideration both a lightweight network design and the
ability to cope with the nonuniformity of haze. Specifically, we use multi-scale convolutions
and an improved attention mechanism to remove dense haze and thin haze simultaneously.

Recently, visual transformers have also been utilized for image dehazing due to
their capabilities for global modeling [20,28–31]. To take the advantage of both visual
transformers and CNNs, Xu et al. [28] proposed a transformer–convolution fusion dehazing
network. Guo et al. [20] brought a haze density-related prior into the transformer via
a novel transmission-aware 3D position-embedding module and modulated the CNN
features via learning modulation matrices conditioned on transformer features, instead of
simple feature addition or concatenation. However, this transformer relies on large-scale
training data for optimal performance. Gao et al. [29] proposed a transformer-based
channel attention module combined with a spatial attention module to enhance a CNN-
based backbone network. Despite the impressive performance improvements brought
by combing transformers and CNNs, these hybird networks usually have a much higher
complexity with more parameters and a slower runtime speed, hindering their applications
in real-time scenarios, especially when dehazing high-definition images is necessary.

3. Materials and Methods

Despite the development of single-image dehazing techniques, effectively and ef-
ficiently recovering the haze-free images from under nonhomogeneous haze is still a
challenge from a technological perspective. Thus, we propose the following methodology.

3.1. Case Study and Definitions

Nonhomogeneous haze is common in real-world hazy weather conditions. One
example of hazy images taken in such scenes is shown in Figure 1a, where the haze density
is nonuniform across the image. It can been that the image suffers from low contrast
and detail loss. Additionally, the degree of image degradation is closely related to the
haze density.
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(a) The hazy image. (b) Result of the proposed RRA-Net.

Figure 1. Visual result of the proposed method on NH-Haze (2021) dataset. Our method is able to
produce haze-free images with high perceptual quality.

It is well-established that such image degradation caused by haze can be formulated
by the atmospheric scattering model [9]:

I(x) = J(x)t(x) + A(1− t(x)), (1)

where I(x) is the observed hazy image, J(x) is the latent haze-free image, t(x) is the
transmission map, and A is the global atmospheric light. In previous studies, the trans-
mission map t is sometimes assumed to be attenuated exponentially with the scene depth
d, i.e., t(x) = e−βd(x), where β is the scattering coefficient of the atmosphere. However,
this relation is invalid under nonhomogeneous hazy scenes since the assumed transmis-
sion map is only distance-dependent, and hence inconsistent, with the randomness of
nonhomogeneous haze.

Given an observed hazy I(x), the task of single-image dehazing aims to recover the
latent haze-free J(x). To this end, we take the deep learning approach and propose an
end-to-end RRA-Net model to tackle the challenge of nonhomogeneous degradations. In
the meantime, high dehazing efficiency is taken into consideration to make sure of its
practicability in real-time applications.

3.2. Proposed Model

Figure 2 shows the architecture of our RRA-Net, which has a lightweight, shallow
structure. Specifically, we design a novel training-time MRAB as the basic block. Our
RRA-Net cascades 6 MRABs, followed by a long skip connection with attention and a
fusion tail. In this subsection, the MRAB is introduced first, followed by the details of the
RRA-Net’s lightweight structure and the loss function used during training.

Figure 2. The efficient RRA-Net architecture. It cascades 6 MRABs, followed by a long skip connection
with attention and a fusion tail.

3.2.1. Training-Time Multi-Branch Residual Attention Block

Inspired by RepVGG [32], we design a training-time multi-branch structure with
an improved batch normalization (BN) strategy. It consists of one 3 × 3 convolution,
one 1× 1 convolution, and one identity connection, as shown in Figure 3. This parallel
multi-branch structure allows the convolutions of different receptive field sizes to extract
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features at different scales and to cope with the nonuniformity of haze. During inference,
the multi-branch convolutions and the following BN are converted into a single-path
3 × 3 convolution through the technique of re-parameterization, largely reducing the
inference time.

