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Abstract: Heterogeneous graph neural networks (HGNNs) deliver the powerful capability to model
many complex systems in real-world scenarios by embedding rich structural and semantic informa-
tion of a heterogeneous graph into low-dimensional representations. However, existing HGNNs
encounter great difficulty in balancing the ability to avoid artificial metapaths with resisting structural
and informational noise in a heterogeneous graph. In this paper, we propose a novel framework called
Heterogeneous Graph Purification Network (HGPN) which aims to solve such dilemma by adap-
tively purifying the noisy heterogeneity. Specifically, instead of relying on artificial metapaths, HGPN
models heterogeneity by subgraph decomposition and adopts inter-subgraph and intra-subgraph
aggregation methods. HGPN can learn to purify noisy edges based on semantic information with a
parallel heterogeneous structure purification mechanism. Besides, we design a neighborhood-related
dynamic residual update method, a type-specific normalization module and cluster-aware loss to
help all types of node achieve high-quality representations and maintain feature distribution while
preventing feature over-mixing problems. Extensive experiments are conducted on four common
heterogeneous graph datasets, and results show that our approach outperforms all existing methods
and achieves state-of-the-art performances consistently among all the datasets.

Keywords: graph neural network; heterogeneous graph representation learning; heterogeneous
graph purification; graph representation

1. Introduction

In recent years, graph representation learning has become increasingly popular due to
the universal ability of graph-structured data to model many real-world complex systems,
such as citation networks [1], social networks [2], recommendation systems [3] and so on.
Now Graph Neural Network (GNN) is recognized as the most advanced technique for
graph representation learning following the framework of message passing. GNNs can
effectively make use of both network structure and node attributes to generate high quality
representations. Most of the previous GNNs [4–6] mainly focus on homogeneous graphs,
wherein all nodes and edges are treated as the same type. However, in realistic scenarios,
heterogeneous graphs which contain various types of nodes and edges are actually much
more general and common. Lots of useful semantic and structural information the het-
erogeneity brings will be lost if we simply adopt homogeneous GNNs on heterogeneous
graphs, which require specifically designed models.

Various models have been proposed to make GNNs suitable for heterogeneous graphs.
The majority of existed methods [2,7] adopt metapaths, which are predefined semantic
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patterns designed by human prior knowledge, to extract clean and useful information
from the noisy and complex heterogeneity. These metapath-based models firstly aggregate
neighbor features at the scope of each metapath rather than the original graph to generate
semantic representations, and then fuse these semantic representations to generate the
final node representations. These methods have good interpretability and are widely
used in practice, but face some inherent flaws: (1) High demand while less generality.
Metapaths not only require researchers to have specific domain knowledge, but also need
to be redesigned for different datasets and applications. (2) Limited expressive power. The
model’s learning capability is upper-bounded by artificial metapaths, which is contrary to
the original purpose of deep learning to learn from data automatically.

Considering the shortcomings of metapaths, some works make attempts to design
metapath-free methods, e.g., [8,9]. These models aggregate messages from a node’s local
neighborhood like GNNs, and model heterogeneity via applying extra modules to embed
semantic information based on type-specific weight parameters into propagated messages.
However, since these models choose to take the original noisy graph as input, they meet
some tricky problems that heterogeneous graphs often inevitably possess: Information
Lacking (IL) and Information Confusion (IC). IL means most types of node suffer from miss-
ing attributes and labels. IC means some structures of the original graph are noise and even
harmful to specific downstream tasks. Take the OGB-MAG [10] citation network dataset
for example. It has four types of nodes: paper, author, field of study and institution while
only paper nodes have initial attributes and labels. Thus, obtaining good representations
for most nodes in a graph can be challenging due to limited self-information and direct
supervision. In this particular task, the goal is to predict whether a paper node belongs
to a conference or journal venue. The edge type “affiliated with” between authors and
institutions may have a less positive relationship to this task. Incorporating information
from the IC and IL may help to reduce the effects of heterogeneity. However, most existing
heterogeneous GNNs simply aggregate the representations of different types of nodes
together during the message passing process. This can lead to the loss of the original
distribution of different types of node features and cause information over-mixing, which
is a serious problem. Based on this analysis, we can explain the surprising finding in [11]
that heterogeneous GNNs do not necessarily outperform homogeneous GNNs in a fair
comparison. In general, we summarize the main dilemma that existing heterogeneous
GNN methods face: they cannot balance the ability of avoiding artificial design with resist-
ing structural and informational noise. In this paper, we attempt to solve this dilemma by
proposing a framework called the Heterogeneous Graph Purification Network (HGPN)
with the aim to purify the noisy heterogeneity from both structure and feature. Specifically,
HGPN avoids using any hand-engineered metapaths and we model heterogeneity by split-
ting the original graph into edge type-specific subgraphs and adopting node type-specific
parameters by the inter-subgraph aggregation method. A parallel heterogeneous edge
purification mechanism is designed during the heterogeneous message propagation process
to filter irrelevant edge structures in a learning manner. Then, we present a heterogeneous
neighborhood-related residual update method to discriminate and help nodes with low
quality attributes automatically. Finally, a novel type-specific normalization and cluster
loss function are proposed so that the representation of nodes with IL problems can achieve
basic constraint optimization as well as preventing feature over-mixing. Extensive experi-
ments are conducted on various common heterogeneous graph datasets. The results show
that our approach outperforms all existing methods consistently among all the datasets.

The core contributions of our work are listed as follows:

(1) We analyze and summarize the main dilemma on which present heterogeneous GNN
research should focus. Thus, a novel HGPN framework is proposed to solved the
dilemma, which can jointly handle edge and node heterogeneity with inter and intra
subgraph aggregation methods without any artificial metapaths.
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(2) To solve the mentioned IC problem, HGPN uses a new designed parallel heteroge-
neous structure purification mechanism so that the model can learn to filter noisy
edge structures based on semantic information and downstream tasks.

(3) To solve the mentioned IL and information over-mixing problem, we present the
neighborhood-related residual update method, a novel type-specific normalization and
cluster loss function to help all types of nodes achieve high-quality representations.

(4) HGPN achieves SOTA performance with the proof of extensive experiment and
analysis on four real world heterogeneous graph datasets. Remarkably, the accuracy
of HGPN on the large OGB-MAG dataset exceeds the current SOTA method by 2.07%
and 2.22% under different training settings.

