
Citation: Li, Y.; Huang, Y.;

Huang, W.; Yu, J.; Huang, Z.

An Abstractive Summarization

Model Based on Joint-Attention

Mechanism and a Priori Knowledge.

Appl. Sci. 2023, 13, 4610. https://

doi.org/10.3390/app13074610

Academic Editors: Ahmed Rafea,

Julian Szymanski and

Krzysztof Koszela

Received: 1 February 2023

Revised: 20 March 2023

Accepted: 4 April 2023

Published: 5 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Abstractive Summarization Model Based on Joint-Attention
Mechanism and a Priori Knowledge
Yuanyuan Li * , Yuan Huang, Weijian Huang, Junhao Yu and Zheng Huang

School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China
* Correspondence: lyuanyuanm@163.com

Abstract: An abstractive summarization model based on the joint-attention mechanism and a priori
knowledge is proposed to address the problems of the inadequate semantic understanding of text
and summaries that do not conform to human language habits in abstractive summary models. Word
vectors that are most relevant to the original text should be selected first. Second, the original text
is represented in two dimensions—word-level and sentence-level, as word vectors and sentence
vectors, respectively. After this processing, there will be not only a relationship between word-level
vectors but also a relationship between sentence-level vectors, and the decoder discriminates between
word-level and sentence-level vectors based on their relationship with the hidden state of the decoder.
Then, the pointer generation network is improved using a priori knowledge. Finally, reinforcement
learning is used to improve the quality of the generated summaries. Experiments on two classical
datasets, CNN/DailyMail and DUC 2004, show that the model has good performance and effectively
improves the quality of generated summaries.

Keywords: abstractive summarization; joint-attention mechanism; prior knowledge; reinforcement learning

1. Introduction

Before the rapid development of the Internet and common electronic devices, people
obtained news and other information from newspapers and TV. Now, network platforms
have become an important way for people to obtain and share information. These trends
have led to an exponential growth of information on the Internet. With such a wealth of
information, people are looking for ways to quickly access available information. Automatic
text summarization has emerged at this historic moment, effectively alleviating the problem
of information overload. Automatic text summarization is designed to convert text or
collections of text into short summaries containing key information. Text summaries can be
divided into single-document summaries and multi-document summaries according to
the input type. Single-document abstracts [1] generate abstracts from a given document,
and multi-document abstracts [2] generate abstracts from a given set of subject-related
documents. According to the output type, the text summary method can be divided into
extractive summaries [3] and abstractive summaries [4–10]. Extractive abstracts extract
keywords and key phrases from the source text, thus forming the abstract. Abstractive
abstracts allow the generation of new words and phrases to make up the abstract based
on the original text. Compared with the extractive summary, the abstractive summary is
more in line with the human habit of generating an abstract, although it is complicated
to implement. First off, generative text summarizing reduces reading time and increases
reading effectiveness by avoiding the extraction of extensive content from the source
text, instead creating brief and to-the-point summaries. Second, rather than choosing
specific sentences from the original text, people who read an article to learn its main points
typically summarize it using the original text as a guide. In conclusion, generative text
summarizing is more adaptable in its information-gathering and is closer to how humans
produce summaries. In addition, generative summarization requires machines to imitate

Appl. Sci. 2023, 13, 4610. https://doi.org/10.3390/app13074610 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074610
https://doi.org/10.3390/app13074610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9210-3370
https://orcid.org/0000-0002-0810-5603
https://doi.org/10.3390/app13074610
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074610?type=check_update&version=1

Appl. Sci. 2023, 13, 4610 2 of 19

humans and understand more semantic information in the original text, which is even
more challenging. The significance of examining it has also been reinforced by the growing
rise of generative text summaries in the mainstream of research. Therefore, this article
mainly studies generative text summarization.

An automatic text summarization model was first designed by Luhn [11] in 1958,
which kicked off automatic text summarization. Subsequently, graph-based abstractive
text summarization [4], linear programming-based abstractive text summarization [5,6],
semantic-based abstractive text summarization [7,8], and template-based abstractive text
summarization [9,10] followed. With the rise of deep learning in the fields of natural
language processing, more and more abstractive text summary models based on deep
learning have emerged. Deep-learning-based methods surpass traditional generation
methods in multiple languages and evaluation metrics [12]. Deep-learning-based automatic
text summarization emulates how people summarize by remembering abstracts based
on their comprehension of the original material. As a result, deep-learning-based text
summarization technology has received considerable attention from both academia and
industry due to its significant research significance and wide range of potential applications.

Among many automatic abstract generation models based on deep learning, the
most popular one is the sequence-to-sequence (Seq2seq) [13] model, which is presented in
Figure 1. The model generally consists of two parts: the first part is the encoder part, which
is used to characterize the input sequence of length n. The second part is the decoder part,
which is used to build the representation extracted from the encoder into a mapping of
sequence with an output length of m. Most of the existing models are based on this model
for improvement. Rush et al. [14] proposed an abstractive text summarization model ABS
based on the Seq2seq model and incorporated the attention mechanism into the model.
The Seq2seq model incorporating attention is shown in Figure 2. Based on the Seq2seq
model, the researchers studied the different effects of different neural networks used for
encoder and decoder. Chopra et al. [15] constructed decoders based on recurrent neural
networks(RNN). Nallapati et al. [16] changed the encoder to a recurrent neural network
as well, making it a standard recurrent neural network-based encoder–decoder model.
Gehring et al. [17] replaced the recurrent neural network used in the sequence-to-sequence
model with a convolutional neural network, thus proposing the ConvS2S model. and the
model has achieved good results in automatic text summarization tasks. The ConvS2S
model not only realizes parallel computation at different positions in the sequence, but
also can capture the long-range dependencies between words in a sentence through the
hierarchical structure, which makes it possible to handle complex sentence information.

h1 h2 hn-1 hn dmdm-1d2d1

x1 x2 xn-1 xn

h0

y1 y2 ym-1 ym

Encoder Decoder

Figure 1. Seq2seq model.

