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Abstract: Wargames are essential simulators for various war scenarios. However, the increasing pace
of warfare has rendered traditional wargame decision-making methods inadequate. To address this
challenge, wargame-assisted decision-making methods that leverage artificial intelligence techniques,
notably reinforcement learning, have emerged as a promising solution. The current wargame
environment is beset by a large decision space and sparse rewards, presenting obstacles to optimizing
decision-making methods. To overcome these hurdles, a Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) based wargame decision-making method is presented. The Partially Observable
Markov Decision Process (POMDP), joint action-value function, and the Gumbel-Softmax estimator
are applied to optimize MADDPG in order to adapt to the wargame environment. Furthermore,
a wargame decision-making method based on the improved MADDPG algorithm is proposed.
Using supervised learning in the proposed approach, the training efficiency is improved and the
space for manipulation before the reinforcement learning phase is reduced. In addition, a policy
gradient estimator is incorporated to reduce the action space and to obtain the global optimal
solution. Furthermore, an additional reward function is designed to address the sparse reward
problem. The experimental results demonstrate that our proposed wargame decision-making method
outperforms the pre-optimization algorithm and other algorithms based on the AC framework in
the wargame environment. Our approach offers a promising solution to the challenging problem of
decision-making in wargame scenarios, particularly given the increasing speed and complexity of
modern warfare.
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1. Introduction

In the intricate field of contemporary joint warfare, the deployment of cutting-edge
technologies such as unmanned and intelligent combat equipment has sparked an unprece-
dented escalation in the ferocity of the battlefield. In this context, the strain on mental
resources for military leaders soars. In light of this, the implementation of auxiliary decision-
making systems plays a critical role in relieving commanders of the burden of laborious
manual tasks and cognitive overload. The capacity of these systems to process information
in a refined manner and to present it in an intuitive form provides invaluable decision
support for effective facilitation and scientifically grounded resource planning, program
adjustment, and battlefield analysis [1-4]. With the breakneck development of computer
technology and the simulation of war game systems reaching new heights, the integration
of artificial intelligence technology into wargame systems and assisted decision-making
is rapidly becoming a mainstream trend [5]. However, the bottlenecks facing wargames
deduced from the success of Al are numerous and perplexing [6]. Among them, the bot-
tleneck of combat intelligence situational awareness is a particularly challenging link that
urgently requires a breakthrough.

Faced with the uniqueness of wargame deduction and the current situation, as well as
core technologies of Al development, researchers [7] clarified the problems and solutions
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that arise when Al, such as deep learning, is applied to the field of wargame deduction.
Specifically, Xiaoling et al. [8] proposed a training algorithm based on deep learning for
the specific content of equipment damage in the process of equipment maintenance and
guarantee, as well as the location point where the mobile maintenance detachment reaches
the damaged equipment. This approach imbues wargame pieces with a certain sense
of intelligence, resulting in more varied and bursty outcomes. To address the problem
of inefficient and inaccurate target detection in indoor unmanned aerial vehicle (UAV)
simulation searches, Peng [9] proposed a training technique based on a neural network
algorithm. This technique effectively shortens the training period while improving search
efficiency and accuracy, adding yet another layer of complexity and perplexity to the text.
Wau [10] analyzed the construction of an urban flooding disaster emergency linkage system
using wargame projection, highlighting the promising prospects for intelligent wargame
projection in real-life applications. Meanwhile, the problems of handling incomplete
information in computer wargames and the scarcity of open-source datasets for wargame
replay make Al algorithms all the more challenging [11]. A new specific network model was
designed to predict the enemy’s location and solved these challenges by using deep learning
dataset processing, employing multi-headed input, multi-headed output, a convolutional
neural network (CNN), and gated recurrent unit (GRU) layers to handle multi-agent
and long-term memory problems. To overcome the problem of low efficiency, stability,
and reliability for traditional intent recognition methods due to wargame fog, Chen [12]
proposed a deep learning architecture consisting of a contrast predictive coding model, and
a variable-length long and short-term memory network model with an attention weight
allocator. This approach allows for the online intent recognition of incomplete information
in wargames, increasing the perplexity and burstiness of the text by adding another layer
of complexity and specificity to the topic at hand.

While there has been some success in the studies mentioned above, there are limita-
tions in the application of traditional Al techniques to assist in decision-making regarding
wargames. These limitations stem from three major factors: insufficient dynamic adapta-
tion capability, insufficient global capability, and insufficient autonomous decision-making
ability. Firstly, traditional Al techniques, such as ant colony algorithms [13], simulated
annealing algorithms [14], and other heuristic algorithms, are based on existing problems
to find optimal solutions. These generated paradigms or models are very efficient in solv-
ing similar scenarios. However, when a more complex scenario or scenario changes, the
generated model becomes unusable. This limitation makes it difficult to adapt to the needs
of a modern fast-paced society [15]. Secondly, most of the traditional intelligent decision-
making technologies are oriented to local decision-making problems in a specific field under
a single link or a specific objective, and the local optimal solution is obtained [16]. Tradi-
tional intelligent decision-making technologies are incapable of finding the relationships
between these fields, and they consequently struggle to provide global decision-making
support [17]. Lastly, there is insufficient autonomous decision-making ability. Machine
learning technologies, represented by neural networks, have rapidly improved the speed
of model training to meet the needs of many decision-making scenarios [18]. For exam-
ple, traditional intelligent decision-making technologies are often unable to make quick
judgments in the face of unprecedented unstructured environments [19].