Figure 3. Structures of MRAB during training (left) and during inference (right).

Furthermore, we do not use BN in each branch, as was used in RepVGG, but rather,
we use a single BN layer to stabilize the training after summing up the outputs of 3 convo-
lutions. Since BN actually destroys the internal features of the sample, we believe that if
individual BN layers are present in different branches, the connection between the features
in different branches will be degraded more seriously, incurring a performance loss.

The MRAB also utilizes local residual learning with attention. The local residual
connection allows features from haze-free areas to pass directly without processing so
that the multi-branch convolutions can deal with the hazy areas in the image. Addition-
ally, our attention module, consisting of an improved spatial attention (SA) layer and a
channel attention (CA) layer, allows dense and thin hazy areas in the image be attended
to differently.

In Section 3.3, detailed ablation studies are conducted to analyze the MRAB and verify
the effectiveness of its structure and the BN strategy. Below, we provide the details of this
basic block.

Inference-Time Re-Parameterization of MRAB

During inference, the multi-branch convolutions and the following BN are converted
into a single-path 3× 3 convolution through the technique of re-parameterization. Let
X denote the input of the MRAB, and Y denote the output of BN. The process of re-
parameterization can be described as:

Y = BN(W3 ∗ X + W1 ∗ X + X), (2)

where W3 denotes the kernel of the 3× 3 convolution branch, and W1 denotes the kernel of
the 1× 1 convolution branch. Since the identity branch can be expressed as a particular
1× 1 convolution, and the 1× 1 convolution can be considered a 3× 3 convolution with
zero padding, the re-parameterization during inference is:

Y = BN(W3 ∗ X + W1 ∗ X + X)

= BN(W3 ∗ X + W3
1 ∗ X + W3

identity ∗ X)

= BN((W3 + W3
1 + W3

identity) ∗ X),

(3)
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where W3
1 and W3

identity denote the equivalent kernels of the 1× 1 convolution branch and
the identity branch after re-parameterization.

Furthermore, BN in the above equation can also be integrated into convolution during
inference. Let {W, b} represent the 3× 3 convolution kernel and bias obtained by the three-
way branch fusion in Equation (3), and µ, σ, γ, β, respectively, represent the accumulated
mean, standard deviation, learned scaling factor, and bias of the BN layer. Then, the
convolution kernel and bias obtained after integrating BN are:

W ′ =
γ

σ
W,

b′ =
γ(b− µ)

σ
+ β.

(4)

Spatial Attention

Since the haze distribution often has a non-homogeneous character in many real
scenes, a spatial attention mechanism is advantageous for dealing with such a situation.
We design an improved spatial attention module, where 3D MaxPool, 1× 1 convolution,
ReLU, and 1× 1 convolution are applied subsequently, and then a Sigmoid operation is
used to output the attention weights:

Ysa = σ(Conv(Relu(Conv(MaxPool(X))))), (5)

where X is the input feature, σ is the Sigmoid function, and Ysa is the spatial attention
weights. The output Y is derived as the element-wise product of the input X and the spatial
attention weights Ysa:

Y = Ysa ◦ X. (6)

Channel Attention

Different channels of a feature map often have different degrees of importance; thus,
the channel attention mechanism is necessary for low-level vision tasks, such as dehazing.
We follow the channel attention design in [13].

3.2.2. Details of RRA-Net’s Lightweight Structure

In RRA-Net, as shown in Figure 2, a 3× 3 convolution is firstly applied to the hazy
image, outputting a feature map of the shape 64× H ×W where H and W are the height
and width of the input image. Then, a 3× 3, stride 2 convolution is used to downsample
the feature map, which doubles the receptive fields of the subsequent convolutions. After
that, 6 MRABs are applied subsequently to gradually extract features, followed by a pixel
shuffle layer, which upscales the feature map back to the original spatial size H ×W and
reduces the number of channels to 16. To avoid the loss of shallow features, before the
final fusion tail, a long skip connection with attention is used to introduce shallow features.
Specifically, the feature map after the pixel shuffle passes through a 5× 5 convolution,
a spatial attention layer, and a channel attention layer. In the meantime, the shallow
features from the first 3× 3 convolution are channel shrunken and long skip connected.
The final fusion tail consists of a reflection padding, a 7× 7 convolution, and a residual
connection. The reflection padding operation alleviates the image boundary distortion
problem caused by the following convolution of the large kernel size. The 7× 7 convolution
outputs the difference Yres between the input hazy image Ihazy and the recovered clean
image RRA(Ihazy). Thus, the output of the proposed RRA-Net is