The word list of the model is composed of high-frequency words, so there will be
some words that do not appear in the word list, and we call such words out-of-vocabulary
(OOV).To solve the problem of OOV, Nallapati et al. [16] also put forward the Generator-

Appl. Sci. 2023, 13, 4610 3 of 19

Pointer model. The model via pointer Pgen determines whether the summary is copied from
the source text or whether the generator generates a new word. During encoder–decoder
training, the decoder inputs the correct reference summary, while during prediction, the
decoder inputs the output from the previous time step. Once the output from the previous
step is incorrect, a series of deviations will occur, resulting in poor summary quality. This is
the issue of exposure bias. During the research, we also noticed this issue. Paulus et al. [18]
first proposed to address the problem of exposure bias based on reinforcement learning. The
maximum-likelihood cross-entropy loss function and a strategy gradient for reinforcement
learning are combined in Paulus’s paper to propose new learning objectives. This reduces
bias in the reinforcement learning process.

h1 h2 hn-1 hn

x1 x2 xn-1 xn

h0 dm
dm-1d2d1

y1

Context vectorA!en"on

Encoder Decoder

Figure 2. Seq2seq model with Attention.

We identified several issues with the generative summary model based on the afore-
mentioned research findings: (1) Researchers cannot truly determine the level of correlation
between the vectors stored by neural networks and the original text throughout the study
process because of the black box nature of neural networks. (2) It is challenging to provide
coherent summaries since abstract generation models often only focus on the link between
single-word vectors. (3) Humans typically combine the text’s prior information when creat-
ing abstractions, which results in abstracts that are more semantically rich. Current models
frequently lack historical context. We will conduct our research from the perspective of
introducing prior knowledge and richer semantic information. The main contributions of
this paper are as follows:

1. We improve the encoder part of the original codec model by adding a weighted
summation (WS) process, so that the encoder can determine how well the vectors
generated by the neural network match the original text and assign higher weights to
the important parts of the original text.

2. To improve the quality of the generated summaries, we use the word–sentence-
level joint-attention mechanism (JAM) to force the decoder to focus not only on the
keywords in the source text but also on the sentences where the keywords are located.

Appl. Sci. 2023, 13, 4610 4 of 19

Furthermore, we combine prior knowledge (PK) to enable the decoder to obtain the
original information of the source text on the one hand, avoiding information loss
caused by layer-by-layer transmission in the abstract generation process; on the other
hand, we transmit higher-level abstract semantic information to the decoder, enabling
the generation of abstracts more in line with human reading habits.

3. We introduce reinforcement learning (RL) for optimization to address the problems
of exposure bias and inconsistency between evaluation metrics and loss functions.
The readability and fluency of the summary are ensured.

4. The abstractive summary model based on the joint-attention mechanism and prior
knowledge (JPATS) was used on two datasets, CNN/DailyMail and DUC 2004, and
the results showed that our model outperformed the existing baseline model.

2. Related Work
2.1. Attentional Mechanism

An attention mechanism involves the idea of placing attention on something at
a certain moment and ignoring something else. In the text summarization task, it is
decided which part of the input should be focused on in the text summarization task.
Rush et al. [13] first proposed an attention-based mechanism for encoders and achieved sig-
nificant performance improvements. The Bahdanau attention mechanism [19] is commonly
used in text summary tasks, which is a micro-attention model without strict one-way align-
ment restrictions. The self-attention mechanism [20] is a variant of the attention mechanism
that allows the machine to notice correlations between different parts of the whole input.
Later, researchers conducted research based on the attention mechanism, resulting in the
generation of numerous text summarization models based on the attention mechanism.
Zheng et al. [21] proposed an unsupervised extractive summary model with dual-attention
mechanism, named DAS for news text summary extraction. The model contains the
News-Tweet follow module and the News-self follow module to capture the correlation
between news and linked tweets. DAS achieves better results than state-of-the-art unsuper-
vised models.

Hakami et al. [22] concluded that the traditional attention mechanism may lead to off-
topic generated abstracts, and thus proposed a dual-attention mechanism as a way to gen-
erate accurate and reasonable abstracts, achieving 96.7 % accuracy and high performance.
Qiu et al. [23] improved the multi-headed attention mechanism at the model’s encoding
end, giving more weight to correct information and improving the coverage mechanism to
improve the summary model’s quality. Liu et al. [24] proposed a SEASum model, which
consists of two encoders: a semantic encoder and a syntactic encoder. Cascading or parallel
assembly is used to assemble the two encoders, and the encoder outputs are fused and
fed to the decoder to obtain the digest. The validity of the model is demonstrated exper-
imentally. The model fuses the features of two encoders using a multi-headed attention
mechanism, with the semantic features as query values and the sum of the two features
as key and value values. Key and value essentially represent two independent matrices,
which are the results of different linear transformations of the original sequence.The abil-
ity to use multiple attention mechanisms to capture information and assign attentional
weights rationally.

