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Abstract: Machine vision technology has dramatically improved the efficiency, speed, and quality of
fruit-picking robots in complex environments. Target recognition technology for fruit is an integral
part of the recognition systems of picking robots. The traditional digital image processing technology
is a recognition method based on hand-designed features, which makes it difficult to achieve better
recognition as it results in dealing with the complex and changing orchard environment. Numerous
pieces of literature have shown that extracting special features by training data with deep learning
has significant advantages for fruit recognition in complex environments. In addition, to realize
fully automated picking, reconstructing fruits in three dimensions is a necessary measure. In this
paper, we systematically summarize the research work on target recognition techniques for picking
robots in recent years, analyze the technical characteristics of different approaches, and conclude their
development history. Finally, the challenges and future development trends of target recognition
technology for picking robots are pointed out.
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1. Introduction

In recent years, the booming fruit-growing industry has made fruit picking an im-
portant production segment that employs more than 60% of the labor force. With the
aging population and urbanization further highlighting the labor shortage, a significant
increase is seen in the cost of picking [1]. Therefore, intelligent agricultural fruit-picking
equipment and picking robots that can improve picking efficiency and reduce picking costs
have now become an important research direction. Figure 1 sets out several representative
fruit-picking robots.

For picking robots, the recognition ability of the vision system is particularly impor-
tant in the picking process. Identifying the fruit efficiently and accurately is a prerequisite
for completing the picking task [2]. In 1968, Schertz and Brown [3] introduced machine
vision to fruit recognition, which enabled the rapid development of fruit-harvesting robots,
including the first vision recognition system for apples established by Parrish et al. [4] in
1977. Traditional digital image processing techniques and target recognition techniques
based on deep learning make up the majority of the approaches used to identify fruits.
These techniques extract features such as color, geometric shape, and texture in images for
matching. Such methods have matured after researchers invested years in them. However,
the actual working environment of picking robots is much more complex. For example,
the change in illumination conditions easily affects the color features of the fruits in images,
and the occlusion of the fruits by background objects such as branches and leaves easily
affects the geometric features of the fruits in images. This brings problems such as low
recognition accuracy, poor model real-time, and low robustness under complex environ-
ments. Therefore, automated picking experiments on picking robots pose challenges to
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conventional digital image processing techniques. In 2012, the AlexNet network was pro-
posed and won the ImageNet image recognition competition with excellent performance.
Since then, deep learning has received a lot of attention from academics and has been
extensively used to recognize fruit targets. Altaheri et al. [5] achieved the recognition of
dates by combining AlexNet and VGG16 networks, and the recognition accuracy exceeded
90% in the unobstructed cases. The deep-based target recognition method uses a multilayer
perceptron structure, where both low-level features and high-level features are analyzed [6]
and used to recognize targets. Therefore, compared to traditional digital image process-
ing techniques, this method offers higher recognition accuracy and greater robustness,
versatility, and generalization [7].

Figure 1. Representative forms of picking robots. (a) Litchi-harvesting robot (Adapted with permis-
sion from Ref. [8]. 2020, Li et al.); (b) Apple-harvesting robot (Adapted with permission from Ref. [9].
2015, Si et al.); (c) Another litchi-harvesting robot (Adapted with permission from Ref. [10]. 2020,
Liang et al.).

Although deep learning technology has been widely used in fruit recognition, it still
cannot meet the needs of picking robots in the actual working environment, as they can-
not fully address the collision between the end-effector and the obstacle objects, such as
branches, during the fruit-picking process. Therefore, it is necessary to reconstruct the fruits
and branches in 3D to obtain 3D information. In this paper, we summarize the target recog-
nition techniques of picking robots over the past few years by focusing on analyzing and
combing through the advantages and disadvantages of different fruit recognition methods.
Figure 2 shows the species and quantity of fruit involved in the citation. In addition, this
paper summarizes the problems and challenges of target recognition technology for picking
machines and proposes the future development trend of this technology for feasibility
reference by other researchers.
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Figure 2. Species and quantity of fruit involved in the citation.

2. Traditional Digital Image Processing Techniques
2.1. Color Feature-Based

The target recognition method is based on color feature segments and recognizes the
target fruit in images with background objects such as leaves by predicting the information
of pixel points and combining the color space, such as RGB HSI and HSV. The target recog-
nition method based on color features can be used when the target fruit has distinct colors
and color features that differ significantly from those of the background objects. For exam-
ple, Li et al. [11] used color features as recognition features to distinguish pineapples from
the background, and the correct recognition rate of the target fruit was 90% during sunny
weather and 60% when cloudy. To improve the accuracy of fruit recognition segmentation,
Bulanon et al. [12] performed segmentation recognition of Fuji apples by using color dif-
ference and optimal thresholding. The chromatic aberration measure in this approach is
to enhance the image so that the optimal threshold depends on the maximum grayscale
variance of the chromatic aberration. The experiment showed that the overall recognition
success rate was higher than 80%, but the recognition based on color features failed to
eliminate the influence of changing lighting conditions, and the recognition segmentation
algorithm in this paper had an error rate of 18% under backlight conditions. Therefore,
when a picking robot uses color feature-based recognition segmentation of target fruits, its
recognition accuracy and efficiency will be affected by the type and ripeness of fruits, the
complexity of the background, and different lighting conditions.

To further recognize and segment the target fruits with different maturity levels,
Zhou et al. [13] used RGB and HSI color spaces on Fuji apples (Figure 3). The difference
between the different channels of RGB in the captured image is an important basis for
the initial segmentation of the apples. In addition, in order to reduce the influence of
light conditions, the threshold of the saturation channel in the HSI image was used to
segment the red apples. The system was evaluated using regression coefficients of 0.8
for automatic recognition counts of unripe and ripe apples and 0.85 for manual counts of
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apples, but the accuracy of the system was impacted by the occlusion of the target fruit by
background objects.

Figure 3. Flowchart of different steps in fruit segmentation. (Adapted with permission from Ref. [13].
2012, Zhou et al.).

2.2. Geometric Feature-Based

Geometric feature-based recognition provides a new way for picking robots to recog-
nize and segment target fruits, especially when the target fruit is similar to its background
in color or when changes in lighting conditions significantly affect its color. Using geomet-
ric feature-based recognition can generally achieve better results than color feature-based
recognition. Whittaker et al. [14] proposed a system for locating tomatoes in natural envi-
ronments. The system combines geometric features and global pixels for analysis so that
recognization can be successful regardless of the ripeness of the target fruit (in other words,
color variation).

Although the recognition segmentation algorithm based on geometric features is not
generally affected by lighting conditions, the change in the geometric parameters of the
target fruit caused by occlusion becomes the main problem. When leaves, stems, etc.,
occlude the fruit, the geometry of the fruit in the image is compromised, and the fruit
cluster formed by the occlusion between the fruits will affect the recognition effect. To solve
this problem, Hannan et al. [15] segmented and identified target oranges in fruit clusters
through edge extraction and perimeter-based detection and addressed the problem of
changing lighting conditions and fruit clustering. In This study, the overall recognition
accuracy of the system is shown to be 90% under changing light conditions and shading
through testing, and the overall performance of the picking robot is effectively improved.