The rest of this paper is organized as follows: Section 2 summarizes previous research
related to the studied problem. Section 3 formalizes the studied problem. Section 4 presents
the framework and introduces each component of our model. Section 5 evaluates the
proposed model through experiments. Finally, Section 6 concludes the entire paper.

2. Related Work
2.1. Graph Embedding Learning

Graph embedding learning aims to embed nodes and edges into a low-dimensional
dense vector space, and a great number of efforts have been made on this subject over
the past decades. Early methods based on manifold learning mainly focused on graph
reconstruction, including Locally Linear Embedding (LLE) [12] and Laplacian Eigen-
maps (LE) [13]. Inspired by the success of the word2vec [14] model in natural language
processing, more advanced methods were proposed to learn representations of nodes in the
network, such as DeepWalk [15], Node2Vec [16], and metapath2vec [17]. These methods
use several random walk strategies to get node sequences that can preserve structural in-
formation of the original graph. Then, the skip-gram model is applied to capture structural
similarity among node sequences based on the distributional hypothesis. However, these
methods only consider the topology structure of graphs and cannot utilize node or edge
features if provided, making them less adaptable in many realistic scenarios. Thus, these
methods are gradually being replaced by more advanced graph neural networks that can
take advantage of both node features and the graph structure simultaneously.

2.2. Graph Neural Networks

Graph Neural Networks (GNNs) extend the thought of deep learning to data with
graph structure, and they have been successfully applied in various applications such as
node classification [18], graph classification [19], traffic prediction [20], and recommenda-
tion systems [21]. Generally, GNNs can be unified under the message-passing framework,
which propagates information among nodes and their neighbors and then updates node
representations by aggregating the received messages. GNNs can be categorized as spectral
methods or spatial methods. GCN [4] is one of the most popular spectral methods and
simplifies the operation of graph Laplacian smoothing by proposing a localized first-order
approximation. GraphSAGE [5] is a pioneer of spatial methods that makes GNNs inductive
by introducing neighbor sampling strategies and utilizes flexible aggregating functions.
GAT [6] based on the spatial domain adopts the attention mechanism to adaptively assign
different importance to one-hop neighbors and get weighted aggregation of node features.
However, most existing GNNs are only suitable for homogeneous graphs and cannot deal
with the complexity of various types of nodes and edges in heterogeneous graphs.

2.3. Heterogeneous Graph Neural Networks

Recently, researchers have begun to pay a large amount of attention to applying GNNs
for heterogeneous graph learning. Ref. [22] proposed R-GCN to use relation-specific pro-
jection matrices for aggregation among different relation edges. Ref. [2] presents HAN by
adopting a hierarchical attention mechanism to capture both node-level and semantic-level
information through multiple human-designed metapaths. MAGNN [7] enhances HAN by
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considering the intermediate nodes in metapaths and using several encoders for both intra-
metapath aggregation and inter-metapath aggregation. Het-GNN [23] uses a random walk
strategy to sample neighbor sequences from different distances and then adopts specialized
Bi-LSTMs to aggregate information. Ref. [24] develops HetSANN with type-specific graph
attention layers to handle messages from various relations. Motivated by the architecture
of Transformer [25], Refs. [8,25] introduces HGT to characterize the heterogeneous infor-
mation with meta-relation-specific attention modules, rather than metapaths. Although
the above methods have explored a lot and achieved great success, they rely highly on the
quality of the original graph structure and node features. Therefore, these existing methods
cannot handle the structural and informational noise of heterogeneous graph data in reality.

Considering the drawbacks of the above-mentioned methods, we believe that a good
solution of HGNN should handle the heterogeneity in a natural and automatic manner and
be robust to any type of potential noise in realistic graph data. This principle guides us to
the design of different components in HGPN.

3. Preliminaries
3.1. Heterogeneous Graph

A heterogeneous graph is denoted as G = (ν, ε, A, R) associated with a node type
mapping function φ : ν → A and an edge type mapping function ψ : ε → R, where
ν, ε, A, R respectively represent the set of nodes, edges, node types and edge types. Each
node v ∈ ν and each edge e ∈ ε belong to their corresponding type in A and R using φ
and ψ. Heterogeneous graphs should meet the requirement that |A|+ |R| > 2.

3.2. Heterogeneous Graph Representation Learning

Given a heterogeneous graph G = (ν, ε, A, R), heterogeneous graph representation
learning aims to learn a function f : ν → Rd to project nodes into a d-dimensional
representation space satisfying d� |ν|. The learned representations should be capable of
reflecting both node semantic information and graph structure information involved in
the original graph data to facilitate different downstream tasks, such as node classification,
graph classification and link prediction.

4. Proposed Method

This section first presents the framework of the proposed model and then introduces
each component in detail step by step.

Figure 1 illustrates the architecture of HGPN, which consists of several key com-
ponents: a subgraph decomposition method, a pre-processing and embedding layer, an
inter-subgraph aggregation layer, a type-specific update layer, and a cluster-aware loss. The
original heterogeneous graph is first decomposed into multiple type-specific subgraphs
based on edge types. The pre-processing and embedding layer is then used to process or
initialize node features and map them into a uniform shape for further use.

Next, the inter-subgraph aggregation layer utilizes heterogeneous graph attention
layers to learn type-specific messages from each subgraph individually while purifying
noisy edge structures. The inter-subgraph aggregation aims to fuse these multi-subgraph
views into a compact one and improve the interactions of message representations across
different types of relations. The type-specific update method uses the comprehensive
neighbor-passed messages obtained earlier to update the representation of the target nodes.
Type-specific batch normalization and neighborhood smoothness related dynamic residual
connections are adopted to purify node features and maintain their original distribution.

Additionally, a cluster-aware loss is designed to ensure feature distinguishability and
prevent feature over-mixing, which also contributes to feature purification. Finally, the
learned node representations can be used to facilitate various downstream tasks, such as
node classification, node clustering, and link prediction.
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Figure 1. Our HGPN framework: (1) Subgraph Decomposition method; (2) Inter-subgraph Aggre-
gation (Inter-Agg); (3) Inter-subgraph Aggregation(Intra-Agg); (4) Type-specific Update(Update);
(5) Cluster-Aware Loss. “Sources” (A1, A3, B1, B2, C1, C2) and “Target” (A2) respectively refer to
neighbor source nodes and central target nodes in the process of graph message passing. “MHA”
denotes “Multi Head Attention”. “TS-BN” is short for “Type-Specific Batch Normalization”, while
“Dynamic-Res” means “neighborhood smoothness related Dynamic Residual connection”.