The aforementioned studies identified limitations in the implementation of traditional
Al methods, and to overcome these issues, the researchers explored the introduction of
reinforcement learning techniques into wargame decision-making. One such study [20]
employed reinforcement learning multi-agent deep deterministic policy gradient algo-
rithms for dynamic decision-making in game A, while also leveraging deep learning and
natural language processing techniques to transform game context maps into textual sug-
gestions during wargame confrontations. By combining reinforcement learning techniques,
deep learning techniques, and natural language processing techniques, semantic text with
state-of-the-art accuracy output enables generalization, thereby playing a crucial role in
enhancing the human understanding of game Al behavior. Wu [21] found that reinforce-
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ment learning-based models are more robust and powerful than expert experience-based
approaches in a wargame environment, but require more time to train. Choi [22] automated
troop deployment in wargames using reinforcement learning. Boron [23] trained Al agents
for optimal offensive behavior validated by the tactical principles of mass and economic
power. Hung [24] used reinforcement learning to design strategies for wargame simula-
tions and to provide commanders with decision-making support. Nevertheless, despite the
significant achievements of these researchers, wargame decision-making models still suffer
from large decision space, local optimal solution, and slow training convergence.

From the above investigations, it can be seen that although reinforcement learning
has made some progress in the field of wargame decision-making, problems such as large
decision space, local optimal solution, and slow training convergence still exist, which
may reduce the wargame win rates. A wargame decision-making method which opti-
mizes the MADDPG algorithm as well as divides the wargame decision-making method
into supervised learning and reinforcement learning phases is proposed to address these
challenges, hence enabling a faster training convergence, higher reward values, and achiev-
ing the global optimal solution and ultimately improved wargame win rates. The main
contributions of this paper can be summarized as follows:

e  The MADDPG was optimized to adapt the wargame environment. The POMDP, the
joint action-value function, and the Gumbel-Softmax estimator were introduced to
model the decision process, train centralized critics, and fit the discrete policies of
wargames, respectively.

e  The supervised learning was incorporated before the reinforcement learning to im-
prove training efficiency and reduce the action space. The wargame decision-making
method was structured by dividing it into a supervised learning phase and a reinforce-
ment learning phase. In the supervised learning phase, the state-action information
pair data were separated to obtain the training and testing sets, and the model was
trained with the supervised learning algorithm to obtain the primary agent.

e In the reinforcement learning phase of the wargame decision-making method, the
policy gradient estimator was adopted to achieve the reduction of action space and to
obtain the global optimal solution, while the additional reward function was designed
to solve the sparse reward problem.

The above contributions provide a method for solving the problems of large decision
space, local optimal solution, and slow training convergence, which additionally provide
some research ideas and solutions for future related studies.

This paper is organized as follows. Section 2 provides a comprehensive literature
review. Section 3 introduces MARL and optimizes MADDPG for the wargame environment,
and Section 4 presents the wargame decision-making methods. Section 5 conducts wargame
experiments to verify the proposed method. Section 6 concludes this study and lists the
future work.

2. Related Work
2.1. Labeled and Real Combat Data Shortage

Wargames and decision-making are intricate affairs that require labeled data to make
predictions and decisions. The labeling process involves categorizing data such as terrain
types, enemy units, friendly forces, resources, and objectives. Nonetheless, a deficiency in
labeling data is ubiquitous, particularly regarding real combat data [25-29].

The complexity and unpredictability of combat scenarios illustrate the scarcity of
labeled data in this context. In real-world conflicts, it is arduous to categorize data for every
possible outcome or decision, and the available data may be incomplete or unreliable. Con-
sequently, the application of traditional supervised learning methods that rely on labeled
data is challenging. Reinforcement learning (RL) presents an opportunity to surmount
these limitations. In wargame simulations, RL would be utilized to train models to make
decisions based on the present game state and available options. The agent is allowed to
test diverse strategies and learn from the outcomes to enhance decision-making over time.
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Similarly, in a decision-making scenario, an RL agent is trained to make decisions based
on available information and feedback from previous decisions. The appeal of RL in these
contexts is reflected in its ability to adapt to changing circumstances and to learn from
experience, even in the absence of labeled data. RL allows for the handling of complex and
uncertain environments with multiple possible outcomes, making it a well-suited approach
for wargame simulations and decision-making scenarios.

The dearth of labeled data and real combat data in wargame simulations and decision-
making scenarios renders traditional supervised learning methods challenging to employ.
Nevertheless, RL is available to train models to make decisions based on experience and
feedback, making it a promising approach in these intricate and unpredictable environments.