RRA(Ihazy) = Yres + Ihazy. (7)

Such a multi-stage fusion strategy has the advantages of combining shallow and
deep features and avoiding the instability caused by the upsampling process. The struc-
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ture of RRA-Net achieves a good balance between the dehazing performance and model
complexity. Overall, it only has about 0.3M parameters.

3.2.3. Loss Function

To recover high-frequency details and colors, we design two new loss functions,
namely the Laplace pyramid loss and the color attenuation loss. During training, the total
loss function is

LΘ = L1 + α1LLaplace + α2LCA, (8)

where Θ denotes the parameters of RRA-Net, L1 is the L1-norm loss, LLaplace is the Laplace
pyramid loss, LCA is the color attenuation loss, and α1, α2 are the balancing coefficients. It
is worth noting that we do not adopt the commonly used perceptual loss or GAN loss.

Laplace Pyramid Loss

The Laplace pyramid is commonly used to extract high-frequency features from an
image. To calculate the Laplace pyramid loss, the recovered clean image RRA(Ihazy) and
its ground-truth Igt undergo the same process to build two 3-layer Laplace pyramids. Let
G1 denote RRA(Ihazy) or Igt. G1 is downsampled 3 times successively by Gaussian filtering
to generate Gk, k = 2, 3, 4. The Laplace pyramid is constructed as LPk = Gk − u(Gk+1),
k = 1, 2, 3, where u is the bilinear interpolation upsampling operation. Finally, the proposed
Laplace pyramid loss is calculated as

LLaplace =
1
N

3

∑
k=1

N

∑
i=1

∥∥∥LPk(RRA(Ii
hazy))− LPk(Ii

gt)
∥∥∥2

2
. (9)

Color Attenuation Loss

The saturation and brightness of an image are influenced by nonhomogeneous haze.
The saturation of the hazy area usually is decreased because the color fades under haze,
while the brightness of the hazy area is usually increased. A color attenuation prior was
presented in [11] where the haze concentration P(x) at position x can be calculated by the
following formula:

P(x) = ‖S(I(x))−V(I(x))‖1, (10)

where S(I(x)) is the saturation at position x of image I, and V(I(x)) is the brightness at
position x of image I. Inspired by this prior, we designed a color attenuation loss LCA to
regulate the RRA-Net to recover the saturation and brightness. LCA is calculated as:

LCA = α
1
N

N

∑
i=1

∥∥∥S(RRA
(

Ii
hazy )

)
− S(Ii

gt)
∥∥∥2

2
+ β

1
N

N

∑
i=1

∥∥∥V(RRA
(

Ii
hazy )

)
−V(Ii

gt)
∥∥∥2

2
, (11)

where α and β are the balancing coefficients. Empirically, the values of α and β are set to 1
and 0.5, respectively.

3.3. Experimental Validation

To evaluate the performance of RRA-Net on the single-image dehazing task, we
compare it with other state-of-the-art methods both quantitatively and qualitatively. To
this end, we construct the training dataset to train the models and the testing dataset for
model evaluation. Two evaluation metrics are calculated to compare different models. We
also conduct a series of ablation studies to verify the effectiveness of the main components
of the proposed RRA-Net.