4.1. Heterogeneity Modeling

The heterogeneity of graph structured data can be classified into two types: edge
heterogeneity and node heterogeneity. In contrast to existing metapath-free models that
aggregate on the original structure with relation-specific (R-GCN) or meta-relation-specific
(HGT) parameters, we propose a decoupled solution that addresses both types of het-
erogeneity. Firstly, we decompose the original heterogeneous graph into subgraphs that
contain a single edge type. Then, we introduce an inter-subgraph aggregation module to
learn node representations from a simplified view. To handle node heterogeneity, we use
node type-specific projection matrices in the inter-subgraph aggregation module. Finally,
we employ an attention-based intra-subgraph aggregation module to aggregate information
from subgraphs with different edge types.

We list three advantages of our solution to model the heterogeneity as follows:

1. The heterogeneity of edge types is naturally exploited without the need to introduce
additional parameters for edges of different relations. With N types of nodes cor-
responding to N2 orders of magnitude of edge types, it is more sensible not to set
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different parameters for different edge types, while the increase in the number of
parameters brought about by setting different parameters for different types of nodes
is acceptable.

2. It prevents the aggregation of too much neighbor information for target nodes at one
time, thus alleviating the well-known problem of over-squashing [26] in GNNs. This
problem arises when the fixed embedding dimension cannot retain information from
nodes that increase exponentially with neighbor hops, leading to issues of feature
over-mixing and information loss.

3. The distribution of information from different relationships can vary significantly, and
using the common graph attention module based on the So f tmax function directly
without subgraph decomposition can result in the loss of information with relatively
small numerical scales due to the amplification effect of the exponential function.

4.2. Pre-Processing and Embedding Layer

As the initial features of different types of nodes vary greatly, with some lacking initial
features and others having different initial dimensions, a certain embedding pre-processing
layer is required. In large datasets with rich structure information, nodes without initial
features can be initialized first using traditional methods such as metapath2vec [17] and
TransE [27] to generate features, while small datasets can simply use one-hot type ID vector
to be initialized. After generating initial attributes for each node, we use a single-layer
feedforward network for each node i to map all node features to a feature space with the
same hidden dimension:

X
′
i = Relu(Wφ(i)Xi + Eφ(i)) (1)

where Xi is the initial features while weight Wφ(i) and type embedding Eφ(i) are learnable
parameters specific to node type φ(i).

4.3. Inter-Subgraph Aggregation

After single-relation subgraph decomposition, in the subgraph containing edge type
ψ(e), we assume the target node type is φ(d) and the source node type is φ(s). In the l-th
layer inner-subgraph aggregation module, firstly we adopt the type-dependent matrices
W l

φ(s) and W l
φ(d) to project nodes’ representation Xl−1

s and Xl−1
d into the same semantic

space for the aggregation calculation, as follows:

Xl
s = W l

φ(s)X
l−1
s

Xl
d = W l

φ(d)X
l−1
d

(2)

In traditional heterogeneous GNNs, the model would indiscriminately aggregate all
the source node information Xl−1

s to the target node Xl−1
d , which is likely to cause harm

to the downstream task in heterogeneous graph data with high noise structures. To give
the model the ability to automatically learn to filter out noisy information and improve
robustness, a parallel structure purification mechanism is introduced in the module. Firstly,
we use another set of type-dependent projection matrices W l,m

s,φ(s) and W l,m
d,φ(d) to project the

nodes into another semantic space for determining relevance:

Xl,m
s = W l,m

s,φ(s)X
l−1
s

Xl,m
d = W l,m

d,φ(d)X
l−1
d

(3)

Then, the filter score Fl
s,d between each node pair Xl,m

s to Xl,m
d can be calculated by an

additive attention layer, as follows:

Fl
s,d = tanh(W l LeakyReLU(Xl,m

s + Xl,m
d ))− γψ(e) (4)
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where γψ(e) is a learnable threshold corresponding to the edge type of subgraph ψ(e). Each
γψ(e) is initialized to 0. We introduce the parameter γψ(e) because the quality of different
edge types often varies significantly in practice. By incorporating this parameter with
minimal increase in parameters, our model can learn to differentiate between noisy edge
structures, taking into account edge heterogeneity. This allows us to obtain the final mask
matrix Ml , which ensures that the source node s will not have any effect on the target node
d if Fl

s,d < 0:

Ml
s,d =

{
Fl

s,d if Fl
s,d ≥ 0

Fl
s,d −∞ if Fl

s,d < 0
(5)

Since the importance of different neighbor nodes cannot be treated equally, we apply
attention operators for message aggregation along with the predefined mask matrix Fl .
Precisely, we calculate the attention score Al

s,d of source node s to target node d by:

Al
s,d =

exp(aT LeakyReLU(Xl
s + Xn

d ) + Ml
s,d)

∑s∈Nψ(e)(d)
exp(aT LeakyReLU(Xl

s + Xl
d) + Ml

s,d)
(6)

where Nψ(e)(d) denotes the neighbor nodes of target node d with edge type ψ(e). Finally,
we can compute a weighted average of the transformed features of the neighbor nodes as
the aggregated representation Zl

e,d, using the normalized attention scores Al
s,d:

Zl
e,d = ∑s∈Nψ(e)(d)

Al
s,dXl

s (7)

The multi-head attention mechanism [25] can make the training process more stable
and allow attention to be integrated and learned in parallel across multiple subspaces, and
it has already demonstrated strong performance in models of several domains. Thus, we
apply the multi-head attention mechanism here, as shown, where ||means concatenation
and H means the number of attention heads:

Zl
e,d = ||Hh=0Zl,h

e,d (8)

4.4. Intra-Subgraph Aggregation

After the edge-specific inter-subgraph aggregation, target nodes connected with R
kinds of edges can get R different views of propagated messages. Then, we adopt an
intra-subgraph aggregation module to fuse these multi relation views of neighbor messages
and generate a comprehensive one. In reality, the importance of messages for target nodes
from different subgraphs usually differs a lot. Therefore, we establish an attention-based
aggregation method instead of simple pooling operations so that our model can learn to
assign appropriate weights to different subgraphs’ information automatically.