2.3. Texture Feature-Based

In general, the surface of the fruit is smoother than the environmental objects such as
leaves and stems, so the texture feature becomes an important fruit feature to be separated
from the background. Because this analysis process is not sensitive to the color of the
target fruit, many researchers will use texture features in picking robots to identify and
segment the target fruit. The Gabor texture analysis proposed by Zhang et al. [16] in 2002
is an efficient processing approach. Kurtulmus et al. [17] achieved the identification and
segmentation of unripe green citrus by using it and the “Eigenfruit” method, and the
recognition accuracy rate was 75.3%. Their paper shows that the background complexity
and the size of the target fruit under different conditions affect the recognition accuracy of
the system. To improve the accuracy, Chaivivatraku et al. [18] proposed a texture analysis-
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based technique for plant green fruit detection and experimentally extracted 24 texture
features on pineapples and bitter melons for segmentation and recognition, and the results
showed that the detection rate of a single-width of pineapple reached 85%, and the detection
rate of a single width of bitter melon reached 100%.

2.4. Multi-Feature Fusion Based

Although the target fruit may be distinguished from the backdrop by a single char-
acteristic, it is not a wise choice. This is because changes in lighting conditions affect the
brightness of the target fruit, which in turn, leads to changes in its color. In addition,
the occlusion of the target fruit by background objects such as branches and leaves can also
compromise the geometric features of the target fruit in the image. In order to further im-
prove the performance of the recognition system of the picking robot, a variety of features
can be fused to form part of the recognition algorithm. A recognition method based on
color features and texture features was proposed in the literature [19], but accuracy is easily
affected by the color characteristics of the target fruit. Therefore, Payne et al. [20] proposed
an edge detection filter for this problem to overcome the disadvantage of the main influence
position of color features in the algorithm and demonstrated through experiments that the
effectiveness and detection effect were significantly improved.

2.5. Comparison and Summary of Traditional Digital Image Processing Techniques

Table 1 compares the research results of traditional digital image processing techniques
in some references, from which the following four conclusions can be drawn. (a) The
recognition method based on color features, although easily affected by lighting conditions
and susceptible to disturbance in natural environments, is more suitable for working
in artificially structured environments. (b) Although the recognition method based on
geometric features avoids the influence of lighting conditions, the recognition performance
is poor in the case of occlusion and overlapping, so it is more vulnerable to interference in
the natural environment. (c) Since the fruit surface is relatively smooth, the use of texture
features can effectively achieve the recognition function, but the method is easily affected
by environmental noise and offers poor performance in complex orchard environments.
(d) The feature fusion-based method can effectively avoid the limitations of individual
features and improve the performance of the visual recognition system of picking robots,
but its performance still cannot meet the requirements of operation in a natural environment.
Therefore, it is difficult to extend fruit recognition technology based on traditional digital
image processing techniques to practical applications, and a more effective recognition
method should be found.

Table 1. Comparison of research results of traditional digital image processing techniques.

Traditional Digital Image
Processing Techniques Application to Crops

Technical Characteristics
and Performance

Indicators
Limitations References

Color feature-based Pineapple, apple

Can significantly segment
the fruit from the

background, with a
combined recognition

success rate of 80%

Easily affected by lighting
conditions [11–13]

Geometric feature-based Tomatoes, oranges

Capable of acquiring fruit
outline information, with a

combined recognition
success rate of 90%

Vulnerable to fruit
occlusion, fruit overlap and

fruit volume
[14,15]
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Table 1. Cont.

Traditional Digital Image
Processing Techniques Application to Crops

Technical Characteristics
and Performance

Indicators
Limitations References

Texture feature-based Citrus, pineapple

Bitter melon can
significantly segment the

fruit from the background,
with a combined

recognition success rate
of 85%

Vulnerable to the growth
environment of fruit trees,

fruit shading, etc.
[16–18]

Multi-feature fusion based Oranges, apples, mangoes

Makes up for the
shortcomings of a single

feature and can more
accurately segment the

fruit from the background,
with a combined

recognition success rate
of 90%

Although the recognition
success is improved by
feature fusion, it cannot
offset the influence of
natural environmental
factors, such as lighting

conditions

[19,20]

3. Deep Learning-Based Target Recognition Techniques
3.1. Deep Learning-Based Target Detection Techniques

In recent years, many scholars have devoted themselves to the research and application
of deep learning. Figure 4 shows the development of target detection algorithms based
on deep learning. R-CNN, Fast R-CNN, and Faster R-CNN are typical representatives of
two-stage target detection models based on classification. YOLO, SSD and RetinaNet are
typical single-stage target detection models based on regression.

Figure 4. The evolution of deep learning-based target detection algorithms.

3.1.1. Classification-Based Two-Stage Target Detection Techniques

Girshick et al. [21] introduced the R-CNN model inspired by Alexnet [22], which
was a great breakthrough in target detection and laid the foundation for the later R-
CNN series networks. The R-CNN is based on four steps: first, input an original image;
second, generate about 2000 candidate regions based on the input image using the selective
search [23] algorithm, and preprocess each candidate region into a uniformly fixed size;
third, extract region features using the Alexnet network; and finally, classify the extracted
region features using the SVM classification algorithm. Girshick et al. [21] showed through
experiments that the mAP on the VOC 2012 dataset was 53.3%. The proposed R-CNN has
greatly facilitated the development of target detection techniques, but it requires excessive
time to generate candidate regions.
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To address the problem that R-CNN only has forward transmission and no shared
computing, He et al. [24] proposed a Spatial Pyramid Pooling Network (SPP-Net). SPP-Net
realized the shared computation of convolutional features by introducing adaptive size
pooling, which greatly reduced the amount of computation and improved the detection
speed compared with R-CNN. In 2015, Girshick [25] proposed the Fast R-CNN target detec-
tion algorithm. This algorithm enhanced and optimized the detection speed and accuracy
by combining R-CNN and SPP-Net. Fast R-CNN optimized SPP-Net in that it enabled
adjustable parameters. The feature extraction network and classification algorithm in the
R-CNN algorithm were optimized, and VGG16 was used in lieu of the AlexNet network,
and the SoftMax classifier is used in lieu of the SVM classifier. Fusing R-CNN and SPP-Net,
the Fast R-CNN excellent performance has been widely recognized in a large number of
practices. Zhou et al. [26] improved Fast R-CNN for recognition detection of key organs in
tomatoes by fusing automatically extracted RGB and grayscale image features. A double
convolutional chain Fast R-CNN was proposed, and the highest average precision (AP) of
this recognition algorithm was concluded to be 70.33%, 63.99%, and 44.95%, respectively,
for the recognition of three key organs of tomatoes.