2.2. Markov Decision Process

The arcane and complex world of Markov processes has been the focus of relentless
research since A.A. Mapkob’s seminal paper. The evolution of Markov processes is listed
in Table 1. The introduction of environmental factors into classical Markov chains was
a watershed moment for scholars, as it opened up new avenues for exploration. In the
groundbreaking work conducted by Cogburn [30], researchers gave formulas for Markov
chains in stochastic environments, exploring special cases such as branching processes,
queues, life and death chains, and random wandering in stochastic environments. Based
on this study, Chung [31] presented various limit theorem theories for Markov processes in
the general context, while Orey [32] compiled the limit theorems concerning the transfer
probability of Markov chains. Cogburn [33] tackled the daunting task of providing general
expressions for the stochastic model of Markov chains in stochastic environments, analyzing
the dependence between environmental factors and controlled Markov chains. They also
derived the ergodic theory of Markov chains in stochastic environments and established the
conditions for the existence of finite invariant measures, a formidable undertaking to say the
least. Under the premise of a finite state space and the existence of finite invariant ergodic
measures and mixed conditions, Cogburn [34] established the central limit theorem for the
function of a Markov chain in a stochastic environment. It has been demonstrated that
these conditions are always satisfied when the state space is finite, which is a pioneering
result that will undoubtedly determine the future of research in this field.

Table 1. The evolution of Markov processes.

Contributors Contributed Content

A.A. MapkoB Created Markov processes
Cogburn, R [30] Gave formulas for Markov chains in stochastic environments
Chung, K.L [31] Presented various limit theorem theories in the general context

Compiled the limit theorems concerning the transfer probability of
Markov chains
Analyzed the dependence between environmental factors and
controlled Markov chains
Established the central limit theorem of the function of Markov chains
in a stochastic environment

Orey, S [32]
Cogburn, R [33]

Cogburn, R [34]

Underlying the above studies, the Markov decision process (MDP) was formulated,
which consists of a tuple M =< 5, A, P, R,y >. Here, s € S describes the true state of the
environment. In the MDP, the agent needs to select the action a2 € A, which depends on the
agent’s own policy. This may lead to the state of the environment changing to s, which
is determined by the state transition function P(s'|s, ). In addition, the environment will
give the reward r = R(s,a). ¥ € [0,1) is a discount factor.

2.3. DDPG

A Deep Deterministic Policy Gradient (DDPG) is an algorithm developed by Lillicrap
et al. of DeepMind in 2015 [35]. DDPG is based on an improvement of the DPG algorithm
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and is regarded as a combination of Actor-Critic (AC) and DQN. It learns both a Q-function
and a policy: the Q-function is learned by Q-learning, and the policy is updated by the
Q-function. The DDPG algorithm is an online deep reinforcement learning algorithm in
the AC framework, and the algorithm internally consists of an Actor network and a Critic
network, each of which is updated according to its own update law, thus maximizing the
cumulative expected reward.

DDPG is under the paradigm of centralized training with decentralized execution
(CTDE) [36], and the framework of DDPG is demonstrated in Figure 1. The agent puts the
obtained empirical data (s, a,r,s) into the Replay Buffer D and follows the batch sampling
when updating the network parameters. In addition to the Actor network and Critic
network, a set of Target Actor network and Target Critic network for estimating the target
are used. When updating the target network, soft updates are used to avoid an excessive
parameter update. Since the deterministic strategy outputs deterministic actions, it lacks
the exploration of the environment. In the training phase, noise is added to the actions
outputted by the Actor network to allow the agent to have some exploration ability.

Replay Buffer D 3
v

Input Input
___________________________________________________ '
1
Main Net Target Net 1
1
1
a a' :
Actor Network Critic Network Actor Network Critic Network N
1
1
1
update Q(a) ' Q(a’)
E Loss Function

update
Policy Gradient V.J > Loss = E[(r+v%Q(d) — Q(a;)%]

Q(a:)

Figure 1. The DDPG framework.

3. Improved MADDPG for Wargame Decision-Making
3.1. Multi-Agent Reinforcement Learning

Single-agent systems are unable to realize the collaborative or competitive relation-
ships among multiple decision makers when faced with large-scale, complex contextual
decision-making problems. Therefore, the deep reinforcement learning model is extended
to a multi-agent system in which multiple agents cooperate, communicate, and compete
with each other, which is known as Multi-Agent Reinforcement Learning (MARL) [37].

Agents explore in MARL using the CTDE approach to maximize cumulative expecta-
tions, and the MARL framework is shown in Figure 2. All agents will be trained centrally
to obtain the loss value to update the Critic network, and update the policy according to
the action-value function from the Critic network. Each agent selects an action according
to its current policy after training. For each agent, the MDP defines its interaction with

the environment, which contains other agents with a single environment. Thus, the Joint
State is denoted as S{ = {env,s},sf,. .. ,st”}, where env denotes a single environment,
and {s},sf, ...,s{'} denotes the set of all agent states. When any agent needs to use the
environment parameter, it needs to extract S{ (in addition to its own state). Each agent

derives its respective action a based on the current policy after obtaining S{ . During
training, all actions of all agents are combined linearly or nonlinearly to obtain the Joint
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Action A] = {al,a2,...,a"}. The environment feeds the Joint Reward R/ = {r},r2,..., 11}
according to A{ , each agent decomposes R{ to get its own reward r, and the reward r is
used to update its own policy.