In this subsection, the datasets and evaluation metrics used in the experiments are
introduced first, followed by some implementation details. Finally, the comparative experi-
ments and ablation studies are described.
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3.3.1. Datasets

Since RRA-Net is designed to dehaze realistic images, we train and test RRA-Net
on real-world hazy image datasets. We take the images from the I-Haze [33] dataset, O-
Haze [34] dataset, and NH-Haze (2020) [2] dataset together to form a training set. The
I-Haze dataset contains 35 image pairs of hazy and corresponding haze-free (ground-truth)
indoor images. The O-Haze dataset consists of 45 pairs of hazy and corresponding haze-free
outdoor images. In practice, the hazy images have been captured in presence of real haze,
generated by professional haze machines. The NH-Haze (2020) dataset is the first non-
homogeneous image-dehazing dataset and contains 55 outdoor image pairs, among which
50 pairs are usually used for training and 5 pairs are for testing. The non-homogeneous
haze has been introduced in the scene using a professional haze generator that imitates
real conditions of hazy scenes. In our experiments, the constructed training set consists
of 130 image pairs in total, including 35 pairs from the I-Haze dataset, 45 pairs from the
O-Haze dataset, and 50 pairs from the NH-Haze (2020) dataset.

As for the test dataset, we use the NH-Haze (2021) [35] dataset and the Dense-Haze [36]
dataset. The NH-Haze (2021) dataset is a non-homogeneous realistic dataset with pairs of
real hazy and corresponding haze-free images. Additionally, the Dense-Haze dataset is
characterized by dense and homogeneous hazy scenes.

3.3.2. Evaluation Metrics

To quantitatively evaluate the performance of our RRA-Net, we adopt the peak signal-
to-noise ratio (PSNR) and the structural similarity index (SSIM) [37] as evaluation metrics.

The PSNR is the ratio between the maximum possible power of a signal and the
power of discrepancy that affects the quality of its representation. It is defined via the
Mean Squared Error (MSE). Given an H ×W dehazed image Idehazed and its corresponding
haze-free image Igt, the MSE is defined as

MSE =
1

HW ∑
x
‖ Idehazed(x)− Igt(x) ‖2

2, (12)

where x indexes the pixel position of the image. Then, the PSNR (in dB) is defined as

PSNR = 10 · log10(
2552

MSE
). (13)

On the other hand, the SSIM is a quality assessment metric based on the degradation of
structural information. It extracts three key features from an image, namely the luminance,
contrast, and structure. The comparison between Idehazed and Igt is performed using three
comparison functions on the basis of these three features. Then, the SSIM is defined as

SSIM = [l(Idehazed, Igt)]
α · [c(Idehazed, Igt)]

β · [s(Idehazed, Igt)]
γ, (14)

where l(Idehazed, Igt), c(Idehazed, Igt), and s(Idehazed, Igt) are the luminance, contrast, and
structure comparison functions, respectively, as defined in [37], and α > 0, β > 0, and
γ > 0 are the parameters used to adjust the relative importance of the three components.
We set α = β = γ = 1 in the experiments since this setting is commonly used.

3.3.3. Implementation Details

During training, since there are only 130 pairs of a hazy image and its ground-truth, the
training dataset is augmented with random rotation and horizontal flip. Then, we divide
the hazy image and its ground-truth into image patches of the size 128× 128 and feed them
to RRA-Net. The network is trained for 5× 105 steps on the training dataset. We use the
Adam optimizer whose parameters β1 and β2 are set to 0.9 and 0.999, respectively. The
initial learning rate is set to 6× 10−4, and we adopt the cyclical learning rate strategy [38]
to adjust the learning rate from the initial value to 1.2× 10−3 with a step size of 10. The
RRA-Net model is implemented in Pytorch [39] and run on 2 RTX 2080Ti GPUs.
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During testing, we pass each whole image from the testing dataset into RRA-Net and
other models directly and average the PSNR and SSIM metrics over the testing dataset.