For the list of propagated messages Zl = [zl
1, zl

2, . . . zl
R] obtained from different sub-

graphs at the l-th layer, we compute the compositive message representation Zl
c using a

simplified self-attention style module:

Kl = Ql = aT LeakyReLU(W lZl) (9)

Zl
c = Mean(So f tmax(

Kl(Ql)
T

√
d

)Zl) (10)

It is worth noting that our proposed implementation of self-attention has two small
changes compared to the previous method widely used in the Transformer [25]: (1) The
calculation of K and Q uses a structure similar to a two-layer MLP (Multi-Layer Perceptron)
instead of a single linear layer, which achieves stronger expressive ability. Introducing aT

allows our model to learn the dimensional importance of message representation, while it
is only a vector of size d× 1 rather than the usual d× d sized projection matrix, where d
is the dimension of the node representation. Therefore, the number of parameters can be
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much smaller than that of a real two-layer MLP. (2) Due to the improvement of the first
point, there is no problem of parameter degradation that occurs in the original self-attention
design when K = Q, so it is possible to let K = Q to reduce the number of parameters.
We also remove the V matrix in classic self-attention to further reduce cost. Experiments
have shown that our implementation of self-attention can effectively reduce the number of
model parameters without any decrease in model performance.

Similar to the module in Section 4.4, the multi-head attention mechanism is adopted
here as follows, where H denotes the number of attention heads:

Zl
c = ||Hh=0Zl

h (11)

4.5. Type-Specific Update

After the inner-subgraph and intra-subgraph aggregation modules, we need to use
the comprehensive message Zl

i to update the original node representation. First, we use
the following formula to transform the message back to the representation space of target
node type:

Ml
i = GeLU(BNφ(i)(W

L
u,φ(i)Z

l
i )) (12)

where Wu,φ(i) is the transform matrix corresponding to node type φ(i) and GeLU means
gelu activation function [28]. It is worth noting that we utilize a distinct batch normalization
for each type of node, rather than a default shared one or layer normalization, and we name
it type-specific batch normalization. The reason for this design is that the distribution of
representations for different types of nodes is usually very different. Using the same batch
normalization layer directly would lead to grossly inaccurate estimates of the node feature
statistics, which may significantly reduce the effectiveness of our model. At the same time,
the type-specific batch normalization also helps to maintain node representations of the
same type in the same distribution space, serving to purify the node representation.

Residual connection [29] has been widely used among models in various domains
and proved to be very effective in alleviating problems such as gradient disappearance and
oversmoothing in GNNs [30]. In contrast to the normal one with fixed residual weight, we
design a novel and neighborhood smoothness-related dynamic residual connection scheme
for an adapted version in the field of heterogeneous graph networks:

λl
φ(i) = sigmoid(γφ(i) ×

|Xl−1
i −Ml

i |F√
d

) (13)

Xl
i = (1− λl

φ(i))Xl−1
i + λl

φ(i)Ml
i (14)

where | |F means Frobenius norm and γφ(i) is a learnable coefficient specific to the type of
node φ(i). Xl−1

i is the node representation from the previous layer and d is the dimension
of node embedding. We define neighborhood smoothness of nodes by calculating the
Euclidean difference between the passed message and the original node representation.
The distance value is divided by

√
d to avoid gradient vanishing in sigmoid function. The

basic design idea of our proposed dynamic residual connection is that the update weight
of each node should be positively correlated to its neighborhood smoothness. The inter-
pretation is that propagated messages can be considered as the information complement
from neighboring nodes to central target nodes. And we believe that nodes with lower
neighborhood smoothness represent higher original feature noise according to the widely
accepted graph smoothness assumption, especially for most types of nodes without initial
features. So, they should rely more on the information provided by the neighboring nodes
for feature purification in the method of representation update. Meanwhile, if the neighbor-
hood smoothness is already very high, it means that the original information of the node is
sufficient and the additional information brought by the graph structure has limited value.
Thus, a smaller update weight should be used to prevent the problem of over-smoothing
in GNN training. Overall, our design can provide a two-fold positive effect. In addition,
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the evaluation metrics of neighborhood smoothing should not be consistent for different
types of nodes, so the node category-related parameter γφ(i) is introduced for modeling
type difference.

After the dynamic residual update method, we let Xl
i continuously come through a

two layer MLP with normal residual connection and type-specific batch normalization,
which is similar to the Transformer [25] architecture:

Xl+1
i = Xl

i + BNφ(i)(MLPφ(i)(Xl
i )) (15)

This design is motivated by the challenge of effectively scaling the number of GNN
layers in large-scale graphs. Due to limitations such as sampling mechanisms, memory
constraints, and the over-smoothing problem, it can be difficult to make the GNN deep
enough. To ensure sufficient expressive power, we address this challenge by increasing the
depth of the non-linear transformation in the update module.

4.6. Cluster-Aware Loss

In many downstream tasks, only a few target nodes are labeled, making it difficult to
optimize the representations of other types of nodes directly through supervised constraints.
Additionally, frequent information passing between different types of nodes in HGNNs can
lead to feature over-mixing, causing the loss of nodes’ original representation distribution.
To address these challenges, we propose a simple and fundamental constraint goal: we
aim to maintain the original feature distribution of each node category by ensuring that
the node features of different categories have clustering properties in the representation
space, rather than being mixed together. Building upon this goal, we propose the following
loss design scheme, where Bφ(i) represents the center of the learnable node type anchor
corresponding to each node type φ(i), and Norm2 denotes the l2 normalization operation.