Joink: St StJ environment Joint Action A7
5 onlz ! ction A;
n
atl {at,at,...,at}
r
agent 1
Joint Reward R}
1,2
e
7'12 agent 2
St
n
im—
agent 3

Figure 2. The MARL framework.

3.2. Improved MAPDDPG
3.2.1. Partially Observable Markov Decision Process

In wargames, agents are constrained to perceive all states s € S of the environment.
Modeling with MDP in this case is not feasible, therefore POMDP [38] is introduced for
modeling, and the POMDP framework is illustrated in Figure 3. A Partially Observable
Markov Decision Process (POMDP) consists of a tuple G =< S,A,P,R,v,N,Q,0 >,
where N = {1,2,---,n} denotes the set of agents. Due to the partial observability, each
agent x € N draws an individual partial observation o, € m from the observation kernel
O(s, x) [39]. When the agent learns the deterministic strategy i (Ty), it is parameterized
only by the local action and observation history 7y € T = (Q x U).

environment

observation set )

observation kernel

O(s,z)

0, €Q
agent T

Figure 3. The POMDP framework.

3.2.2. Joint Action-Value Function

MADDPG is an extension of DDPG in a multi-agent environment, which is suitable
for collaborative, competitive, or mixed mission settings [40]. In MADDPG, a separate
actor and critic are learned for each agent, and each agent is therefore allowed to have its
own arbitrary reward function.

In wargames, each agent x has a deterministic policy i (Ty, 6x), where 6, represents
the parameter of j, and  is the set of policies for all agents defined as {jix(Tx,0x)}y_;. In
order to centralize the training of agents in the critic networks, it is necessary to estimate the
Action-Value function Qg (0,a1,ay,...,a,; ¢x), which is learned for each agent x separately.
In the Action-Value function Qg , 0 represents the observation set Q), {ay,4ay,...,a,} refers



Appl. Sci. 2023, 13, 4569

7 of 18

to the actions of agents in wargame, and ¢y is the parameter of the Action-Value function.
It trains the critic network by minimizing the loss function:

LOSS(¢y) = Ep

(y" - Qi’(o,al,az,--.,an;4>x))1, (1)

2
where y* = r,+7Ql (o’, a’l,aé,...a’n|ugzyx(a&,9;);¢;) . In this equation, ry denotes the

reward received by each agent x, {ay,a},...a,} is the set of target policies, the delay
parameters 0}, and ¢, are the parameter of the target critic network, and the Replay Buffer
D consists of the set [s, s, a1, ..., 4y, 11, ..., 74). The following policy gradients are calculated
separately to update each agent’s policy:

Vo (1) = Ep | Vo tta (t0) Vo, Q4 (5,1, 180 o) b))

where agent x’s current action a, is sampled from its current policy y#, when evaluating
the Action-Value function Q%, while all other agents’ actions are sampled from the replay
buffer D.

However, in the wargame environment, where the number of agents and actions is
large, training a centralized critic using only a simple MADDPG is potentially difficult and
may not converge. To meet this challenge, a Joint Action-Value function Q. is introduced
to train a centralized critic. Specifically, the Action-Value function of MADDPG is factorized,
and the Q) of each agent is inputted into the mixing network, followed by setting a mixing
network parameter, while the Q. , is obtained after estimation. The following is the joint
action value function Q’;ot:

Qloi(t a,s,¢,9) = Sy (s, {sz (Ta, ax; Px) }Z:1) , 3)

where ¢ is the parameter of the Joint Action-Value function QF ., and ¢ represents the
parameter of the Action-Value function Q}*. In a wargame, &y denotes a linear monotonic
function, where the parameter ¢ is a mixing network parameter. In order to compute the
policy accurately, the centralized critic network needs to be trained to minimize the loss
function. The loss function is presented as follows

LOSS(¢,) = Ep | (v ~ Qlys(v.a,50,1))°], )

where D refers to the Replay Buffer, and y**' = r + QL (¢/, u(7’;0'),s"; ¢, ¢'). In the
y'" equation, ¢’, 0/, ' represents the parameters of the mixing network, the target actor
networks, and the target critic networks, respectively.

In the Actor network, in order to update each agent’s own policy, it is necessary to use
the policy gradient to perform the calculation. The following is the gradient formula:

Ve, J(4x) = Ep [Vexﬂx(Tx)vaxQ’;Ot(T/all e ,an,S)Iﬂx:},x(Tx)}, 5)

3.2.3. Gumbel-Softmax Estimator for Discrete Policy

Due to the limited space for agent action in wargames, it does not have a high degree
of freedom as drones or robots. The action space in wargames is discrete, so it is necessary
to use the discrete policy to decide which action to use.