2.2. Reinforcement Learning

Reinforcement learning is a learning mechanism that learns how to map from states
to behaviors to maximize the reward obtained. Naraya et al. [25] defined the task of
extractive single-document summarization as a sentence ranking task, and combined
the maximum-likelihood cross-entropy loss and the reward function of the RL policy
gradient during training to learn a direct global optimization of the Rouge metric, allow-
ing the model to learn to perform sentence ranking at the time of summary generation.
Chen et al. [26] combined extractive and abstractive approaches to improve accuracy while
using parallel decoding to allow the speed of model training enhancement. Moreover, a

Appl. Sci. 2023, 13, 4610 5 of 19

gradient-based technique for reinforcement learning is applied to go for joint training. Re-
inforcement learning was used by Chen et al. to enhance the performance of extracting and
producing associative summaries, Paulus et al. to lessen the bias of the generative summary
model, and Naraya et al. to enhance the performance of extracted summaries. The efficacy
of extracted summaries, generative summaries, and combined extracted and produced
summaries can all be improved via reinforcement learning. Liang et al. [27] added selection
gates to remove redundant information after the encoder and optimized the evaluation
metrics by reinforcement learning strategy to obtain better results. Liao et al. [28] fused
long-range dependencies into training based on reinforcement learning, and the proposed
model can capture long-range dependencies and generate summaries containing more
important information. Kryscinski et al. [29] divided the decoder into two parts, one for
the contextual network, which is responsible for extracting information from the source
document, and the other for optimizing the evaluation metrics using reinforcement learning
to encourage the generation of words and phrases that are not present in the source text.

3. Model

In this paper, we present a model where the source text is first processed with word2vec
to obtain the word-embedding wn representation of each word. In addition, then input to
the neural network, in turn, to obtain the hidden vector hn for each word. Unlike machine
translation tasks that need to retain all the information in the original text, text summaries
need to retain only the most important information. Thus, inspired by the idea of a self-
attention mechanism, we match the trained hidden vectors with the original text and assign
higher weights to the vectors that are more relevant to the information in the original
text. After this operation, further relationships between words h′n are obtained, enabling the
decoder to obtain source text information with focus. The sentence-level vectors are obtained
by averaging the word vectors, forcing the decoder to focus on the keywords while focusing
on the sentences in which the keywords are located. The word-level and sentence-level
vectors are used to calculate the score weights with the hidden states under each moment of
the decoder, respectively, and this is used to improve the pointer network to generate more
coherent and human-readable summaries. Moreover, this paper uses the original word
vector without any training to obtain the sentence embedding as the prior knowledge to
guide the copy generation of the pointer network. Finally, reinforcement learning is used to
improve the evaluation metric Rouge and alleviate the problem of inconsistency between
the evaluation metric and the loss function.The model is shown in Figure 3.

Source

text

word2vec

GRU GRU GRU GRU

W1 W2 W3 Wn

h1 h2 h3 hn

h1' h2' h3' hn'

s1' s2' sm'

⋯⋯

⋯⋯

⋯⋯

A!en"on

d1 d2 dj-1 dj⋯⋯

yj-1yj-2y1<Eos>

y1 y2 yjyj-1cj
w

cj
s

sm

Priori

Knowledge

Pgen

1-Pgen Pgen

 ꚛ

Figure 3. An abstractive summarization model based on joint-attention mechanism and a pri-
ori knowledge.

Appl. Sci. 2023, 13, 4610 6 of 19

3.1. Problem Formulation

Given the source text X = {x1, x2, x3, ..., xl}, l is the sentence length, X ∈ Vs, Vs is the
source text vocabulary; generate the summary Y′ =

{
y′1, y′2, y′3, ..., y′m

}
, m is the summary

length, Y′ ∈ Vt, Vt is the target summary. Generating a summary needs to satisfy m � l.
If Y′ ⊆ X, it means that all summaries are derived from the source text, and we define
this case as an extractive summary. If Y′ 6⊆ X, it means that not all the summary words
are from the source text, and this case is defined as an abstractive summary. In the model
training stage, the input of the decoder part is the correct abstract, that is, the learning
function f : X → Y, and Y is the reference abstract extracted manually. The purpose of
designing the model is to make the abstract Y′ generated by the model close to the standard
abstract Y. In the test phase, the trained function f is used to generate a summary from the
source text.

3.2. Encoding Side

To solve the RNN long-range dependency problem, a deformed long short-term
memory (LSTM) or gated recurrent unit (GRU) of RNN is usually used in the codec
model. Compared with LSTM, GRU is easier to train and can improve the training rate
to a great extent. Therefore, GRU is used as the encoder in this paper. GRU is defined
as follows.

ut = σ(Wu[wt, ht−1]) (1)

rt = σ(Wr[wt, ht−1]) (2)

ḣt = tanh(Whwt + Uh(rt � ht−1)) (3)

ht = (1− ut)� ht−1 + ut � ḣt (4)

where Wu, Wr, and Wh are the weight matrices, wt is the current input, and h(t− 1) is the
hidden state vector passed in from the previous time node, and this hidden state vector
contains the relevant information of the previous node.