Lagg =
1
|ν| ∑

i∈ν,j∈A,j 6=φ(i)
exp(min[(Xi − Bφ(i))

2 − (Xi − Bj)
2, 0]) (16)

Lpush =
1

|A|2 − |A| ∑
i,j∈A,i 6=j

exp(Norm2(Bi) · Norm2(Bj)) (17)

The idea of Lagg is that the distance from each node to its own class’s center anchor
should be less than the distance to other classes’ center anchors, thus providing an inter-
class clustering effect. To prevent the problem of representation collapsing, which means
that the representation space of the nodes within the same class collapse into too small
a space, we introduce a stop mechanism to let the optimization end when the distance
difference (Xi − Bφ(i))

2 − (Xi − Bj)
2 is larger than zero. Meanwhile, Lpush aims to extend

the distance between different class center anchors, thus making it easier to separate the
representation distribution of each class. It also enlarges the range of space that each class
of node representation can occupy, which is helpful to relieve the representation collapsing
problem. In order to minimize Lagg and maximize Lpush at the same time, we develop the
final Lcluster, similar to the formula of InfoNCE loss [31]:

Lcluster = −log
Lagg

Lagg + Lpush
(18)

The optimization target of our model HGPN is the combination of downstream task
loss and Lcluster. Take the supervised node classification task as an example. The final loss
L can be computed as the weighted sum of cross-entropy loss and Lcluster:

L = Lsup + λLLcluster = −
N

∑
i=1

C

∑
c=1

yi,c · log(pi,c) + λLLcluster (19)

where λL is a weighted coefficient to balance these two parts of loss.
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4.7. Additional Training Skills
4.7.1. Label as Features

Researchers [32,33] have discovered that GNNs can benefit from labels beyond su-
pervision by adding labels to the node feature. One of the simplest but effective ways to
do this is to dynamically concatenate the one-hot representation of the label for the nodes
which are not in training batches:

Xi =

{
Xi||0 if x ∈ Vbatch_train

Xi||Yi if x /∈ Vbatch_train
(20)

To avoid data leakage, we ensure that the true validation and test labels are not
observed during both training and testing. Furthermore, we do not provide the central
node’s own label to prevent any potential bias. In cases where the true label of a node
cannot be obtained, we use an all-zero vector as its label representation to match the
dimension of its neighbor nodes’ representations.

4.7.2. Multi-Stage Pseudo Label Training

Recent studies [34,35] have discovered that multi-stage training techniques can im-
prove the performance of GNNs. This technique involves selecting test nodes with suf-
ficiently confident predictions at the end of each training stage and adding these nodes
to the training set. The labels for these added nodes are generated using the previous
stage’s model, and the updated training set is used to continue training the model. This
approach allows for the full utilization of label information in the validation and test sets,
and eliminates input inconsistencies between training and inference when the "Label as
Features" training method is also employed. Let T1 be the initial training set, and K be the
number of training stages. After training in stage k, nodes with maximum prediction scores
above the predefined threshold ηk are added to the training set for the next training stage
k + 1. The process can be formulated as follows:

Tk+1(1 ≤ k ≤ K) = Tk ∪ TNi s.t. PNi > ηk (21)

We usually set K = 2 or 3 to balance performance and training cost.

5. Experiments
5.1. Dataset and Evaluation Metrics

We evaluate our HGPN model on four real-world heterogeneous graph datasets,
ranging from different scales: ACM, DBLP, IMDB and OGB-MAG [10]. We list the statistics
of these datasets in Table 1.

Table 1. Statistics of datasets used in this paper.

Dataset Nodes Node Types Edges Edge Types Classes Target

ACM 10,942 4 547,842 8 3 paper
DBLP 26,128 4 239,566 6 4 author
IMDB 21,420 4 86,642 6 5 movie

OGB-MAG 1,939,743 4 42,222,014 8 349 paper

DBLP: a subset of the DBLP computer science bibliography, comprising 14,328 papers,
4057 authors, 20 venues, and 8789 terms. The initial attributes of paper nodes are bag-of-
words vectors of their keywords, while the initial attributes of author nodes are bag-of-
words representations of their affiliates, titles, and keywords extracted from their published
papers. For the attributes of terms, no computer science specialized pre-trained word
vectors were used, while the attributes of venues were represented using one-hot vectors.
The authors in the dataset are the target nodes and are grouped into four research areas
based on the conferences to which they submitted.
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ACM: a subset extracted from ACM citation network, which comprises 4019 papers,
7167 authors and 60 subjects. The attributes of the papers are bag-of-words representations
of their keywords, and the attributes of the authors are bag-of-words representations of
affiliates, titles and keywords extracted from their published papers. For subjects, their
attributes are bag-of-words representations of keywords from their connected papers. The
target nodes are papers, which are divided into three classes according to the conference at
which they were published.

IMDB: a benchmark dataset in movie recommendation, which includes 4080 movies,
5075 actors and 2001 directors. We collected a subset of IMDB in five subjects of movies:
action, comedy, romance, drama and thriller. The target node is the movie node and the
label is the subject of movie. The movie’s attribute is a bag-of words vector represented
by plots.

OGB-MAG: a heterogeneous academic network extracted from the Microsoft Aca-
demic Graph (MAG), which includes four types of nodes: papers (P), authors (A), fields
(F), and institutions (I). The network comprises four types of directed edges: an author is
“affiliated with” an institution, an author “writes” a paper, a paper “cites” a paper, and a
paper “has a topic of” a field of study. To account for bidirectional relationships, we include
related reverse edges for all directed edges. The papers in the network are published across
349 different venues, and the task is to predict the venue for each paper. Each paper node
has an associated Word2Vec [14] attribute. We use the metapath2vec [17] model to generate
features for other types of nodes that do not have input features.

For all four datasets, the task is node classification. Consistent with previous studies,
we evaluate the ACM, DBLP, and IMDB datasets using the Macro-F1 and Micro-F1 metrics,
while the OGB-MAG dataset is evaluated using the accuracy metric.

5.2. Methods for Comparison

We choose the following nine state-of-the-art methods for comparison:
HAN [2]: introduces a hierarchical attention mechanism to aggregate both node-level

and semantic-level information based on multiple artificially selected metapaths.
MAGNN [7]: makes several improvements on HAN by using metapath-based graphs

to replace metapath instances and considering information of all nodes rather than only
the head and tail node in metapaths.

HetSANN [24]: leverages type-specific attention layers to directly encode node repre-
sentations with the consideration of heterogeneous graph structures.

R-GCN [22]: extends the homogeneous GCN to knowledge graphs with multiple
relations by employing relation-specific projection matrices.

HGT [8]: proposes a novel heterogeneous mutual attention mechanism to capture the
information of different meta-relation triplets inspired by the Transformer architecture.

HGB [11]: adopts the multi-layer GAT [6] as backbone with enhancements from the
redesign of learnable edge-type embedding, residual connections, and l2 normalization.