The main reason why SPP-Net and Fast R-CNN take more time is that more special-
ized region proposals are generated by the selective search algorithm during operation.
Therefore, a new algorithm for generating candidate regions, the Region Proposal Networks
(RPN), is proposed. The sliding window adopted by the RPn algorithm effectively solves
the problem of producing too many candidate regions and saves computing resources
while each candidate region is given a score. To improve the performance of the target
detection algorithm, Ren et al. [27] proposed the Faster R-CNN target detection model,
which included the feature extraction network, RPN, and Fast R-CNN. The Faster R-CNN
consists of multiple steps of candidate region generation, feature extraction, and classi-
fication through RPN to achieve end-to-end training, and its detection performance is
substantially improved. Many researchers have already applied it to picking robots. For the
problem of different ripening times of mangoes, Wang et al. [28] detected mango flower
spikes by using the Faster R-CNN model to facilitate the picking robot to select targets
for early harvest. However, the experiments showed that the algorithm offered a low
mAP value and unsatisfactory detection accuracy. For circumstances where the target fruit
is occluded, Gao et al. [29] classified the detection of the fruit on the tree by using the
Faster R-CNN model, which helped the picking robot plan the picking path plan as well
as avoid damage to its end-effector from the obstacles during the picking process. Taking
apples as the research object, the system classified them into four categories and proved
the average classification accuracy of 87.9% for the four categories through experiments.
To address the problem of changing lighting conditions caused by the changing of time,
Song et al. [30] developed a vision recognition system for picking robots that work all day
long. By constructing a Faster R-CNN model and using images of kiwifruit collected under
different lighting conditions for training, the accuracy of the test was 87.16%, and the model
was able to recognize different kinds of fruits with good robustness.

Since the PRN generation candidate region becomes a larger region after mapping
from the anchor of the feature map against the original image, the Faster R-CNN algorithm
does not work well for small targets. Many researchers have improved and optimized the
Faster R-CNN algorithm by addressing this problem. For example, Tu et al. [31] proposed
a Multi-scale Faster R-CNN (MS-FRCNN) based on fusing local and global information.
By using color feature information and depth information in images captured by RGB-D
cameras, it improves the Faster R-CNN model for small target passion fruit. This approach
proposes a new measure for the Faster R-CNN model for small target detection difficulty.
In addition, it is challenging for Faster R-CNN to successfully detect fruits in the pres-
ence of target occlusion and complex backgrounds with different target morphology and
sizes. Therefore, some researchers have proposed different solutions to this problem. To
address the problems of slow recognition and poor robustness of the recognition system,
Fu et al. [32], based on the Faster R-CNN, combined ZFNet and backpropagation to extract
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features from the model, together with the gradient random descent technique to speed
up the convergence of the model. It was demonstrated through experiments that these
improvements adapt better to the natural environment with changing lighting conditions
and have better robustness against the subjectivity and limitations of artificial feature
selection. To improve the recognition accuracy and reduce the leakage rate in the case of
high similarity between target fruit and background, Parvathi et al. [33] proposed a Faster
R-CNN improvement method for detecting coconuts. The method first used image en-
hancement technology to enhance the collected images and then used ResNet-50-optimized
Faster R-CNN model for training and finally achieved better detection results. On this
basis, Sun et al. [34] employed the K-means clustering algorithm for optimization and used
it to detect tomato organs, and the mAP of experimental results was significantly improved.

3.1.2. Classification-Based One-Stage Target Detection Techniques

(1) YOLO series

In 2015, Redmon et al. [35] proposed the first regression-based one-stage target de-
tection algorithm, You Only Look Once (YOLO), based on the GoogLeNet [36] model.
Although YOLO has the biggest advantage over the classification-based two-stage target
detection algorithm in terms of fast detection speed, it still has shortcomings in other
aspects. First, because YOLO generates a limited number of grid cells, and each grid cell
can only correspond to one category, YOLO is less effective in detecting dense and small
objects. Second, YOLO is less effective in detecting objects when the size of the predicted
objects differs greatly from the size of the training set. Subsequently, many scholars have im-
proved the YOLO algorithm and further proposed YOLOv2, YOLOv3, YOLOv4, YOLOv5,
and other algorithms.

YOLOv2 [37] addresses three aspects of YOLO: detection accuracy, detection speed,
and the number of detected objects, and improves the detection performance of the model
by introducing structures such as Batch Normalization (BN) layers [38], anchor boxes,
and improving the backbone network. Xiong et al. [39] improved the detection performance
of the model by using the YOLOv2 target detection model for target detection of green
mangoes by firstly taking images of a single mango species by UAV and, secondly, feeding
the images into the YOLOv2 model for training, eventually identifying that the mAP of
the training model was 86.4%. However, several experiments confirmed that its detection
effect was reduced when there were too many mangoes causing fruit shading and poor
lighting conditions. To address this problem, reference [40] proposed an improved YOLOv2-
based detection approach for green mangoes by using a densely connected Tiny-YOLO-
dense network structure to fuse features. By training this model, the accuracy for green
mango detection exceeded 90%, and the improved target detection model offered better
detection performance than Faster RCNN, especially in the case of background occlusion or
fruit overlapping. However, this approach requires manual annotation of the foreground
regions of the samples that are obscured or overlapped. Although YOLOv2 offers various
improvements over YOLO, the model cannot perform multi-scale prediction.

YOLOv3 [41] achieved multi-scale prediction by introducing Feature Pyramid Net-
works (FPN) [42]. Inspired by ResNet [43], the DarkNet53 [41] network is designed as the
backbone network based on DarkNet19. Because of the excellent target detection perfor-
mance of YOLOv3, many researchers have applied it to picking robots and employed it
for fruit detection. To improve the efficiency of picking robots, Liang et al. [10] used the
YOLOv3 model to detect litchi fruit during the night and tested the YOLOv3 model by us-
ing YOLOv3, SSD, and Faster R-CNN for images with high luminance, normal luminance,
and low luminance, respectively. The YOLOv3 model yielded the best detection perfor-
mance. Its lowest AP value was 89.3% in the low luminance with an average detection time
of 0.026 s. Due to the complex growth environment of fruits, there are often cases where
the background objects occluded fruits, or fruits overlap, or the fruits and background
objects are highly similar. This further complicates the task of picking robots. Therefore,
it is vital to improve the detection of target fruits by picking robots in complex environ-
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ments. To address the problems of fruit occlusion by branches and leaves, fruit overlapping,
and features that change with the growth cycle and thus affect the detection performance
of the recognition system, Tian et al. [44] proposed an improved YOLOv3 model for apple
detection. The improved YOLOv3 model is used to replace the low-resolution layers in
the original YOLOv3 model by using the DenseNet model, which effectively reduces the
loss of feature information during the propagation of feature maps, mitigates gradient
disappearance, enhances feature propagation, and promotes feature multiplexing and
fusion. The tests showed that YOLOv3-DenseNet offered good detection performance for
occluded and overlapped apples. Based on this, Liu et al. [45] proposed a YOLO-Tomato
model for detecting tomatoes in complex environments. The YOLO-Tomato model not
only adopted the DenseNet model to promote feature reuse but also applied the circular
bounding box (C-Bbox). The C-Bbox offers two advantages: first, the shape of tomatoes
matches the C-Bbox more accurately. Secondly, the C-Bbox has fewer parameters, which
reduces the complexity of the calculation. The experiments showed that YOLO-Tomato
was able to reduce the effect of changing lighting conditions and offered better robustness.