In this paper, we use a bidirectional GRU(Bi-GRU), as shown in Figure 4, to retain
both forward and backward time step information. The forward network reads the word-

embedding vector from left to right to obtain the forward GRU hidden state (
→
h 1,
→
h 2, ...,

→
h n),

and the backward network reads the word-embedding vector from right to left to ob-

tain the backward GRU hidden state (
←
h 1,
←
h 2, ...,

←
h n). The two hidden state formulas are

as follows.
→
h t = GRU(wt,

→
h t−1) (5)

←
h t = GRU(wt,

←
h t+1) (6)

The initial state of Bi-GRU is set as a zero vector, i.e.,
→
h 1 = 0,

←
h n = 0. The forward

and backward hidden states are cascaded to obtain the final hidden state. Expressed as:

ht = [
→
h t,
←
h t].

Appl. Sci. 2023, 13, 4610 7 of 19

+ σ

+ σ ⊙

+

tanh

⊙

⊙ +

h0

h1 h1

r1

u1 1-u1

h1'

+ σ

+ σ ⊙

+

tanh

⊙

⊙ +

h1

h2
h2

r2

u2 1-u2

h2'

+ σ

+ σ ⊙

+

tanh

⊙

⊙ +

h1

h2
h2

r2

u2 1-u2

h2'

+ σ

+ σ ⊙

+

tanh

⊙

⊙ +

h0

h1 h1

r1

u1 1-u1

h1'

h1 h2

w1 w1

Figure 4. Bi-GRU.

The self-attention mechanism can determine how relevant the current word is to other
words in the sentence. Less reliance on external information and better at capturing the
internal relevance of data or features. Inspired by this, we calculate the correlation between
the hidden vectors trained by the neural network and the source text word vectors to avoid
deviating from the original meaning. In addition, it is also possible to give higher weight
to keywords, making the decoder focus on important information in the decoding process.
The process is as follows.

1. First, obtain the similarity matrix, as shown in Figure 5:

0 1 2 3 1

1 2 1 0 3

2 0 1 2 3

0

1

2

3

1

1

2

1

0

3

2

0

1

2

3

15 7 11

h1

h2

h3

w1 w2 w3

Figure 5. Similarity matrix.

2. Normalization, as shown in Figure 6:

Appl. Sci. 2023, 13, 4610 8 of 19

0 1 2 3 1

1 2 1 0 3

2 0 1 2 3

0

1

2

3

1

1

2

1

0

3

2

0

1

2

3

15 7 11

h1

h2

h3

w1 w2 w3

0.7 0.1 0.2

so max

Figure 6. Normalization.

3. Weighted summation, as shown in Figure 7:

0.7 0.1 0.2
0 1 2 3 1

1 2 1 0 3

2 0 1 2 3

0 1 2 3 1

1 2 1 0 3

2 0 1 2 3

h1

h2

h3

×

h1’

h2’

h3’

Figure 7. Weighted summation.

The final result is:

H
′
= so f tmax(

HWT
√

dw
)H (7)

H is the matrix corresponding to the hidden vector and W is the matrix corresponding
to the word vector. To prevent the gradient from disappearing, divide the inner product by
the square root of the dimensions.

The h
′

vector after assigning weights is used for the representation of sentence vectors,
meaning that to provide high-quality summaries, the decoder pays attention to both the
source text’s keywords and the sentences in which they appear. The word-embedding
averaging method by Kedzie et al. [30] works well for sentence embedding across different
domains and summarizer architectures. We obtain the sentence embedding, i.e., S

′
m, by this

simple method. As shown in Equation (8).

S
′
m =

1
n

n

∑
t=1

h
′
t (8)

3.3. Joint-Attention Mechanism for Word-Sentence-Level Fusion

In this paper, each word is used as input to the encoder, and after GRU training, the
relationship between word-level vectors is obtained. Distinguish from the relationship be-
tween sentence-level vectors mentioned later. GRU suffers from the long-range dependency
problem, i.e., when the input is too long, the later input words will forget the previously
input words, which in turn causes incomplete information between words, resulting in
incomplete features received by the decoder. In this paper, each sentence in the paragraph is
subjected to sentence embedding processing, as follows: The vector obtained by summing
and averaging the word-embedding of all the words in the sentence is used as the final
sentence embedding. After this processing, there will be relationships not only between
word-level vectors, but also between sentence-level vectors, and the decoder discriminates

Appl. Sci. 2023, 13, 4610 9 of 19

the word-level sentence-level vectors based on their relationship with the hidden state of
the decoder. The specific formula is as follows.

dw
j = GRU(yj−1, dw

j−1, cw
j) (9)

ejn = VT
a tanh(Wadw

j−1 + Uah
′
n) (10)

αjn =
exp(ejn)

∑n
k=1 exp(ejk)

(11)

cw
j =

n

∑
p=1

αjnh
′
p (12)

ds
j = GRU(yj−1, ds

j−1, cs
j) (13)

ejm = VT
a tanh(Wads

j−1 + UaSm) (14)

αjm =
exp(ejm)

∑m
k=1 exp(ejk)

(15)

cs
j =

m

∑
q=1

αjmSq (16)

Equations (9)–(12) is the process of obtaining word-level context vectors cw
j , and

Equations (13)–(16) is the process of obtaining sentence-level context vectors cs
j .