NARS [36]: decouples the message passing and representation update process in
GNNs and trains on neighbor-averaged features for randomly-sampled subgraphs.

HSAGN [35]: enhances NARS [36] with an attention aggregation mechanism and
label model.

GAMLP [37]: learns to capture the underlying correlations between different scales of
knowledge with two novel attention mechanisms and knowledge within node labels.

Here, we compared our proposed models to a total of nine baseline methods, includ-
ing three metapath-based models (HAN, MAGNN, and HetSANN), three metapath-free
models (R-GCN, HGT, and HGB), and three decoupled methods (NARS, HSAGN, and
GAMLP), in order to comprehensively evaluate their performance. It should be noted that
some of the baseline models are difficult to apply to large-scale datasets such as OGB-MAG
due to challenges in choosing and sampling metapaths. Therefore, we only compared our
models with those that are available in the online leaderboard for the OGB-MAG dataset.
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5.3. Experimental Settings

For all datasets, we set the dimension of the node embedding to 512 and the number
of heads in multi-head attention to 8 in the embedding layer for all the compared methods.
We use a HGPN with three layers on the ACM, DBLP, and IMDB datasets, while a HGPN
with two layers is used for the OGB-MAG dataset. Nodes without initial attributes are
initialized with a one-hot id vector in ACM, DBLP, and IMDB, while in OGB-MAG, we
adopt the unsupervised metapath2vec method to generate 128-dimensional embeddings.
We set the initial learning rate to 0.001, with a cosine annealing learning rate scheduler
and a fixed dropout rate of 0.5. The model parameters are optimized via the AdamW [38]
optimizer with a weight decay of 0.01. The loss balance parameter λL is set to 0.3. We
set the confident threshold to 0.6 for models that use multi-stage pseudo label training
techniques. We implement our HGPN model with PyTorch [39] and Deep Graph Library
(DGL) [40] and our model is trained on one Tesla V100 GPU with 32 GB graphics memory.

We implemented all the compared methods using the full-batch training form on
medium-scale datasets including ACM, DBLP, and IMDB. However, when training on
large-scale datasets such as OGB-MAG, we found it difficult to follow the same training
form due to memory limitations. Therefore, we utilized the concept of neighbor sampling
strategy [5], which allowed us to train HGNN methods in the mini-batch training form
while inferring on the original whole graph. Specifically, we independently sampled a
fixed number of edges for all types of edges in the original graph to generate node-specific
subgraph batches. For HGT, we used the standard sampling strategy instead of the one
mentioned in its original paper to ensure fair comparison. All the models were trained
with a fixed 200 epochs, and an early stopping strategy was employed with a patience
of 20. This means the training process would be terminated if the evaluation metrics on
the validation set did not exceed the previous best value for over 20 epochs. We set the
hyperparameters and model with the best performance on the validation set for testing. To
ensure a more stable comparison, each model was tested at least 10 times to minimize the
impact of random seeds.

5.4. Overall Performance
5.4.1. Results on Medium-Scale Datasets

The results of the experiment on medium-scale datasets ACM, DBLP and IMDB are
shown in Table 2. As we can see, metapath-free methods (i.e., HGT, HGB and HGPN)
tend to exhibit better performances. This finding is aligned with [11], which suggests
that metapaths may not be necessary for heterogeneous graph learning. Remarkably, our
proposed HGPN consistently outperforms previous SOTA methods across all datasets on
all metrics. In particular, HGPN achieves the greatest improvements on the IMDB dataset.
IMDB is believed to be more difficult for the reason that all models perform worse on
IMDB and simple methods like MLP and metapath2vec can also obtain comparable results
on ACM and DBLP. This indicates that our HGPN can better extract useful information
from heterogeneity due to our model structure and novel design of different purification
methods.

Table 2. Overall performances on ACM, DBLP and IMDB. The numbers in bold mean the best results.
All methods are tested 10 times and we report the average performances.

Methods DBLP IMDB ACM
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

RGCN 91.52± 0.50 92.07± 0.50 58.85± 0.26 62.05± 0.15 91.55± 0.74 91.41± 0.75
HetSANN 78.55± 2.42 80.56± 1.50 49.47± 1.21 57.68± 0.44 90.02± 0.35 89.91± 0.37

HAN 91.67± 0.49 92.05± 0.62 57.74± 0.96 64.52± 0.50 90.89± 0.43 90.79± 0.43
MAGNN 93.28± 0.51 93.76± 0.45 56.46± 3.20 64.67± 1.67 90.88± 0.64 90.77± 0.65

HGT 93.01± 0.23 93.49± 0.25 63.00± 1.19 67.20± 0.57 91.12± 0.76 91.00± 0.76
HGB 94.01± 0.24 94.46± 0.22 63.53± 1.36 67.36± 0.57 93.42± 0.44 93.35± 0.45

HGPN (ours) 95.02± 0.18 95.48± 0.29 67.55± 0.46 69.34± 0.56 94.12± 0.24 94.21± 0.18
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5.4.2. Results on Large-Scale Dataset

The large-scale dataset OGB-MAG is considered to have a more realistic value due to
its size and number of classes that are closer to industrial application scenarios. Results
on OGB-MAG are listed in Table 3. Since some of the compared baselines use additional
training skills on the OGB-MAG dataset, we split the experiment into three parts according
to different training settings for fair comparison. The symbol “-” means we follow the base
training settings. “Label input” means label information is treated as model input ,while
“label input + multi-stage” denotes that multi-stage pseudo label training is adopted after
“label input”. The details of these skills are described in Section 4.7. We report the results
on both validation and test sets.

From the table, we can make three observations: (1) Additional use of label information
does have a positive effect on GNNs. (2) HGPN invariably achieves better performances
under three different training settings, improving 2.07% on the base setting, 1.6% on
the “label input” setting and 2.22% on the “label input + multi-stage” setting. Such
improvement can be attributed to HGPN’s ability to purify both structure and feature
noises. (3) Decoupled methods (NARS, GAMLP and HSAGN) are not necessarily superior
to traditional sampling-based methods on large-scale graphs. Previous researchers [37,41]
claim that the decouple GNN methods are more suitable to large-scale graphs because
they can have a larger receptive field without the limitation of graphic memory. However,
our HGPN with only 2 layers of sampling nodes beats all the decoupled methods, which
demonstrates that sampling-based methods with a proper design can also become very
competitive in graphs with millions of nodes.