The YOLOv3-Tiny model is the lightweight version of the YOLOv3 model. Based on
the YOLOv3 model, the YOLOv3-Tiny model streamlines the backbone network and other
features for better real-time performance. To enable recognition systems of the picking
robot to be mounted on small hardware devices, Fu et al. [46] proposed a high-accuracy
and high-speed deep YOLOv3-tiny network (DY3TNet) target detection model that can be
used for detecting kiwifruit in orchards under all-weather conditions. The DY3TNet model
is based on the YOLOv3-tiny model and improved by using multiple 1 × 1 convolutional
layers to reduce the operation load and increase the detection speed. The DY3TNet target
detection model was used for the detection experiments of kiwifruit images under different
lighting conditions, and the AP was 90.05% under changing light conditions, offering
good detection performance. In addition, Xu et al. [47] proposed a Light-YOLOv3 model
based on the improved YOLOv3 for green mango detection in complex environments.
The model not only optimizes the residual network and NMS to different degrees but
also incorporates the MSCA unit. These improvements make the computational speed of
the Light-YOLOv3 model on the embedded platform five times faster than the original
YOLOv3 model and also demonstrate good performance under different shaded lighting
conditions, which provides technical support for improving the efficiency of mango-picking
robots.

YOLOv4 [48] offered four improvements over YOLOv3: first, it introduced Mosaic [49]
data to enhance operations; second, it fused Darknet53 with CSPNet [50] and used it as
a backbone network; third, it introduced the SPP network to expand the perceptual field;
fourth, it used FPN+Path Aggregation Network (PAN ) [51] to enhance feature fusion; and
fifth, CIoU_loss was used as the loss function at the prediction end. These improvements
significantly enhanced the detection performance compared to the YOLOv3 model. In ref-
erence [52], by using YOLOv3 and YOLOv4 to detect bananas under different lighting
conditions, YOLOv4 was proven better than YOLOv3 in terms of detection accuracy and
speed. Some researchers improved the YOLOv4 model by combining residual neural
networks, densely connected networks, and attention mechanisms. Zheng et al. [53] pro-
posed an RC-YOLOv4 model, which fused residual neural networks for tomato detection.
The RC-YOLOv4 model fused ResNet networks in the backbone network of the original
YOLOv4 model to construct a new backbone network, the R-CSPDarknet53. The C-SPP
network replaced the original SPP network to reduce the loss of feature information. The
experimental results showed that this improved approach greatly enhanced the success
rate of the RC-YOLOv4 model for detecting tomatoes. Gai et al. [54] proposed a YOLOV4-
DenseNet model incorporating a densely connected network for cherry detection to address
small target fruits. The YOLOV4-DenseNet model uses DenseNet in lieu of the CSPDark-
net53 utilized in the original YOLOV4 and adopts Leaky ReLU as the loss function to
promote feature reuse and fusion to improve the network’s detection performance for
cherries. Through experiments using images of cherries, the detection performance of the
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YOLOV4-DenseNet model is proven to be better, which can realize intelligent picking and
improve the efficiency of picking robots.

To make the model easier to deploy in small embedded devices, the YOLOv4 model
can be simplified using the channel pruning technology. This approach is to simplify
the model by identifying and distinguishing the channels of the network, removing less
important channels, and retaining important channels, thereby reducing the parameters
to be stored by the model. Wu et al. [55] proposed an approach to improve the YOLOv4
model in combination with the channel pruning algorithm for the detection of apple
blossoms. The improved model achieved excellent results in terms of being lightweight,
especially in that the number of parameters was reduced by 96.74% while the accuracy
was maintained. In addition, as a lightweight version of the YOLOv4 model, the YOLOv4-
tiny model has a simpler structure and fewer parameters, making it more suitable for
deployment in small mobile terminals. Tang et al. [56] proposed a YOLO-Oleifera model
based on the improved YOLOv4-tin model for the detection of oil-seed camellia fruit.
The YOLO-Oleifera model adopts two measures to optimize the clustering algorithm
and adds a small-scale convolution kernel to optimize the YOLOv4-tin model, and the
optimized model eliminates the shortcomings that fall into local optimization and enhances
the operation speed. In order to meet the real-time requirements of the picking robot,
the detection speed of the model is further improved. Zhang et al. [57] proposed an RTSD-
Net model for the detection of strawberries by reducing the convolutional layer of the
YOLOv4-tin model backbone network. Experiments showed that the RTSD-Net model has
the advantage of lightweight technical specifications without significantly compromising
accuracy.

YOLOv5 implements the same Mosaic data enhancement on the input side and intro-
duces adaptive anchor frame calculation to facilitate the identification of targets in different
sizes. In addition, YOLOv5 introduces the Focus module for image slicing operation
and designs two sets of CSPNet, which are applied in Backbone and Neck, respectively.
On the output side, YOLOv5 adopts GIoU_loss as the loss function of the Bounding box.
Comparing the detection performance of YOLOv5 and YOLOv4, there is not much dif-
ference between them in terms of accuracy, except that YOLOv5 performs better in terms
of detection speed and is preferred by many researchers and also widely used in fruit
recognition detection. In the literature [58], the YOLOv5 model can be used to detect litchi
fruits and detect the main stem of picking, effectively improving the picking efficiency
of litchi-picking robots. To improve the intelligence of picking robots, Cheng et al. [59]
judged whether the fruit was pickable by ripeness, achieved the recognition detection of
citrus by using the YOLOv5 model and then combined the RGB image information and
the 4-pass ResNet34 network to distinguish the ripeness of the target fruit, and discovered
through experiments that the accuracy of the modified approach was 95.07%. In addi-
tion, migration learning is an efficient way to improve detection speed. Wang et al. [60]
proposed a YOLOv5s-based detection model for apple calyx by using migration learning
and channel pruning. The improved YOLOv5s model reduced the model parameters
and weight volume by about 71% and substantially improved the computational speed to
obtain a detection accuracy of 93.89%. In addition, target fruit detection in complex envi-
ronments is a significant challenge for picking robots. How to further improve the YOLOv5
model to adapt it to the actual working environment of picking robots is an important
research direction. Lyu et al. [61] proposed a YOLOv5-CS model for the detection of green
citrus in natural environments. The YOLOv5-CS model is improved in that it optimizes
data augmentation and loss function while incorporating the cbam attention mechanism.
Yan et al. [62] proposed an improved YOLOv5s-based lightweight detection model for
apple detection to address the problem that occluded fruits might prevent the picking
robot from performing its task. The improved YOLOv5s model improves the detection
accuracy of the model by enhancing the CSP module and the initial anchor frame size of the
backbone network and proposes to incorporate the SE module into the backbone network.
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It is shown experimentally that the improved YOLOv5s model compresses the volume by
9.29%, while the mAP value improves it by 5.05%.