Taking the word-level context vector cw
j calculation process as an example: First,

the decoder generates a hidden vector dw
j based on the hidden vector of the previous

neuron dw
j−1, the output of the previous neuron yj−1, and the context vector of the current

neuron cw
j . Second, the jth neuron of the decoder calculates the correlation ejn between the

current state and each neuron in the encoder h
′
n based on the hidden vector of the previous

neuron dw
j−1. Third, obtain the generated word weight score αjn; Finally, the word-level

context vector cw
j is obtained. Similarly, the sentence-level context vector cs

j is obtained.
Where Va, Ua are the parameter vectors. n means that there are n words in the

paragraph and m means that there are m sentences in the paragraph (i.e., assuming that
each input text has m sentences). dj is the hidden vector generated by the decoder based on
the hidden vector dj−1 of the previous neuron, the output yj−1 of the previous neuron and
the context vector cj of the current neuron. dw

j is the hidden vector in word-level dimension
and ds

j is the hidden vector in sentence-level dimension. hn is the output of each neuron of
the encoder, and Sm is the sentence-level representation computed from each word-level
output. The jth neuron of the decoder has to calculate the correlation ejn of the current state
with each neuron in the encoder based on the hidden vector dj−1 of the previous neuron.
The sentence-level relevance vector is denoted as ejm. If the nth dimension of ejn is larger, it
means that the current node is more correlated with the nth neuron of the encoder. αjn is the
generated word weight score and αjm is the generated sentence weight score. As a result,
the word-level context vector cw

j and the sentence-level context vector cs
j are obtained.

Integrating the above content of the article, the semantic vectors (word-level semantic
vectors h1 to hn) output from the source text input encoder are obtained after the weighted
summation process (word-level semantic vectors h

′
1 to h

′
n), and the correlation is calculated

with the hidden state of the decoder at each moment to obtain the generated word weight
score first and then the word-level context vector cw

j on the one hand, and the sentence
embedding is obtained by the averaging method on the other hand. The word-embedding

Appl. Sci. 2023, 13, 4610 10 of 19

vectors (w1 to wn) obtained by word2vec enter the encoder training to obtain the output
semantic vectors (h1 to hn) on the one hand, and obtain the a priori knowledge by averaging
on the other hand.

3.4. Decoding Side
3.4.1. Improvements to the Pointer Network

Since the summaries may contain words that do not exist in the word list, we use a
pointer network between the encoder and decoder. The pointer generator network helps to
copy words from the source text via pointers, which improves the accuracy and processing
of out-of-vocabulary (OOV) words, while retaining the ability to generate new words.
The pointer network is equivalent to a soft switch, and Pgen serves as the probability of the
soft switch, by which Pgen determines whether the summary is copied from the original
text or generated from a fixed vocabulary, and Pgen is expressed as follows:

Pgen = σ(wT
c ci + wT

s St + wT
y yi + bptr) (17)

In this paper, we improve the pointer network with a joint-attention mechanism for
the problem of unregistered words and duplication of generated summaries, as follows:

Pgen = σ(wT
wcj

w + wT
s cj

s + wT
S dt + wT

y yjbptr) (18)

Among them, wc, ww, ws, wS, wy, and bptr are learnable parameters, cj is the context
vector, St is the decoder hidden state, yj is the output of the decoder, σ is the sigmoid
function, and Pgen ⊆ [0, 1].

Humans tend to combine background knowledge when reading the central content of
overview articles, and the model-generated summaries often do not match human reading
habits. We combine a priori knowledge into the pointer network to guide the coverage
mechanism of the pointer network by compressing the source text semantic information
through sentence embedding to assist the summary generation. A priori knowledge is that
which can be possessed not through acquired experience. In the abstract, we interpret it as
the original vector without any training. Therefore, we use the initial word vector obtained
by word2vec to represent the sentence vector as a basis for a priori knowledge.

We still use word-embedding averaging to obtain the sentence embedding after com-
pressing the source text, i.e., Sm. As shown in Equation (19), Sm represents a higher-level
semantic representation.

Sm =
1
n

n

∑
t=1

wt (19)

After obtaining the sentence embedding, the weight fraction of each hidden state of
the sentence embedding and decoder is found by the same method as calculating αjm, as
independent of the empirical knowledge. That is, the matching relationship between the
words to be output and the individual sentences of the source text is obtained, and then the
model prefers the words in the original sentence when decoding the output.

P(w) = PgenPvocab(w) + (1− Pgen)(∑ αt
i + ∑ αt

i Sargmax) (20)

where Sargmax is the highest probability corresponding to the sentence embedding. αt
i has

two meanings, αt
jn and αt

jm, respectively. In this way, the model generates summaries with
the flexibility to consider not only word-level sentence-level vectors to convey inter-word
relationships, but also to preserve the guidance of the source text to the summary through
a priori knowledge. Pvocab(w) is a pre-constructed word list that does not contain the OOV
words in the input text. The improved pointer network is shown in Figure 8.

Pvocab(w) = so f tmax(V
′
(V[dw

t , ht] + b) + b
′
) (21)

Appl. Sci. 2023, 13, 4610 11 of 19

BiGRU Encoder

W1 W2 WnW3 ⋯⋯

A!en"on

cj
w

cj
s

Decoder

hidden

state

Pgen

Pgen1-Pgen Pvocab

Priori

Knowledgesm

 ꚛ

Final Distribu"on

Figure 8. Improved pointer network.