Table 3. Overall performances on OGB-MAG dataset. The numbers in bold mean the best results.
Vacant positions (“-”) mean that the method does not adopt any additional training skills. We run
each method 10 times and report the average performances.

Methods Test Accuracy Valid Accuracy Training Skills

R-GCN 47.37± 0.48 48.35± 0.36 -
HetGNN 47.81± 0.29 49.12± 0.25 -
HGT 49.82± 0.13 51.24± 0.46 -
R-HGNN 52.04± 0.26 53.61± 0.22 -
NARS 52.40± 0.16 53.72± 0.09 -
HGPN (Ours) 54.47 ± 0.15 55.72± 0.17 -

GAMLP 53.96± 0.18 55.48± 0.08 label input
HSAGN 53.95± 0.14 55.52± 0.16 label input
HGPN (Ours) 55.56± 0.17 57.43± 0.21 label input

GAMLP + RLU 55.90± 0.27 57.02± 0.41 label input + multi-stage
HSAGN + SLE 54.40± 0.15 57.87± 0.12 label input + multi-stage
HGPN (Ours) 58.12± 0.11 59.22± 0.14 label input + multi-stage

5.5. Ablation Study

In this section, we remove or replace various novel designs of HGPN to analyze the
impact of each component. The study is conducted on OGB-MAG without any additional
training skills due to its higher difficulty and larger scale.

Table 4 presents the results of our ablation study on the HGPN model design, where
we consider five variants of HGPN. Three of them remove the heterogeneous structure
purification” module, the adaptive residual update” module, and the “cluster-aware loss”
module, respectively. One uses mean-pooling instead of an attention mechanism for intra-
subgraph aggregation. The last variant adopts R-GCN style of modeling heterogeneity to
use a weight matrix for each relation rather than subgraph decomposition.

As shown in Table 4, each novel method proposed in HGPN has a positive impact on
final performance. Specifically, the cluster-aware loss” module brings the least increase,
which can be explained by the fact that type-specific projection matrices and batch nor-
malization can similarly help maintain distinct node representation. For the cluster-aware
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loss” module and the “heterogeneous structure purification” module, we provide detailed
analysis of their effects in Section 5.6.

We also execute experiments on the choices of normalization, the results of which are
listed in Table 5. As we can see, our type-specific batch normalization achieves the best
scores, layer normalization drops 0.83% while normal batch normalization [42] experiences
a significant decrease of up to 10.95%. It demonstrates the significance of maintaining the
respective representation distribution of nodes from different types. By comparison, layer
normalization [43] does not contribute to this goal, while normal batch normalization is
counterproductive to mix the representation of different types of nodes, leading to a serious
decrease in the quality of performance.

Table 4. Results of ablation study on HGPN’s novel design in OGB-MAG dataset. We use normal
residual connection and mean-pooling instead of “Adaptive Residual Update” and “Attention
Aggregation”. “Subgraph Decomposition” means we adopt R-GCN style of modeling heterogeneity.

Methods Accuracy Decrease

HGPN 54.47± 0.15 0
- Structure Purification 53.87± 0.12 −0.60
- Adaptive Residual 53.84± 0.18 −0.63
- Cluster-Aware Loss 54.08± 0.14 −0.39
- Attention Aggregation 53.31± 0.1 −1.16
- Subgraph Decomposition 52.74± 0.23 −1.73

Table 5. Results of ablation study on normalization choices on OGB-MAG dataset. “Normal Batch
Norm” means we use the same batch normalization layer for different types of nodes.

Methods Accuracy Decrease

Type-specific Batch Norm 54.47± 0.15 0
Layer Norm 53.64± 0.12 −0.83
Normal Batch Norm 43.52± 0.35 −10.95

5.6. Further Analysis
5.6.1. Parameter Sensitivity Analysis

In this section, we analyze the sensitivity of different hyperparameters to investigate
the robustness of our HGPN model. Experiments are also conducted on OGB-MAG and
the results are reported in Figure 2.

Figure 2. Parameter Sensitivity Analysis Results on OGB-MAG.

Number of attention heads: We fix the dimension of node representation to 512 and
vary the number of attention heads from 1 to 16. Figure 2a shows the results. The best
performance is achieved when setting the number of heads to 8, which reveals the effect of
the multi-head attention mechanism to make training more stable. Thus, we use the same
setting of attention heads and representation dimension on all compared baselines.
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Value of weighted coefficient of cluster-aware loss: We investigate the effect of value
of weighted coefficient of cluster-aware loss and the results are reported in Figure 2a. HGPN
can obtain the top score when the value of the weighted coefficient is set to 0.3. We also
find that the change of the weighted coefficient of cluster-aware loss has a slight influence
on the final results. One plausible explanation is that cluster-aware loss is not a very strong
constraint for HGPN and it is relatively easy to converge at an early stage.

Value of confidence threshold: We investigated the influence of the confidence thresh-
old value under the “label input + multi-stage” training setting and presented the results in
Figure 2c. We observed that the optimal confidence threshold value was 0.6. Furthermore,
even when the confidence threshold value was set to the worst value, our proposed HGPN
still outperformed existing baselines, indicating that the superiority of our model was due
to its novel design rather than parameter tuning.

We did not analyze the number of layers as the limited GPU memory on OGB-MAG
dataset allows sample-based models like HGPN to support no more than two layers.
Nonetheless, this indicates the superior performance of our model with fewer layers
compared to decoupled models such as NARS and GAMLP.

5.6.2. Detailed Analysis of Cluster-Aware Loss

Cluster-aware loss is introduced to make intra-type node representation separable
while maintaining inter-type node representation space. In the following, we explore
another two potential designs of cluster-aware loss and analyze the reason for our final
design’s advantages. The first variant removes the stop mechanism and the second variant
uses the average representation of different types of nodes instead of type-specific anchors.