(2) SSD model

Liu et al. [63] proposed a Single Shot Multi-box Detector (SSD) target detection model,
whose core idea is to implement a feature mapping by designing a small convolutional filter
and generating and predicting the category and offset of the bounding box. The SSD model
uses multi-scale prediction, using a large-scale feature map to detect small objects and a
small-scale feature map. The SSD model increases the detection speed without compromis-
ing the detection accuracy compared to the classification-based two-stage target detection
model, which basically achieves a balance between the two, and many researchers have
applied it to fruit target detection. Peng et al. [64] used the ResNet-101 model to optimize
the backbone network, increased the depth of the feature extraction network, and opti-
mized the SSD model by migration learning and stochastic gradient descent techniques.
The system also achieves target detection of litchi, apple, navel orange, and emperor citrus
by yielding an mAP of 89.53%, which is higher than that of the original SSD network. The
detection effect of different kinds of fruits in the experiment is not substantially different,
which reflects that the system has high robustness. Wang et al. [65] proposed a more
lightweight and improved SSD model for the detection of Lingwu jujube in the complex
operating environment of the Lingwu jujube picking robot. Through experiments, it was
shown that the mAP of the improved SSD model was 96.6% for detecting the target of
Lingwu jujube, which further promoted the development of intelligent picking technology
for Lingwu jujube.

The SSD detection model uses feature pyramids to detect targets at different scales,
but the method makes it difficult to fuse features at different scales, and the feature map
characterization ability of small targets overlaps, so it offers poor results in detecting small
targets. The Feature Fusion Single Shot Multibox Detector (FSSD) [66] is a feature fusion
approach used to solve the problem of difficult detection of small targets. On this basis,
in reference [67], multi-output optimization was used for the convolutional layer to obtain
a recognition model for a small target, and the model was applied to the detection of small
litchi in images taken by UAVs, proving its effectiveness.

(3) RetinaNet

In 2007, Lin et al. [68] proposed the RetinaNet model, which was an effective one-stage
detection algorithm. The RetinaNet model utilized the FPN neck network for feature fusion,
the RestNet network as the backbone network for feature extraction, and the FCN for the
completion of regression and prediction. The initial stage of the regression classification
procedure had a sample imbalance issue since the model did not create candidate regions.
The RetinaNet model’s prediction process used the Focal Loss Loss Function, which,
by adjusting the weights of the classification of various samples, successfully worked
out the issue of an imbalance in the amount of positive and negative samples during
the model’s training process. Facing the complex environment in the actual orchard, it
identified apples [69–71], Rosa roxburghii fruit [72], and camellia oleifera fruit [73] in a
real orchard, RestNet performed better. To improve RetinaNet’s ability to detect apples
in complex environments, Sun et al. [70] enhanced its backbone network, neck network,
and loss function by optimizing each of them. These optimizations increased the feature
extraction ability and rate of convergence, and the test indicated a 5.02% improvement in
mAP. In addition, Yan et al. [72] suggested various improvement plans for the RetinaNet
model and used the enhanced model to recognize Rosa roxburghii tratt. By adopting the
K-means + + clustering algorithm, the technique was provided to optimize the Anchor
scale as well as the bias in the focal loss function. The optimized model recognized six
types of prickly pear images, yielding an average recognition rate of 94.86%, which was
1.8% higher than the original model.
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3.1.3. Comparison and Summary of Deep Learning-Based Target Detection Techniques

Figures 5 and 6 show the architecture of representative algorithms in the classification-
based two-stage target detection algorithm and the regression-based single-stage target
detection algorithm, respectively. In Figure 5, the main trends of the two-stage target
detection algorithms are: (a) using parameter sharing to improve the operation speed; (b)
proposing new training strategies for end-to-end training. In Figure 6, the main trends of
the one-stage target detection algorithms are: (a) proposing networks with stronger feature
extraction capabilities to improve the detection performance of the model; (b) compressing
the size of the model by a series of simplifications and reducing the number of parameters
to improve the model’s computational speed.

Figure 5. Classification-based two-stage target detection algorithms.

Figure 6. Regression-based one-stage target detection algorithms.
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A comparison of the research results of deep learning-based target detection meth-
ods is shown in Table 2. Through comparative analysis, two conclusions can be drawn:
(a) deep-learning-based target detection methods improve the detection performance in
varying degrees compared with traditional digital image processing techniques and are
more suitable for complex natural environments; (b) although deep learning-based target
detection methods offer strong feature extraction capability, they are subject to environmen-
tal interference and thus require a large number of data sets for training, and the training
time is long.

Table 2. Comparison of research results of deep-learning-based target detection methods.

Model Research Object Technical Characteristics and Performance Indicators References

Faster R-CNN

Mango flower spikes This study used Faster R-CNN to identify mango spikes but with a low
accuracy of 66% and a recall rate of 48%. [28]

Apple This study used VGG16 to optimize Faster R-CNN, which had good
robustness to blocked apples. Its mAP was 87.9%. [29]

Kiwifruit
This study used VGG16 to optimize Faster R-CNN, which showed good

robustness for fruits under different lighting conditions, and its mAP was
87.61%.

[30]

Passion fruit
This study enhanced Faster R-CNN’s ability to identify small targets by
integrating global and local features, with an accuracy of 93.1% and a

recall rate of 96.2%.
[31]

Kiwifruit
This study used ZFNet, backpropagation and stochastic gradient descent
techniques to improve Faster R-CNN to realize kiwifruit image detection,

with an AP of 89.3%.
[32]

Coconut This study utilized ResNet-50 to optimize Faster R-CNN, which showed
good robustness for complex environments. Its mAP was 89.4%. [33]

Tomato
This study used ResNet-50 and K-means clustering algorithms to optimize
Faster R-CNN and achieved the detection of tomato organs. Its mAP was

90.7%.
[34]

YOLO

Green mango
This study used YOLOv2 to identify green mangoes, and its AP was
86.43%. However, the recognition effect would decrease in complex

environments if the fruit was blocked.
[39]

Green mango
This study used Tiny-YOLO to optimize YOLOv2, which improved the

recognition performance in fruit overlapping scenarios, and the accuracy
rate was 97.02%.

[40]

Litchi This study adopted litchi identification at different brightness of YOLOv3,
and its mAP was 96.43%. [10]

Apple This study used DensNet to optimize YOLOv3 to improve the recognition
accuracy of fruit occlusion scenarios. [44]

Tomato
This study used DenseNet and C-Bbox to optimize YOLOv3, showing
good robustness under light conditions and divergence under different

obscuration conditions.
[45]

Kiwifruit This study used different convolution kernels to optimize YOLOv3-Tiny,
reducing the volume of the model and yielding an AP of 90.05%. [46]

Green mango This study was a lightweight green mango recognition model designed
based on YOLOv3, with an F1 of 97.7% and a volume of 44 MB. [47]

Banana This study used YOLOv4 to identify banana skewers. Its AP was 99.55%,
and the average detection time for an image was 44.96 ms. [52]

Tomato This study used ResNet-CSPDarknet53 to optimize YOLOv4, achieving
tomato detection. Its accuracy and recall rate were 88% and 89%. [53]

Cherry
This study used DenseNet to optimize YOLOv4, which improved the
recognition performance of the vision system for small targets, and its

mAP was increased by 15% compared with YOLO
[54]

Apple flowers
This study optimized YOLOv4 using a channel-trimming technique. Its
parameter volume was reduced by 96.74%, the volume was 12.46 MB,

and the mAP was 97.31%.
[55]
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Table 2. Cont.