In our experiments, we found that the summaries generated by the model have
recurring problems, such as “I like you like you like you like you like you”. The coverage
mechanism can add the influence of previous decisions to the current decision, avoiding the
attention mechanism from continuously focusing on the same position and thus avoiding
the generation of duplicate texts. The specific formula is as follows.

ct = ∑t−1
t′=0 αt

′

jn (22)

ct is the distribution over the original words, indicating the coverage these words have
received from the attention mechanism so far. Notice that c0 is a zero vector because no
words are covered in the original text at the initial moment. Since it is often the words
that present the duplication problem, we only use the previous decisions of the word-level
attention mechanism for the coverage vector.

The coverage vector acts as an additional input to the attention mechanism, and the
formula is:

et
jn = Va

T tanh(Wadw
j−1 + Wcct

j + Uahn + battn) (23)

Wa, Wc, Ua, and Va are learnable vectors.

3.4.2. Reinforcement Learning Based on Improved Pointer Networks

During the training process of the codec, the decoder part inputs the correct reference
summary, while during the prediction process, the encoder inputs the output of the previous
time step, and once the output of the previous step is wrong, it will cause a series of
subsequent deviations, leading to the problem of poor summary quality. This is the
exposure bias problem. In addition, the model-generated summaries usually suffer from
incoherence and semantic irrelevance, and such problems are caused by the non-uniformity
of evaluation metrics and loss functions. For the above problems, the solution in this article
is as follows.

Reinforcement learning is used to describe and solve the problem of learning strategies
to maximize the reward or achieve a specific goal by an intelligence agent during its interac-
tion with the environment. The training method incorporating the reinforcement learning
approach considers the supervised learning objective (maximum-likelihood method) and

Appl. Sci. 2023, 13, 4610 12 of 19

the RL strategy gradient objective for generating relationships between summary sentences
and standard summary sentences under the Rouge criterion. The maximum-likelihood
loss is the loss function used in the conventional supervised learning strategy; training by
decreasing the loss function is comparable to increasing the likelihood that the real value
will occur. According to the reference summary y∗

{
y∗1 , y∗2 , ..., y∗n

}
, minimize the negative

logarithmic likelihood function LML.

LML = −
n

∑
t=1

logP(y∗t |y∗1 , y∗2 , ..., y∗t−1, w) (24)

The maximum likelihood only allows the generative model to learn similar repre-
sentation patterns to the standard summary, while the Rouge metric allows for flexi-
bility in sentence alignment. Therefore, we modify the loss function so that the loss
function can be optimized for Rouge. Specifically, two independent output sequences
ys and ŷ are generated in each training iteration. ys is obtained by sampling from the
P(ys

t |ys
1, ys

2, ..., ys
t−1, w)conditional probability distribution at each decoding time step, and

ŷ is obtained by maximizing the output probability distribution, which is also the model
output result. We use the Rouge score as the reward function r(y). The generated abstracts
are compared with the reference abstracts, compared by Rouge function values, and re-
wards are calculated. r(y) is calculated as the similarity evaluation Rouge score between
the generated abstract y and the reference abstract y∗.

LRL = (r(ŷ)− r(ys))
n

∑
t=1

logP(y∗t |y∗1 , y∗2 , ..., y∗t−1, w) (25)

Minimizing LRL is equivalent to maximizing the conditional likelihood of the sampled
sequence ys, thus increasing the payoff expectation of the model. We finally mix the
loss functions of the two components to obtain the overall objective function, with the
following equation.

Lmixed = λLRL + (1− λ)LML (26)

λ is used to balance LRL and LML. The loss function is introduced through reinforce-
ment learning to effectively alleviate the exposure bias problem on the one hand, and to
optimize the evaluation metrics and improve the evaluation metric scores of the model on
the other hand. At this point, we have presented all parts of the generative summary model
based on the joint-attention mechanism and a priori knowledge. Next, the experimental
part is elaborated.

4. Experiment

To investigate the performance of the model in this paper, we evaluate our model
using two benchmark datasets CNN/DailyMail [31] and DUC 2004 [32] for single-text
generative summarization. In addition, we compare the model in this paper with the
publicly available model for analysis.

4.1. Dataset

The CNN/DailyMail dataset began as a machine reading comprehension corpus with
about 1 million news data collected from CNN and the DailyMail. Later, simple changes
were made to form a corpus for single-text generative abstracts. The dataset includes
286,817 training samples, 13,368 verification samples and 11,487 test samples. The training
set has an average of 3–4 summary sentences, and each document has an average of
28 sentences. In addition, the average number of tags in the input and output abstracts is
781 and 56, respectively. This dataset is used to train and test the proposed model.

Meanwhile, this paper uses DUC 2004 dataset as the test set to further evaluate our
model. DUC contains the 2001–2007 corpus, where the DUC2001–2004 corpus is suitable

Appl. Sci. 2023, 13, 4610 13 of 19

for both single-text summarization and multi-text summarization, and DUC2005–2007 is
only suitable for multi-text summarization. This article proposes a model for single-text
summaries, and therefore uses the DUC 2004 dataset. DUC 2004 is a small dataset for
testing only. DUC 2004 contains 500 documents, and each news article contains a reference
summary of the corresponding four different manually generated intercepts of 75B.

4.2. Evaluation Metrics

To demonstrate the model’s viability and efficacy after receiving the summary it
provided, we must assess the model’s performance. Both manual and automatic evaluations
were used to gauge the abstracts’ quality.