3.3.4. Comparative Experiments and Ablation Studies
Comparison with State-of-the-Art Methods

We compare our RRA-Net with 7 single-image dehazing methods, including the
traditional DCP [9] and SOTA deep-learning-based methods. Among the latter type of
methods, AOD-Net [25], FFA-Net [13], MSBDN [14], DMPHN [15], and TBNN [19] are
based on CNNs, and the Dehamer [20] is based on a transformer. The evaluations are
conducted on the NH-Haze (2021) and Dense-Haze datasets.

For each compared model, the PSNR and SSIM metrics are calculated between the
dehazed results and the haze-free images of the testing set. A higher PSNR score or a higher
SSIM score indicates a better dehazing performance.

To validate the efficiency of the proposed RRA-Net, we also conduct a comparative
runtime test. Specifically, images of the size 1600× 1200 are passed into each compared
model. Additionally, then, the average processing FPS of each model is calculated. A higher
FPS score indicates a better dehazing speed and, hence, a higher efficiency.

Ablation Studies

To validate our design choices for RRA-Net, we conduct a series of ablation studies
on modules of the MRAB structure, two newly designed loss functions, and the batch
normalization strategy. In each ablation study, the PSNR and SSIM metrics are calculated
to show how these design choices affect the dehazing performance of RRA-Net.

4. Results

In this section, the results of the comparative experiments are presented and discussed
first to evaluate the dehazing performance of the proposed RRA-Net. Then, the results of
the ablation studies are given to validate several design choices for the proposed model.

4.1. Results of Comparative Experiments

As shown in Table 1, our RRA-Net outperforms all of the listed SOTA methods on
both datasets in terms of the PSNR and SSIM metrics. For the NH-Haze (2021) dataset with
nonhomogeneous haze scenes, RRA-Net has a 0.5dB lead in terms of the PSNR over the
second-best method. Additionally, note that RRA-Net works well on both nonhomogeneous
hazy images and homogeneous dense hazy images. For the Dense-Haze dataset, RRA-Net
achieves a PSNR of 15.78 dB, exceeding the second-best method by 0.37 dB.

Table 1. Quantitative comparisons with SOTA methods on the realistic datasets. Best results are
underlined. The second-best results are in Bold.

NH-Haze (2021) Dense-HazeMethod PSNR↑ SSIM↑ PSNR↑ SSIM↑ Param Runtime (fps)
@1600 × 1200

DCP [9] (TPAMI’10) 10.57 0.52 10.06 0.3856 - -
AOD-Net [25] (TIP’17) 14.104 0.552 13.34 0.4244 0.002M 2598.3
FFA-Net [13] (AAAI’20) 19.1 0.748 14.31 0.4797 4.68M 1.28
MSBDN [14] (CVPR’20) 19.31 0.759 15.41 0.4858 31.35M 36.84
DMPHN [15] (CVPRW’20) 18.184 0.745 14.01 0.4436 5.424M 135.46
TBNN [19] (CVPR’21) 15.622 1 0.707 14.60 0.4829 50.40M - 1

Dehamer [20] (CVPR’22) 13.940 1 0.646 14.63 0.4996 132.4M - 1

RRA-Net (Ours) 19.813 0.765 15.78 0.5154 0.3M 166.11
1 For fair comparisons, we conducted the tests for all the methods on the same computer with 2 RTX 2080Ti GPUs
by passing whole images into these models. For TBNN and Dehamer models, GPU “out of memory” issue was
reported during the tests run on this specific computer since they have much higher model complexities. Thus,
we used a patching strategy to quantitatively evaluate these two models. Note that this strategy may incur slight
losses of performance. Accordingly, the runtimes of these two models are not reported.
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Visual comparisons of the recovered results on nonhomogeneous hazy scenes are given
in Figures 4 and 5. It can be seen that RRA-Net produces results with less residual haze
and preserves more image details and contrast. For example, in Figure 4, the results of the
FFA-Net and TBNN methods still have some residual haze; the result of MSBDN loses pixel
color saturation to some extent and has a whitish appreance, while the result of DMPHN
introduces visible artifacts in the sky area. In addition, the Dehamer method cannot
effectively remove the nonhomogeneous haze from either sample given in Figures 4 and 5.