Model Research Object Technical Characteristics and Performance Indicators References

Oil-seed camellia fruit

This study used the convolutional nucleus of different scales to
optimize YOLOv4-Tiny. It showed good stability under lighting

conditions, and the recognition performance decreased under
severe occlusion conditions.

[56]

Strawberry

This study used CSPNet to optimize YOLOv4-Tiny. Its detection
speed was increased by 25.93%, the accuracy was reduced by only

0.62%, and it was deployed in embedded systems with good
performance.

[57]

Litchi The detection of litchi was achieved by using YOLOv5, with an
mAP of 79.6% and a recall rate of 75.25% [58]

Citrus
This study identified and judged the maturity of citrus by
combining ResNet34 and YOLOv5, with an accuracy rate

of 95.07%
[59]

Apple calyx

This study optimized YOLOv5s through channel pruning and
other techniques. The optimized model physical examination had

been reduced by 71%, while mAP had only been reduced
by 1.57%.

[60]

Green citrus
CBAM-optimized YOLOv5 was used in this study to realize the
identification and detection of green citrus. Its mAP was 98.23%,

and the recall rate was 97.66%.
[61]

Apple
This study adopted SE optimization YOLOv5s to realize apple

identification under different occlusion conditions. Its mAP was
86.75%, and the recall rate was 91.48%.

[62]

SSD

Apple, litchi, navel orange, citrus
This study used ResNet-101, migratory learning and random

gradient descent garlic vendor to optimize SSD. Its mAP for the
four fruits was 89.53% .

[64]

Lingwu long jujube
In this study, DenseNet was used to optimize SSD and realize the

identification of fruits, with an mAP of 96.6% and a detection
speed of 28.05 fps/s

[65]

Litchi
This study was based on FSSD, optimizes the feature extraction
network and realized the detection of litchi. Its AP was 55.79%,

and there were omissions and missed detection.
[67]

RetinaNet

Apple, camellia oleifera fruit
They used the RetinaNet model for apple and camellia oleifera

fruit recognition, and their APs were 83.1% and
87.9%, respectively.

[69,73]

Apple

This study was based on RetinaNet, using the Res2Net module to
optimize the backbone, BiFPN to optimize the neck, and EIoU Loss
as the loss function to achieve the recognition of apples, and its AP
was improved by 5.02% compared with that before optimization.

[70]

Rosa roxburghii tratt

This study was based on RetinaNe, optimizing the loss function
and using the K-means + + clustering algorithm to optimize

Anchor. It has an AP of 94.86%, improving the original model
by 1.8%.

[72]

3.2. Deep Learning-Based Target Segmentation Techniques
3.2.1. Semantic Segmentation Techniques Based on Deep Learning

The deep-learning-based semantic segmentation technique classifies each pixel of
the image by a deep learning technique, which can identify the spatial information and
basic shape of the target. The traditional CNN network used for segmentation tasks is
problematic for its large computation, low computational efficiency, and unsatisfactory
segmentation effect. To address such problems, Shelhamer et al. [74] proposed a Full
Convolutional Network (FCN) compatible with images of arbitrary size. To input images
with arbitrary sizes, the FCN uses the skip layer method to combine the feature maps of
each convolutional layer and then employs bilinear interpolation to achieve upsampling
to obtain a more delicate segmentation effect. Lin et al. [75] used the FCN algorithm to
segment the images of guava and estimated fruit pose using the center position of fruit and
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tree branches. However, the stems of the guava were poorly segmented, which meant it was
difficult for the picking robot to achieve collision-free picking based on the segmentation
results.

Although FCN has greatly promoted the development of image segmentation technol-
ogy, two problems remain prominent: first of all, some information will be lost after the
image is downsampled; second, the utilization of local and global features in the segmenta-
tion process is unbalanced. To address these problems, Chen et al. [76] proposed a DeepLab
semantic segmentation model to optimize the rough segmentation results with bound-
aries by constructing a CRF model. Subsequently, Chen et al. successively proposed im-
proved DeepLab models such as DeepLabv2X [77], DeepLabv3 [78], and DeepLabv3+ [79].
The DeepLabv2 model introduced Atrous Spatial Pyramid Pooling (ASPP) to achieve
multi-scale segmentation. Li et al. [8] used the DeepLabV3 model to segment the RGB-
D camera-acquired litchi images into three categories: background, fruit, and branches,
and segmented and localized multiple litchi clusters in a complex environment, which
provided a real-time harvesting solution for picking robots to technically support real-time
picking. In addition, Peng et al. [80] took a different approach to segmenting lychee images
for recognition. The approach uses DeepLabV+ as the base model, avoids information loss
by optimizing the feature extraction network, and enhances the computing speed by using
migration learning, data enhancement, and coding and decoding structures. It is shown
experimentally that the improved DeepLabV3+ semantic segmentation model has a better
segmentation effect on litchi-growing branches with 76.5% MIoU.

Badrinarayanan [81] proposed a SegNet semantic segmentation model, which offers
more applications for picking robots. The operation is depicted in Figure 7. The SegNet
model is improved for the upsampling process of the FCN model by storing Max-pooling
indices (Max-Pooling indices) for recovering image information during the upsampling
decoding before downsampling. Majeed et al. [82] developed a backbone and branch
segmentation method using the Kinect V2 sensor and the SegNet semantic segmentation
model. The accurate segmentation of picking points is crucial in the process of fruit picking
by picking robots, but the SegNet semantic segmentation model is problematic in that the
segmentation of picking points is not clear enough or might be wrong in the process of
image segmentation.

Figure 7. Diagram of SegNet architecture.

3.2.2. Deep Learning-Based Instance Segmentation Techniques

Instance segmentation provides different labels for separate instances of the same
class of objects, so the image information provided by instance segmentation is more
detailed than that offered by semantic segmentation. The most representative model for
segmentation, for instance, is the Mask R-CNN [83] instance segmentation model, which
consists of a backbone network ResNet-FPN [42,43], a region proposal network RPN and
three branches. The operation process is depicted in Figure 8. The ResNet-FPN extracts the
features of the input image. The RPN generates the RoI (Region of Interest), which may
contain the detected target based on the features of the image. Finally, the FC and FCN in
the three branches perform the target classification and instance segmentation.
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Figure 8. Diagram of Mask R-CNN architecture.