Automatic evaluation methods for text summarization include Rouge [33], BLEU [34],
etc., and the commonly used one is Rouge, which is also used as an evaluation metric in
this paper. Rouge measures the quality of the model-generated summaries by calculating
the degree of overlap of the basic units (n-grams) between the generated summaries and
the reference summaries. Rouge typically contains the following metrics.

1. Rouge-N: Statistics based on the co-occurrence degree of N-gram words.

Rouge− 1 =
∑S∈Y ∑1−gram∈S Countmatch(1− gram)

∑S∈Y ∑1−gram∈S Count(1− gram)
(27)

Rouge− 2 =
∑S∈Y ∑2−gram∈S Countmatch(2− gram)

∑S∈Y ∑2−gram∈S Count(2− gram)
(28)

where Y is the reference summary and S is the sentence in the reference summary.
The numerator indicates the number of simultaneous N − gram in the generated
summary and the standard summary. The denominator indicates the number of
N − gram occurrences in the reference summary.

2. Rouge-L: refers to the longest common subsequence (LCS) in the generated abstracts
and reference abstracts.

Rouge− L =
(1 + β2)RLCSPLCS

RLCS + β2PLCS
(29)

RLCS =
LCS(X, Y)

n
(30)

PLCS =
LCS(X, Y)

m
(31)

1
Rouge− L

=
1

(1 + β2)PLCS
+

β2

(1 + β2)RLCS
(32)

where RLCS denotes the recall rate in Equation (30), PLCS denotes the precision rate
in Equation (31), LCS(X, Y) denotes the length of the longest common subsequence
between the generated summary and the reference summary, n is the length of the
reference summary, and m is the length of the generated summary. In general, β is
set to a large value, so Rouge − L usually considers only RLCS (recall) in this case.
As shown in Equation (32), if β is large, the inclusion of the first half of Equation PLCS
can be neglected.

When performing a manual evaluation, we primarily look at readability and whether
or not the text retains important details from the original (generalization). We manually
select 100 examples from the CNN/DailyMail dataset and give the generated summaries
and reference summaries generated by the different models to the evaluators. The five
evaluators scored the abstracts of the different models based on the above two aspects,
from 1 to 5, with higher scores representing the more the resulting abstracts met the two

Appl. Sci. 2023, 13, 4610 14 of 19

evaluation metrics. Finally, the average value is taken as the final score of the manual
evaluation of the model.

The model is evaluated comprehensively using both automatic and manual evalua-
tions. to ensure the quality of the model-generated abstracts.

4.3. Comparison with Public Models
4.3.1. Results on the Dataset CNN/DailyMail

On the CNN/DailyMail dataset, we compare the model with the following publicly
available models.

• TextRank [35]: a graph-based ranking algorithm for keyword extraction and document
summarization, improved from the PageRank algorithm. It extracts keywords using
co-occurrence information (semantics) between words within a document, and can
extract keywords, key phrases of a given text from that text, and key sentences of that
text using an extractive automatic digest method.

• Seq2seq + attention [19]: a standard sequence-to-sequence model with an attention
mechanism for generating summaries.

• PGN [36]: to solve the problem of words that do not appear in the word list, a pointer
generation network is proposed.

• PGN + Cov [36]: an overlay mechanism is added to the pointer generation network to
avoid duplication of the generated summaries.

• FASum + FC [37]: a knowledge graph is used to represent the factual information
extracted from the article and a factual corrector model is used to correct factual errors.

• ML + RL, intra-attention [18]: introduces a new internal attention mechanism that com-
bines the standard supervised word prediction and reinforcement learning training
methods to reduce bias.

• ML + RL Rouge + Novel, with LM [29]: the decoder is divided into a contextual
network and a pre-trained language model, and reinforcement learning is used to
encourage the generation of new phrases.

• Lightweight Meta-Learning [38]: a low-resource generative summary model using
meta-learning and lightweight modules. Effectively mitigates domain transfer and
overfitting problems.

• DEATS [39]: proposes a dual-coding model that mutually benefits from the basic
model and achieves state-of-the-art results compared to existing methods.

• BERTSumABS [40]: the pre-trained BERTSum is used as the encoder and the 6-layer
Transformer [20] is used as the decoder. In addition, a new fine-tuning scheme is
proposed to separate the optimizers of the codecs.

• TransformerS2S + CS + RL [41]: an FCSF-TABS-based model is proposed, where Bert
is fine-tuned for content selection in the first stage and fed into the Transformer-based
summary model in the second stage to generate summary sentences.

Table 1 shows the results of comparing the model in this paper with existing models.
It can be seen that JPATS outperforms most publicly available models. Compared with
ML + RL, intra-attention and ML + RL Rouge + Novel, with LM, which introduced rein-
forcement learning, JPATS improved in all three Rouge metrics, which we attribute to the
joint-attention mechanism and a priori knowledge, and we will further demonstrate our
idea with ablation experiments later. It is worth noting that JPATS is slightly less effective
than the models BERTSumABS, TransformerS2S + CS + RL, which incorporate Bert and
Transformer, reflecting the significant effect of the pre-trained models. We will further focus
on the pre-trained model and migrate the methods in this paper to the pre-trained model
to obtain better results.