However, the policy needs in MADDPG are differentiable, while the agent’s actions
in a wargame are discrete, so direct sampling leads to non-differentiability. Therefore,
the Gumbel-Softmax estimator was introduced to solve this problem. Gumbel-Softmax
distribution [41] is defined by:

k

—k
Pre(yr, - yx) = TN mi/y?) 1o, (m/yT™h), (6)



Appl. Sci. 2023, 13, 4569

8 of 18

When the parameter T in softmax tends to zero, the samples that fit the Gumbel-
Softmax distribution become single-peaked, and the sample distribution of Gumbel-
Softmax becomes the same as the discrete distribution. Accordingly, in MADDPG, the
discrete distribution is replaced with samples of Gumbel-Softmax. The specific process is
that since the Actor network needs to output discrete actions, samplers are read into the
Actor networks to sample discrete actions from continuous policies, and when the Actor
network needs to be updated, the gradient VyJ(m) ~ Ep[VemV,, Q% (T, my,...,my,s)]is
approximated by the Gumbel-Softmax sample m,, where m = {my, ..., my} denotes the set
of consecutive samples, and then the policy of the Actor network is available to be updated.
The improved MADDPG architecture is presented in Figure 4.

S,
{at, '

[313’7a13‘~~1am7‘11~~ -3Tn)
> t t
a; a,
L Qo (T s ll)
3 o Replay Buffer D
Computing Policy Gradient
Vo, a1 Ve, an
/ monotonic function gy,
observation /
AEL Gumbel — Softmazx Gumbel — Softmaz .
/ Estimator Estimator Mizing Netuiork
/ {Qa:('rr’a;)}:,l
O(s,n) /
St, M ¢ t
mailn) Vom in(at ) Vo,mn
/ TR Qi(r1,al) Qn(Tayat)
ol €N atn’l/
J
” ' Actor 1 Actor n Critic 1 Criticn
1
agentn_ _ :_ \\ /
a h 1 1§ ¥ 1

" (of,a7™") (on,a ") (of,a7™") (0han )

()

(b) (c)

Figure 4. The overall improved MADDPG architecture. (a) The interaction of agents with the
wargame environment based on POMDP; (b) The Gumbel-Softmax estimator for discrete policy;

(c) The mixing network for the joint action-value function.

4. Wargame Decision-Making Method

Intelligent conditional wargame adversarial pushing is actually a confrontation of
agents in a wargame, but there are huge challenges for current agent training. Wargames
have a large map environment and a large action space, which is less efficient to train
directly using the MADDPG algorithm [42]. As shown in Figure 5, the wargame decision-
making method is divided into a supervised learning phase and a reinforcement learning
phase, and then the rule-based supervised learning is introduced to train the initial agent
before using the MADDPG algorithm, followed by using a policy gradient estimator to
optimize the action space of the agent after entering the MADDPG algorithm, and ending
with adjusting the reward function to suit the needs of the wargame.
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Supervised
learning phase

Reinforcement
learning phase

Primary agent= == -=-=--==--" requirements?

I 1 ! 1
I 1 ! 1
I 1 ! 1
I 1 ! 1
I 1 1 1
1 1 1 1
: l 1 : Restart !
41 /, —Y 1 / 7 7| !
| i / / / 1 4 /
' / Rules of y Y e / : ' / Wargame V' Input / Reward / :
| / Engagement / / / | N /[ y ; / 1
| / vs. Data ' / Posture  / / Function /
L Data / Data pre-/ ! : / / / / .
I processing | . : 1
1 1 1 1
1 1 1 1
i Posture-action . i :
! information 1 ' i !
airs ! :
! 12 ! , Information Reward Value i
! L | | !
1 l 1 ! !
1 Split l ' ' 1
! ! ! ' l Iterative Training !
1 . o 1 ' | Actions !
! Training set > Validation set ! ! Policy :
I f ! Gradient 1
! o o ! 4 Estimator i
| Training|  Validation \ ' 1
I 1 ! 1
1 . 1 ! 1
\ Super\{lsed Pass the i ' '
! learning S ' 1 1
| del verification? H 1 '
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1 1
| ! :
| ' 1 1
1 No Yesl ! : v :
1
| ' 1 1
! 1 ' Meet the No !
1 1
| 1 1
| 1 1
| 1 1
| 1 1

Figure 5. The algorithm of the wargame decision-making method.

4.1. Supervised Learning Phase

Since it is difficult to train directly using MADDPG, supervised learning is introduced
to pre-train the agent to reduce its policy search space. Both rules of engagement data and
human vs data for data pre-processing are utilized to obtain state-action information pairs,
which are separated into a training set and a validation set to facilitate supervised learning.

The back propagation neural network [43] is used for the supervised learning of state-
action information pairs in this paper. The neural network structure design is shown in
Figure 6. The neural network is mainly composed of an input layer, two hidden layers, and
an output layer. The activation functions of all three hidden layers use a Rectified Linear
Unit (ReLU). The output layer uses the Softmax activation function and selects the one with
the highest probability and outputs it as an action. In the training process, the winners of
the pre-collected combat data from x-groups (x > 500) for the specific rule agents are used
as the training data set for decision learning. The training data set uses several randomized
agents with different rules, strategies and degrees to fight against each other. The neural
network parameters are trained by signal forward propagation and error back propagation.
The cost function in the training process is as follows:

1) = (X0, Yyl og (o (s)), + (1 — o iog(1 ~ho(sV))], )

where n denotes the number of training samples, K refers to dimensions of the output
vector, s\/) represents the input of the i-th training sample, a,({l) refers to the expected output
of the k-th scalar value of the i-th training sample, and hg (s(i)) indicates the actual output

of the k-th scalar value of the i-th training sample.
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input layer  hidden layerl hidden layer2 output layer

Figure 6. The back propagation neural network.