By comparing the detection accuracy of different residual networks as backbone net-
works, Yu et al. [84] selected ResNet-50 to replace the ResNet-101 network of the original
Mask R-CNN instance segmentation model to obtain more features of the image and
improve the performance of the visual recognition system of the picking robot. The ex-
periments showed that the improved Mask R-CNN model had a large improvement in
detection speed compared with the previous one, and the MIoU of instance segmentation
was 89.85%, which offered better generality and robustness in complex environments such
as different illumination conditions, occlusion, and fruit overlapping. To further improve
the target fruit segmentation accuracy and recognition speed, Jia et al. [85] proposed an
improved Mask R-CNN instance segmentation model by combining ResNet and DenseNet
and used it for image instance segmentation of apples. The improved Mask R-CNN model
not only deepens the depth of the model but also preserves more features of the target fruit
in the image and reduces the number of parameters, and the recognition accuracy and recall
of the model are 97.31% and 95.70%, respectively, as shown by experiments. However,
Wang et al. [86] took a different improvement approach to recognize apples in complex
environments by using the ResNet-50 network and FPN instead of the backbone network
of the original Mask R-CNN model and also introduced an attention mechanism by using
transformer attention. The improved Mask R-CNN model is more accurate. The mAP
and recall rates of instance segmentation were 91.7% and 97.1% under different lighting
conditions, occlusion, and fruit overlapping. In addition, in the process of recognition,
the spatial constraint relationship between the target fruit and the picked stem is fully uti-
lized to obtain more accurate information about the fruit location. To this end, Xu et al. [87]
used RGB image and depth image data fusion at the input side while optimizing the
RPN of the Mask R-CNN model. The experiments showed that the optimized model had
an accuracy of 93.76% and 89.34% for the segmentation of fruits and stems, respectively,
and the recognition time of a single image was 0.04 s.

3.2.3. Comparison and Summary of Deep-Learning-Based Target Segmentation Techniques

Table 3 compares the research results of target segmentation methods based on deep
learning. Through the summary comparison of the literature, the following two conclusions
are drawn: (a) target segmentation methods based on deep learning can better segment the
target fruit as well as the fruit branches, which provides more detailed spatial information
and facilitates the picking robots to automatically pick fruits without causing any damage to
them; (b) both types of image segmentation algorithms require a large number of datasets
for training, and the datasets are time-consuming and labor-intensive in the labeling
process; (c) semantic segmentation has lower accuracy for fruit recognition in complex
environments, while instance segmentation has a longer computing time and has difficulty
meeting real-time requirements.
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Table 3. Comparison of research results of deep-learning-based target segmentation methods.

Model Research Object Technical Characteristics and Performance Indicators References

FCN Guava In this study, FCN was used to achieve image segmentation of guava, and the
average accuracy was 89.3%. [75]

DeepLabV3 Litchi In this study, DeepLabV3 was used to segment images into backgrounds, fruits
and branches, and the detection accuracy of lychee branches was 83.33%. [8]

DeepLabV3+ Litchi This study used Xception-65 to optimize DeepLabV3+ and realized the
segmentation of litchi growing branches, with an MIoU of 76.5%. [80]

SegNet Apple
This study used SegNet to segment the trunks and branches of apple trees in

the image, with segmentation accuracy of 92% and 93% and MIoU of 59% and
44%, respectively.

[82]

Mask R-CNN

Strawberry
In this study, Mask R-CNN was used to achieve the segmentation of

strawberries in the natural environment, with an AP of 95.78% and a recall rate
of 95.41%

[84]

Apple
This study used ResNet and DenseNet to optimize Mask R-CNN, which

realized apple segmentation. Its accuracy rate was 97.31%, and the recall rate
was 95.70%.

[85]

Apple

This study optimized Mask R-CNN using the ResNet of the fusion attention
mechanism and characteristic pyramid network. For apple segmentation under
different lighting conditions and occlusion conditions, its mAP and recall rates

were 91.7% and 97.1%, respectively.

[86]

Cherry tomato In this study, the segmentation of cherry tomatoes was realized by optimizing
Mask R-CNN, with a segmentation accuracy of 93.76% and 89.34%, respectively. [87]

3.3. Vision-Based 3D Reconstruction Technology of Fruit

The fruit target recognition method based on 3D reconstruction constructs the spatial
coordinates and spatial posture of the fruit using the 3D information obtained by a set of
sensors and then guides the picking robot to move to the specified position and adjusts
the picking posture. For picking robots, a camera is usually used to acquire images, while
machine vision technology is used to obtain fruit 3D information for 3D reconstruction.
The process of implementing the vision-based 3D reconstruction technology is shown in
Figure 9. The first step is to calibrate the vision system and establish a geometric model
of the fruit’s geometric position in space corresponding to the information in its image.
Secondly, the vision system is used to acquire the image and extract features from the
image, and again, stereo matching is performed based on the extracted features. Finally, 3D
scene reconstruction is performed based on the geometric model and the results of stereo
matching. Vision-based 3D reconstruction technology often uses stereo-vision-based 3D
reconstruction technology and RGB-D vision sensor-based 3D reconstruction technology.

Figure 9. Flow chart of vision-based 3D reconstruction technology.

3.3.1. Three-Dimensional Reconstruction Technology Based on Stereo Vision

Stereo vision-based three-dimensional reconstruction technology uses two or more
cameras to capture images from different angles based on the principle of stereo matching to
reproduce three-dimensional scenes. The principle of binocular stereo vision 3D matching is
shown in Figure 10. The application of 3D reconstruction technology based on stereo vision
can effectively enhance the environment perception ability of the fruit-picking robot and
increase its working efficiency. Li et al. [88] used a binocular stereo-vision system to obtain
the 3D position of apples. The approach is to first detect the apples using Faster R-CNN on
the images captured by the vision system, then segment the apples from the images based
on color features, and finally, perform stereo matching to identify the three-dimensional
spatial information of the apples. However, this approach is less effective when the fruit
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is occluded. For the problem of occluded fruits, Si et al. [9] proposed a different solution
by using two cameras to build a stereo vision system that identifies apples in orchards.
The approach uses the RRM algorithm to identify the spatial 3D position of apples by taking
images from different angles with different cameras in the stereo vision system. The system
was tested in an actual orchard and showed good performance, but limited by lighting
conditions, there were differences in the quality of images taken by the stereo vision system
from different angles, which affected the recognition performance of the system. To address
this problem, Wang et al. [89] proposed a binocular-vision-based recognition system for
lychee in unstructured environments. The approach first optimizes the brightness of the
image by using wavelet transform before using the clustering algorithm to segment the
lychee from the image segmentation, and finally, the images taken by the left and right
cameras are stereo matched to determine the spatial three-dimensional position of the
lychee. The system uses wavelet variation to optimize the quality of the image, which
improves the robustness of the system under changing lighting conditions.

Figure 10. Stereo matching principle based on binocular vision.