(a) The hazy image (b) Result of FFA-Net

(c) Result of MSBDN (d) Result of DMPHN

(e) Result of TBNN (f) Result of Dehamer

(g) Our result (h) Ground Truth

Figure 4. Qualitative comparison of dehazing results on one nonhomogeneous hazy image from
NH-Haze (2021) dataset.
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(a) The hazy image (b) Result of FFA-Net

(c) Result of MSBDN (d) Result of DMPHN

(e) Result of TBNN (f) Result of Dehamer

(g) Our result (h) Ground Truth

Figure 5. Qualitative comparison of dehazing results on another nonhomogeneous hazy image from
NH-Haze (2021) dataset.

A visual comparison of the homogeneous dense hazy scene is given in Figure 6. It
can be seen that in such a case, RRA-Net is also capable of producing a result with less
residual haze.

Apart from having better dehazing results, RRA-Net is designed to be lightweight
from the beginning. Under the same configuration, it has only about 0.3M parameters and
runs at 166 FPS to dehaze a 1600× 1200 image on RTX 2080Ti GPU. As can be seen from
Table 1, RRA-Net runs faster than the other methods, except for AOD-Net, which falls
behind in terms of the PSNR and SSIM metrics. The speed comparison is conducted under
the same hardware setup, demonstrating the superior efficiency of the proposed network.
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(a) The hazy image (b) Result of FFA-Net

(c) Result of MSBDN (d) Result of DMPHN

(e) Result of TBNN (f) Result of Dehamer

(g) Our result (h) Ground Truth

Figure 6. Qualitative comparison of dehazing results on an image with dense haze from the Dense-
Haze dataset.

4.2. Results of Ablation Studies

The ablation studies are conducted to validate several key choices in the design of the
proposed RRA-Net, whose results are described as follows.

4.2.1. Effect of MRAB Structure

We first verify the effectiveness of different modules of the basic MRAB via ablation
experiments on the NH-Haze (2021) dataset.

The results are listed in the top rows of Table 2. In the S1 setting, the MRAB consists of
only multi-branch convolutions and the LeakyReLU layer. On top of S1, we applied the
other components to form different settings: S2 (apply the BN layer and Attention Module)
and RRA-Net (apply the BN layer, attention module, and local residual connection). It can
be seen that the inclusion of the BN layer and attention mechanism greatly improve the
dehazing performance of the network, and the local residual connection is also beneficial.
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Table 2. Ablation studies on main modules of MRAB (top rows) and on two new loss functions (bot-
tom rows). BN, AM, and LR stand for batch normalization, attention module (spatial attention and
channel attention), and local residual connection in MRAB, respectively. Best results are underlined.

Module/Loss MetricSetting BN AM LR L1 LCA LLaplace PSNR↑ SSIM↑
S1 X X X 18.797 0.733
S2 X X X X X 19.532 0.754
RRA-Net X X X X X X 19.813 0.765

S3 X X X X 19.21 0.746
S4 X X X X X 19.34 0.741
RRA-Net X X X X X X 19.813 0.765

4.2.2. Effect of Two Novel Loss Functions

Secondly, the effectiveness of the two newly proposed loss functions is also verified
by the ablation study, as listed in the bottom rows of Table 2. In the S3 setting, only the L1
loss function is used during training. On top of that, the LCA loss function is added to the
S4 setting, which regulates the network to recover the saturation and brightness. It can
be seen that S4 enjoys a moderate PSNR gain, while suffering a slight loss in terms of the
SSIM. Since LCA is calculated in a pixel-wise way, it does not focus on the recovery of the
structural information, which is evaluated by the SSIM. Finally, in the RRA-Net setting,
both the LCA and LLaplace loss functions are used during training. With the help of LLaplace,
which is designed to protect high-frequency features, both the PSNR and SSIM metrics are
lifted substantially from 19.21 dB and 0.746 to 19.813 dB and 0.765, respectively, as shown
in the last row of Table 2. Through this ablation study, we find that using a combination
of LCA and LLaplace can boost the dehazing performance effectively since these two loss
functions are designed from different perspectives.