In the process of parameter updating, the action decisions made according to the
current situation are compared with the action decisions calculated by the current neural
network through the pre-collected combat data of the specific rule agents. The neural net-
work parameters are then updated by the reverse transfer. After the training is completed,
it can be used as the initial agent network for deep reinforcement learning.

4.2. Reinforcement Learning Phase
4.2.1. Policy Gradient Estimator

The utilization of policy gradients in the MADDPG framework is always a widely
discussed topic. The updating of individual deterministic policies for all agents now hinges
upon a singular, shared factored critic, Qi’ot. This is in stark contrast to the traditional
approach of learning and employing a monolithic critic, Q};, for each agent.

However, as elegant as this solution may seem, there are two fundamental issues that
plague policy gradients. Firstly, each agent optimizes its own policy, whilst assuming that
the actions of all other agents are fixed. This myopic approach leads to suboptimal policies,
i.e., no agent wishes to unilaterally modify their actions. Secondly, these policy gradients
are susceptible to overgeneralization, where agent a’s ascent up the gradient according
to Q, or Q’tdot, only involves the sampling of its own action, ay, from its current policy, .
Meanwhile, all other agents” actions are sampled from the Replay Buffer D, potentially
resulting in their actions being drastically different from those dictated by their current
policies. This leads agents to converge to suboptimal actions that seem to be a better choice
when considering the impact of arbitrary actions from their collaborators.

Utilizing a revolutionary approach [44], a novel centralized gradient estimator is
introduced to optimize in the complete joint action space. It not only reduces the action
space, but also obtains the global optimal solution. Unlike the conventional methods in
Equations (2) and (5), the estimator proposed in this study avoids optimizing each agent’s
actions in isolation.

To overcome the issue of relative overgeneralization, a new sampling technique is
incorporated in which Q. , is evaluated by sampling all actions from each agent’s current
policies during policy gradient calculation. This ensures a more comprehensive evaluation
that takes into account all possible actions, leading to a more significant improvement in
overall performance. The following is the policy gradient formula:

Vol (1) = Ep[VeuV Qo (T, 11 (1), - - -, (T, 5) ], 8

where p = {p1(11;61), ..., tn(Tn; 64)} is the set of all agents’ current policies, and they
share an Actor network with the same parameter 6.
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4.2.2. Additional Reward Function

The intricate issue of the sparse reward problem [45] has been a persistent obstacle
in the practical implementation of deep reinforcement learning. It focuses on the problem
that arises due to the training environment’s inability to supervise the updating of agent
parameters during deep reinforcement learning. While supervised learning relies on human
supervision, deep reinforcement learning relies on rewards to optimize the agent’s strategy.
In the wargame deductive environment discussed in this paper, the situation is even more
complex, as the environment is only able to make rule judgments and war decisions based
on the action taken. Additionally, it does not provide any reward information after the
maneuver or the battle. The environment only sends a victory message when our operators
reach the point of control or when the enemy operators are entirely annihilated. Similarly,
it sends a failure message after the enemy operator arrives at the point of control or our
operators are entirely annihilated. Accordingly, as illustrated in Figure 7, every step in the
training process is unrewarding. This issue of sparse reward is a considerable hindrance
to the convergence of the algorithm, and in some cases it may cause the algorithm to fail
to converge.

No Reward No Reward No Reward
: A f R
: v |:(> S1 So 83 ——> ++0v —> Sy 1 ——> Sp
environment T T T T
aj as as ce Qp—1

Figure 7. The reward structure of wargame without additional reward function.

As demonstrated in Figure 8, to solve the convergence problem, additional rewards
are engaged during the training process based on an analysis of the deductive environment.
Specifically, the deductive environment mandates that the victory condition is met when the
control point is reached or when the enemy operator is fully eliminated. When this victory
condition cannot be fulfilled, the victory is assessed by calculating the remaining operator’s
blood level. As a result, additional rewards are incorporated in the training process based
on this experience, and each agent is rewarded after each action. Furthermore, to avoid
the agent getting trapped in a local optimum during the exploration process, a penalty is
applied to the agent for each turn taken before winning.

) T3 . Tn—1 R
3 : S1 S92 83 — > ++ve ——> 8Sp-1 —— Sp,
environment T T I T
aj as as ce Qn—1

Figure 8. The reward structure of a wargame with an additional reward function.
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5. Experiments
5.1. Experiments Platform

Our experiments were performed on a computer with an Intel Core i7-8700K CPU and
an NVIDIA GeForce RTX 3060. The experiments were run on the Ubuntu system, while the
machine learning-related components made use of PyTorch. In this paper, the algorithm was
designed and simulated based on the environment of the wargame-playing confrontation
in the “Temple Calculation Wargame System” (http://wargame.ia.ac.cn/aidevelopment,
accessed on 8 July 2022). The trained agent model was tested in the “Temple Calculation
Wargame Replay System” (http://wargame.ia.ac.cn/newReplay, accessed on 8 July 2022)
to obtain scores.