Table 6 presents a summary of the experiment results. Our experimental results
validate the significance of our proposed design for maintaining the representation space.
Specifically, we have discovered the following: (1) Removing the stopping mechanism
from the model will lead to a negative impact of the cluster-aware loss on the model
performance. This phenomenon can be attributed to the problem of representation collapse,
wherein the inter-type distribution of node representation will decrease to a smaller space
during the period of loss optimization, resulting in a loss of information in the inter-
type representation diversity. However, by employing the stopping mechanism, we can
achieve a balance between inter-type node diversity and intra-type node distinguishability.
(2) Using average node representation as cluster anchor instead of learnable anchors will
not bring any benefits in the presence of cluster-aware loss. This phenomenon can be
explained by the fact that using average representation as a cluster anchor will compress
the space of representation, even with the stopping mechanism in place. However, the
additional learnable anchors can effectively minimize the influence of compressing inter-
type representation space while utilizing very few extra parameters.

Table 6. Results of detailed analysis on cluster-aware loss module on OGB-MAG. We use the mean
node representation as class centers in the “learnable anchor” variant.

Methods Accuracy Decrease

Ours 54.47± 0.15 0
- stopping mechanism 53.84± 0.17 −0.63
- learnable anchor 54.07± 0.13 −0.40
- Cluster-Aware Loss 54.08± 0.18 −0.39

5.6.3. Detailed Analysis of Heterogeneous Structure Purification

In Section 5.5, our ablation study has demonstrated the positive impact of our proposed
heterogeneous structure purification mechanism. However, as this module introduces
additional parameters and operations, further comparative experiments are necessary
to identify the underlying reasons for the observed improvement. Therefore, we have
designed three additional tests:
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Firstly, we aim to investigate the necessity of introducing parallel projection matrices
for calculating filter scores. To this end, we have created a variant that reuses the attention
score as the filter score.

Secondly, we seek to exclude the possibility that the observed improvement is solely
due to the introduction of extra model parameters, rather than the purification mechanism.
We have achieved this by removing the mask method and simply adding filter scores to
attention scores without truncation.

Finally, as DropEdge [44] has been proven to be an effective regularization technique
in GNNs, we have introduced a variant that randomly masks edges with a rate of 0.3
at each iteration to verify whether our structure purification mechanism outperforms
random regularization.

All experimental results can be found in Table 7.

Table 7. Results of detailed analysis of heterogeneous structure purification module on OGB-MAG.
“Share Parameters” means we reuse the attention scores as filter scores. “Only add” means we add
filter scores on attention scores without truncation. “Random drop” means we drop edges at random
with a probability of 0.3.

Methods Accuracy Decrease

Ours 54.47± 0.15 0
Share Parameters 53.64± 0.16 −0.83
Only Add 53.86± 0.14 −0.61
Random drop 53.42± 0.26 −1.05
Structure Purification 53.87± 0.12 −0.60

Table 7 shows that our method achieves significantly better results than the other
variants. The “share parameters” variant also performs similarly well, while the “only add”
and “random drop” variants perform worse compared to the variant without the structure
purification mechanism. These results indicate that the observed improvement is indeed
due to our proposed structure purification mechanism, which enables HGPN to detect
and remove noisy edges in raw graph data. We can also conclude that parallel projection
matrices are essential for determining noisy edges and neighbor information aggregation,
as they focus on different aspects of the data. Additionally, the random DropEdge method
has been found to have a negative effect on training stability.

Table 8 presents the statistics of edges that HGPN learns to mask on OGB-MAG under
two training settings, and Figure 3 shows the purification rate of each type of edge. From
these statistics, we can make the following observations:

(1) HGPN tends to mask edges such as “affiliated with” and its reverse edges, which
are less relevant to the task of paper venue prediction and consistent with our prior
knowledge. This demonstrates that our proposed structure purification method has the
ability to identify useful graph structures with realistic causal significance. The results also
explain the drawbacks of DropEdge, which can only mask all types of edges equally and
thus may lose more useful information that high-quality edges provide.

(2) Under the “label input” training setting, the quality of paper nodes’ attributes
increases due to the additional label information. As we can see, the structure purification
method can automatically capture this change by reducing the masking rate of edges
related to paper nodes, such as “cites”, “writes”, and “has topic”. This phenomenon reveals
that structure noise and feature noise are not independent, and feature quality is positively
associated with structure quality. Therefore, our design of HGPN to both purify feature
and structure can jointly help to obtain a clean and refined heterogeneous graph.
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Table 8. Statistics of numbers of edges that HGPN learns to purify under 2 two training settings.
“w” means “writes”, “c” means “cites”, “ht” means “has topic”, “aw” means “affiliated with”. “r-x”
means the reverse type of edge type “x”. “Hop i” denotes neighbours from i-th hop.

Edge/Num Original Setting Label Input Setting
Hop 1 Hop 2 Hop 1 Hop 2

w/7,145,660 69 0 1 0
r-w/7,145,660 5710 698,753 0 698,192

c/5,416,271 195,939 2058 0 0
r-c/5,416,271 0 0 0 0
ht/7,505,078 1283 7,338,815 0 205,404

r-ht/7,505,078 7,505,078 0 0 599
aw/1,043,998 833,143 1,042,902 31,500 17,070

r-aw/1,043,998 1,043,907 1168 1,043,996 1,040,857

Figure 3. Purification rate of each edge type on OGB-MAG under 2 training settings. “w” means
“writes”, “c” means “cites”, “ht” means “has topic”, “aw” means “affiliated with”. “r-x” means the
reverse type of edge type “x”. “Hop_i” denotes neighbours from i-th hop, and “Hop_i-L” denotes
“Hop_i” with the training setting of “Label Input”.

6. Conclusions

This paper introduces HGPN, a novel framework for heterogeneous graph repre-
sentation learning. Unlike existing HGNN methods that struggle with structural and
informational noise and rely on human intervention, HGPN is designed to autonomously
purify both types of heterogeneity without hand-engineered metapaths. HGPN employs
type-specific subgraph decomposition to efficiently model heterogeneity and incorporates
type-specific batch normalization and cluster-aware loss for feature purification. Addi-
tionally, the neighborhood smoothness-related dynamic residual connection improves the
optimization of nodes with lower quality features. Experiments on various datasets and
training settings demonstrate that HGPN consistently achieves superior performance. Fur-
ther analysis confirms the effectiveness of HGPN’s feature and structure purification meth-
ods. Future work will focus on exploring HGPN’s causal interpretability and expanding the
framework to temporal dynamic graphs for enhanced applicability in realistic scenarios.
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