3.3.2. Three-Dimensional Reconstruction Technology Based on RGB-D Vision Sensor

RGB-D vision sensors can acquire the sensor-to-object distance information directly
through structured light or time-of-flight, offering high measurement accuracy without
being easily affected by lighting conditions. RGB-D vision sensors are widely used in the
vision recognition system of picking robots. To improve the system’s ability to perceive
the environment, Tao et al. [90] proposed a point cloud processing-based apple recognition
method. Firstly, the point cloud data of the orchard was acquired by using an RGB-D
vision sensor, and the color features were fused with the 3D features in the point cloud
data to further classify the fruits, branches, and leaves in the image, and then a genetic
algorithm and support vector machine were used to classify the data into three categories.
According to the test, the accuracy rates of apple, branch and leaf recognition were 92.3%,
88.03% and 80.34%, respectively. As fruit growth in a natural environment is irregular,
the branches of fruit trees not only block the fruit but also obstruct the end-effector of
the picking robot. For this reason, Lin et al. [91] proposed a method to identify and
locate guava fruit using RGB-D vision sensors and successfully reconstructed the fruit and
branches in three dimensions. First, Mask R-CNN was used to segment the fruit from
the image. Second, a sphere was used to describe the fruit and a cylinder to describe the
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branch. Finally, a fitting algorithm was used to process the point cloud to reconstruct the
3D position. The system was tested in an orchard with an F1 score of 83.3% for the 3D
reconstruction of fruits and 41.5% for the 3D reconstruction of branches. Because the point
cloud collected by the RGB-D vision sensor is sparse for slender branches, which affects
the 3D reconstruction effect of branches. For the low recognition accuracy in occluded
fruits, Li et al. [92] proposed an apple recognition system based on an RGB-D vision sensor.
The system segments the apple fruit in the image by using the YOLACT++ model and then
estimates the depth information of the apple by the 3D vision cone before constructing the
3D information of the apple. Through practical experiments in orchards, the apple-picking
robot was able to adjust the picking posture of the robotic arm according to the fruit position
and size output from this system.

3.3.3. Comparison and Summary of Vision-Based 3D Reconstruction Technology for Fruit

Table 4 compares the research results of vision-based 3D reconstruction technology
for fruit. By summarizing the literature, the following three conclusions can be drawn:
(a) The 3D reconstruction technology based on stereo vision has high accuracy when
measuring close targets, but its difficulty is in carrying out feature points for matching,
especially when the fruit is occluded, and the effect of 3D reconstruction is easily affected by
lighting conditions. (b) The 3D reconstruction technology based on RGB-D vision sensors
measures depth information through structured light or time-of-flight, which can eliminate
the influence of changing lighting conditions but has the disadvantages of low accuracy
for detecting edge position and low image resolution. (c) The reconstruction process of
vision-based fruit reconstruction technology does not involve mechanical motion and
depends on the performance of hardware devices, which offers greater potential for future
development.

Table 4. Comparing the research results of vision-based 3D reconstruction technology of fruit.

Vision-Based 3D
Reconstruction

Technology of Fruit
Application to Crops

Technical Characteristics
and Performance

Indicators
Limitations References

3D reconstruction
technology based on

stereo vision
Apple, Litchi

Proximity recognition
positioning is high, can be

used in the natural
environment,

comprehensive
recognition accuracy

of 88%.

Affected by light
conditions and when the

fruit is shaded,
and complicated to

calculate when stereo
matching.

[9,88,89]

3D Reconstruction
Technology Based on
RGB-D Vision Sensor

Apple, Guava

Overcomes the influence
of changing light

conditions, with a wide
measurement range and a

combined recognition
accuracy of 85%.

Sparse point cloud
generation for fine

branches, low accuracy of
object edge positioning.

[90–92]

4. Challenges and Future Directions of Target Recognition Research for
Picking Robots
4.1. Existing Challenges

1. An unstructured orchard environment raises the difficulty of fruit recognition. In the
actual working environment, the change in lighting conditions easily affects the color
characteristics of the target fruit, and the shading of branches, leaves, and other
background objects, as well as overlapped fruit, easily lead to missed fruit and
other problems in the target recognition system. The traditional target recognition
technology is substantially limited to the complex environment of actual work, and the
fruit recognition efficiency is low. Although deep learning technology can improve the
target recognition performance of picking robots in complex environments, there are
still many uncontrollable influencing factors, and the stability of the visual recognition
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system needs to be considered. In order to obtain more accurate 3D information
on fruits, vision-based 3D reconstruction technology can be used as an effective
approach, but the existing 3D reconstruction technology still faces various challenges.
For example, the 3D reconstruction technology based on a stereo vision system has
difficulty accurately matching the overlapped fruit in three dimensions, and the
3D reconstruction technology based on an RGB-D vision sensor has the problem of
insufficient filling rate when collecting slender branches. Therefore, an unstructured
orchard environment raises the difficulty of fruit recognition.

2. The real-time nature of the vision system in picking robots makes it difficult to meet the
actual production needs. To improve the recognition performance of its vision system,
the recognition algorithms are often examined. Although the method can effectively
improve the recognition accuracy of the algorithm, this also makes the structure of the
algorithm even more complex and the operation time longer. Consequently, actual
production needs are often not met.

3. The scale of the data set affects the robustness of the target recognition system of the
picking robot. To improve the robustness of the target detection model, the images
in the dataset need to contain different lighting conditions, shading degrees, fruit
overlapping, and growth cycles of their own characteristics. Therefore, the data
images need to be acquired at different times, and at the same time, large-scale
acquisition tasks need to be completed within a specific period. Therefore, large-scale
data set acquisition is one of the important tasks of fruit target recognition.

4. The generality of target recognition models needs to be improved. In most of the
existing studies, the improvement of target detection algorithms for fruits only targets
a specific situation, while in a working environment, many different situations may
occur simultaneously, such as fruits at different growth stages. Therefore, the devel-
opment of highly generalized target detection models is beneficial to improve the
accuracy of the picking robot’s decision-making.

4.2. The Future Directions of Development

1. Research on accurate fruit recognition technology for complex environments. The com-
plex working environment is still one of the constraints for the development of picking
robots. Although many researchers have proposed various improvement measures
for fruit detection models, different lighting conditions, overlapping and occlusion
will still affect the recognition performance of picking robots. At the same time,
the complex environment also poses certain challenges to the 3D reconstruction of
fruits, and the changes in lighting conditions and fruit overlapping pose challenges
to the 3D construction of the visual recognition system. Therefore, it is important
to improve the robustness, generalization, and versatility of the visual recognition
system for picking robots in complex environments.

2. Research on target recognition technology for fruit in a dynamic environment. Dur-
ing the operation of the picking robot, the fruit is generally not completely stationary,
and the wind and picking action will cause the fruit to oscillate dynamically. Al-
though the design of the end-effector of the picking robot can accommodate certain
position deviations, the randomness and complexity of fruit oscillation may still
lead to the failure of the end-effector picking, thus damaging the picked fruit or the
end-effector.

3. Lightweight model research for fruit target recognition. Since picking robots pose
high requirements for target detection models, they not only require a fast detection
speed to achieve real-time detection but also small model sizes so that the model
can be embedded in the devices. Therefore, subsequently, the focus should be on
developing lightweight target detection models that can be used in edge devices for
real-time fruit detection and improving the performance of visual recognition systems
in embedded devices.
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4. Target recognition technology research for small-scale data sets. Target recogni-
tion technology often requires a large number of data sets covering various aspects.
The process of data acquisition and labeling thus takes a longer time and greater effort.
However, the research using small-scale data models in existing target recognition
techniques is underrepresented. Therefore, how to use small-scale data sets for model
training is an important research direction.
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