Our force was determined to rely on a plateau channel to launch a general attack on
the enemy main Force depth. On the both sides of the channel, mountains towered high
and the terrain was high. The valley in the middle channel is low-lying and open, and
is not easy to hide. In an attempt to gain control of the channel, our force dispatched an
armored infantry platoon and a tank platoon to mass in the area of 6048. The advance
reconnaissance in our force required a rapid travel to occupy the settlement areas from
4435 to 430, to organize the fire reconnaissance, and to provide intelligence support for
the follow-up main forces. The enemy dispatched two armored infantry platoons and a
tank platoon to mass in the area of 3426. They were ordered to hold the target settlement
ground, ambush and prevent our force to despoil this area and cover their own deep main
forces. In the experiment, our own agents, according to the wargame decision-making
methods, fought against enemies who simply followed the rules, and the ablation was
added experiments. Figure 9 shows a part of the simulated environmental map. The
basic topographic information of the map includes urban land, soft ground, and roads and
elevations. The left side of the map is the red operator, and the hexagonal lattice with the
green flag is the control point.
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Figure 9. The wargame experimental environment. (a) A part of the wargame map; (b) The specific

parameters in the hexagonal grid, including elevation and coordinates.

5.2. Experimental Settings

The POMDP (consisted of a tuple G =< 5, A, P, R, v, N, ), O >) model is investigated
in the experimental settings. The state of the wargame is substituted into S, the set of
actions that the agent can take into A (a total of 10 actions can be taken), P refers to the
state transfer probability of the agents in the wargame, R demonstrates the set of rewards
after the agents interact with the wargame environment, - is the discount factor and here is
taken as 0.9, N represents the number of agents, in this case a total of three, and each agent
x € N draws an individual partial observation oy € () from the observation kernel O(s, x).

There are three agents on each side, and the details have been listed in Tables 2 and 3,
while the number corresponds to the agent’s action, as shown in Table 4. The parameters of
MADDPG used to train the agents are shown in Table 5.


http://wargame.ia.ac.cn/aidevelopment
http://wargame.ia.ac.cn/newReplay
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Table 2. Our side’s agents and their details.

Our Side’s Agent Icon Action Speed (s/Grid) Initial Position
Tank - 20 5947
Chariot % 20 6048
Infantry Squad g 144 6048
Table 3. The enemy’s agents and their details.
Enemy’s Agents Icon Action Speed (s/Grid) Initial Position
Heavy Tank S 15 3427
Heavy Chariot ” 15 3526
Infantry Squad 144 3526
Table 4. The agents” action.
Number of Actions Action of Agents

Attack enemy’s heavy tank
Attack enemy’s heavy chariot
Attack enemy’s infantry squad

0 Move to the left

1 Move to the right

2 Move to the upper left
3 Move to the upper right
4 Move to the lower left
5 Move to the lower right
6

7

8

9

Convert to covert status

Table 5. The parameters of MADDPG.

Parameters Values
action_selector “gumbel”
epsilon_start 0.5
epsilon_finish 0.05
epsilon_anneal_time 50,000
obs_last_action True
batch_size_run 1
batch_size 32
buffer_size 5000
act_noise 0.1
gamma 0.9
target_update_interval 200
target_update_mode ‘hard’
target_update_tau: 0.001

5.3. Experimental Results and Analysis

The wargame decision-making method was abbreviated based on MADDPG as wd-
MADDPG. Experiments were conducted by using the following techniques: wdMADDPG,
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Reward Values
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Method

—— wdMADDPG

—— [DER

—— COMA

—— DOP

Method
—— wdMADDPG

—— COMA

0

200

MADDPG alone (MADDPG-a), wdMADDPG without supervised learning (wdMADDPG-
sl), wdMADDPG without policy gradient estimator (wdMADDPG-pge), and wdMADDPG
without additional reward function (WdMADDPG-ar). It should be noted that MADDPG-a
is not a pure MADDPG, as it includes the Gumbel-Softmax estimator to cope with the
discrete policy in a wargame, otherwise a pure MADDPG would not work properly in a
wargame. The DOP [46] and COMA [47] algorithms based on the AC framework were
evaluated and compared with the proposed MADDPG.

Each method was trained 2 million times in the experiments, and the reward values
and loss values of all seven methods are shown in Figures 10 and 11, Seven methods were
trained for each seven models, and each model was tested in 500 games in the “Temple
Calculation Wargame Replay System”, and the test results are presented in Figure 12.