4.2.3. Effect of the Batch Normalization Strategy

During training, we use a single BN layer after summing up the outputs of three
convolution branches, rather than applying individual BN layers on each branch as applied
in RepVGG. Table 3 shows the performance of these two different BN strategies. It can
be seen that the BN strategy we propose results in much higher PSNR and SSIM scores,
demonstrating that applying a single BN after multi-branch convolutions can stabilize
the training more effectively and demonstrate improvement over the original strategy
in RepVGG.

Table 3. Ablation study on different BN strategies. Best results are underlined.

BN Strategy PSNR SSIM
Individual BN on each branch 18.627 0.688

A single BN after
multi-branch 19.813 0.765

5. Conclusions and Further Studies

This paper proposes an efficient RRA-Net to perform single-image dehazing. The
contributions of the work are a training-time multi-branch residual attention block, an
end-to-end lightweight network structure, and two new loss functions. Multi-branch
convolutions in the MRAB are able to deal with non-uniformity of haze. Additionally,
due to lightweight design, RRA-Net only has about 0.3M parameters, achieving a good
balance between the dehazing performance and model complexity. The experimental
results demonstrate that RRA-Net outperforms other SOTA methods on both realistic
nonhomogeneous and homogeneous hazy image datasets.

With the help of its lightweight network structure, RRA-Net is able to dehaze 1600×
1200 HD images at a speed of 166 fps on a computer with 2 RTX 2080Ti GPUs, demonstrating
its application potential in real-time dehazing. RRA-Net can not only produce high-quality
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clean images for better human perception but also contribute to the success of subsequent
real-world vision tasks in hazy weather, such as object detection and autonomous driving.

Despite the superiority of RRA-Net, it is CNN-based and lacks ability for global
modeling. As mentioned earlier, recently, there have been some efforts to take advantage
of both visual transformers and CNNs. However, such hybrid networks usually have a
much higher complexity. Thus, it is worth investigating how to bestow RRA-Net with the
merits of transformers while keeping the network as efficient as possible at the same time.

Author Contributions: Conceptualization, E.C. and T.Y.; methodology, E.C. and T.Y.; software, T.Y.
and J.J.; validation, J.J. and L.T.; formal analysis, Q.Y. and L.T.; investigation, E.C. and T.Y.; resources,
Q.Y.; data curation, T.Y.; writing—original draft preparation, T.Y., J.J. and Q.Y.; project administration,
Q.Y.; funding acquisition, E.C. and Q.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Natural Science Foundation of Fujian Province of
China under grant no. 2021J01867, the Scientific Research Foundation of Jimei University under
grant no. ZQ2018012, and the Xiamen Municipal Bureau of Ocean Development under grand no.
22CZB013HJ04.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data
can be found here: https://data.vision.ee.ethz.ch/cvl/ntire18/o-haze/ (acessed on 15 January
2021), https://data.vision.ee.ethz.ch/cvl/ntire18//i-haze/ (acessed on 15 January 2021), https:
//data.vision.ee.ethz.ch/cvl/ntire20/nh-haze/ (acessed on 1 April 2021) and https://data.vision.ee.
ethz.ch/cvl/ntire19//dense-haze/ (acessed on 15 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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AOD-Net All-in-One Dehazing Network
BN Batch Normalization
CA Color Attenuation
CNN Convolutional Neural Network
DCP Dark Channel Prior
DMPHN Deep Multi-Patch Hierarchical Network
FFA-Net Feature Fusion Attention Network
GAN Generative Adversarial Network
MRAB Multi-branch Residual Attention Block
MSBDN Multi-Scale Boosted Dehazing Network
PSNR Peak Signal-to-Noise Ratio
RRA-Net Re-parameterization Residual Attention Network
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TBNN Two-Branch Neural Network
TCAM Transformer-based Channel Attention Module
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