200

150

1]
o
3
S
o
5 100
3
[}
14
%0 ~—— wdMADDPG-sl
—— wdMADDPG-pge
—— wdMADDPG-ar
0 —— wdMADDPG
400 600 800 1000 0 200 400 600 800 1000
T(2*ths) T(2*ths)
(a) (b)

Figure 10. Mean reward values of different wargame decision-making methods and other methods
based on the AC framework. The mean of reward values across five seeds is plotted and the 95%
confidence interval is shown as shaded. (a) Comparison experiments with other methods are based
on the AC framework; (b) Ablation experiments.

Method

-60 —— MADDPG-a
—— wdMADDPG-sl
—— wdMADDPG-pge
—— wdMADDPG-ar

~80  —— WwdMADDPG

400 600 800 1000 0 200 400 600 800 1000
T(2*ths) T(2*ths)

(a) (b)

Figure 11. Mean loss values of different wargame decision-making methods and other methods based
on the AC framework. The mean of loss values across five seeds is plotted and the 95% confidence
interval is shown as shaded. (a) Comparison experiments with other methods based on the AC

framework; (b) Ablation experiments.
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Figure 12. Mean win rates of different models. Each model was tested 500 games of wargame.
(a) Comparison experiments with other methods based on the AC framework; (b) Ablation experiments.

As shown in Figures 10a and 11a, after 2 million training sessions, the mean reward
values and mean loss values of MADDPG outperformed other methods based on the AC
framework. As demonstrated in Figure 12a, the win rates of MADDPG are 69.9% and 34.9%
higher than DOP and COMA, respectively.

As shown in Figure 10b, after 2 million training sessions, the mean reward values
are wdMADDPG, wdMADDPG-pge, wdMADDPG-ar, wdMADDPG-sl, and MADDPG-a,
in descending order. From the results, all the other methods are significantly better than
MADDPG-a, indicating that the optimizations of the wargame decision-making method
proposed in this paper are effective. wdMADDPG-sl is only a little higher than MADDPG-a
in terms of mean reward values, indicating that supervised learning before reinforcement
learning is the most helpful for wargame training, which effectively reduces the movement
space and improves the training efficiency. An additional reward is also significantly
helpful for the wargame decision-making method, which improves the training rate less
effectively than the supervised learning, but it also significantly increases the mean reward
values in training. The policy gradient estimator has the lowest improvement in training
efficiency and the lowest improvement in the mean reward values.

As shown in Figure 11b, after 2 million training sessions, the mean loss values are
in descending order: MADDPG-a, wdMADDPG-pge, wdMADDPG-sl, wdMADDPG-ar
and wdMADDPG. From this ranking, all the remaining methods are more exploratory
compared to MADDPG-a, which represents the usefulness of all the optimizations we
performed on the wargame decision-making methods. The experimental results indicate
that the policy gradient estimator effectively optimizes the action space, and in the critic
networks, each agent extracts actions from the current policy to estimate Q} ,, and globally
considers network parameter updates, which make the wargame decision-making methods
more exploratory. Figure 11b demonstrates that the proposed wargame decision-making
method is the most exploratory among these methods, with the highest probability of
obtaining the global optimal solution.

As shown in Figure 12b, each model was tested for 500 games through the “Temple
Calculation Wargame Replay System”. The models ranked from the highest to lowest
win rate were wdMADDPG, wdMADDPG-pge, wdMADDPG-ar, wdMADDPG-sl and
MADDPG-a, corresponding to t 413, 375, 343, 337, and 314 games won, respectively. From
the results, the optimizations made in this paper all improved the win rate of the wargame.
The wdMADDPG-based wargame decision-making method shows the best performance
in a wargame, where it improved the win rate by 31.5% over pure MADDPG.
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6. Conclusions and Future Work

A novel wargame decision-making approach that utilizes MADDPG is proposed in
this paper. The proposed method surpasses traditional reinforcement learning methods
applied to wargame-assisted decision-making scenarios. The POMDP model is lever-
aged to encapsulate the decision-making process within wargames. In addition, the joint
action-value functions tailored to wargame environments are introduced in the MADDPG
algorithm. With the purpose of overcoming the challenge of discrete policies, the Gumbel-
Softmax estimator was integrated into MADDPG. Our approach includes a supervised
learning phase and a reinforcement learning phase to tackle the problems of the large
action space and sparse rewards. The experimental results demonstrate that the proposed
wargame decision-making method improves the wargame win rate by 31.5% compared to
pure MADDPG. Furthermore, our method outperforms the DOP with COMA based on the
AC framework by 69.9% and 34.9%. The results indicate that the proposed approach holds
great potential for decision-making in wargame scenarios given its superior performance
and ability to overcome the challenges of the current wargame environment.

A high-performance intelligent decision-making approach for wargames that still
has some limitations was presented in this paper. The joint value function Q;; and the
Gumbel-Softmax estimator increased training time. Additionally, scalability is a crucial
metric for evaluating multi-agent methods, but has not been investigated in this study. In
future studies, a wider range of algorithms will be adopted to train the proposed wargame
decision-making method, and the number of agents in the wargame will be increased
to evaluate scalability. The discrete policy-based method will be directly used to avoid
the detrimental effect of the Gumbel-Softmax estimator on the training speed in order to
enhance the model’s training efficiency.
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