Table 2 shows the results of the manual evaluation of each model. Our model achieved
the highest scores on both readability and general. The presence of a priori knowledge in
the JPATS model is shown to help the decoder generate summaries that conform to human
reading habits and improve the readability of the summaries. In addition, the model not
only requires the decoder to focus on the keywords in the source text, but also forces the

Appl. Sci. 2023, 13, 4610 15 of 19

decoder to focus on the sentences where the keywords are located, and the combination
of the two drives the model to generate more comprehensive and specific summaries.
Thus, our model is also superior in the two manual evaluation metrics of readability and
general. Combining Rouge evaluation metrics and manual evaluation, our model achieves
good results.

Table 1. Rouge scores of JPATS on the dataset CNN/DailyMail.

Models Rouge-1 Rouge-2 Rouge-L

TextRank 34.11 12.78 22.5
Seq2seq + attention 31.34 11.79 28.10

PGN 36.44 15.66 33.42
PGN 36.44 15.66 33.42

PGN + Cov 39.53 17.28 36.38
FASum + FC 40.38 17.67 37.23

ML + RL, intra-attention 39.87 15.82 36.9
ML + RL Rouge + Novel, with LM 40.19 17.38 37.52

Lightweight Meta-Learning 39.94 16.96 26.09
DEATS 40.85 18.08 37.13

BERTSumABS 41.72 19.39 38.76
TransformerS2S + CS + RL 42.71 19.94 39.31

JPATS 41.25 18.81 38.34

Table 2. Manual scoring of JPATS on the dataset CNN/DailyMail.

Models Readability General

Seq2seq + attention 3.52 3.44
PGN + Cov 3.66 3.39

FASum + FC 3.70 3.69
DEATS 3.73 3.71

ML + RL, intra-attention 3.79 3.76
ML + RL Rouge + Novel, with LM 3.85 3.80

BERTSumABS 3.97 3.92
TransformerS2S + CS + RL 4.03 4.03

JPATS 4.12 4.09

4.3.2. Results on the Dataset DUC 2004

On the DUC 2004 dataset, we compared the model with the following publicly avail-
able models.

• ABS [14]: a CNN encoder and an NNLM decoder are used to accomplish the summa-
rization task.

• ABS + [14]: an enhanced version of the ABS model, which relies on a series of in-
dividually extracted summary features that are added as log-linear features in the
secondary learning step.

• RAS-Elman [15]: using an attentive encoder and RNN-based decoder.
• SEASS [12]: a selection mechanism is used to control the information input to the

decoder to remove redundant information.
• DEATS [39]: a dual-coding model is proposed that mutually benefits from the basic

model and achieves state-of-the-art results compared to existing methods.

Table 3 shows the results of comparing the model in this paper with existing models.
As shown in the table, our models all outperformed all baseline models. It reached 29.98,
9.80, and 26.12 on Rouge-1, Rouge-2, and Rouge-L, respectively. Experiments on this
dataset further demonstrate the performance of the model in this paper.

Appl. Sci. 2023, 13, 4610 16 of 19

Table 3. Rouge scores of JPATS on dataset DUC 2004.

Models Rouge-1 Rouge-2 Rouge-L

ABS 26.55 7.06 22.05
ABS+ 28.18 8.49 23.81

RAS-Elman 28.97 8.26 24.06
SEASS 29.21 9.56 25.51
DEATS 29.91 9.61 25.95
JPATS 29.98 9.80 26.12

5. Discussion

To examine the function of each module in the overall model, we ran corresponding
ablation experiments on the model. One or two modules are removed based on the
experiment. After the WS, PK, JAM, and RL modules are removed, the fundamental model
is JPATS _w/o_ALL. The PGN + Cov model in Table 1 is now identical to JPATS _w/o_ALL.

The WS module of this model is intended to determine whether the hidden vectors
generated by Bi-GRU deviate from the meaning of the original text and can assign higher
weights to the important parts of the original text. In Table 4, we obtain the scores of the
model without the WS module, and the results show that the scores are slightly worse than
the original JPATS model. Again, the model with the JAM, PK, and RL modules removed
scored slightly higher compared to the model with all modules removed. After comparing
the two data, it is proved that the WS module plays the role of judging the matching and
assigning weights in the model.

Table 4. JPATS ablation experiment scores on dataset CNN/DailyMail.

Models Rouge-1 Rouge-2 Rouge-L

JPATS 41.25 18.81 38.34
JPATS_w/o_ WS 40.97 18.65 38.09

JPATS_w/o_ JAM 40.37 18.53 37.95
JPATS_w/o_ PK 40.64 18.47 37.96
JPATS_w/o_ RL 39.66 17.35 36.41

JPATS_w/o_ JAM + PK 40.19 18.21 37.93
JPATS_w/o_ JAM + PK + RL 39.86 17.79 37.88

JPATS_w/o_ ALL 39.53 17.28 36.38

The JAM module uses a joint-attention mechanism that is a fusion of the word-level
attention mechanism and sentence-level attention mechanism. The joint-attention mech-
anism is computed separately with the state of the decoder at each moment, so that the
model pays attention to both the keyword and the sentence in which the keyword is located.
The captured word-level features and sentence-level features help the decoder to improve
the quality of the generated summaries. In the absence of the JAM module, the Rouge
score decreases by 0.88, 0.28, and 0.39, respectively. This shows that the JAM module helps
the model to consider richer information and improve model performance. In addition,
the Rouge score decreases more compared to the score after removing the WS module,
indicating a more pronounced effect of the JAM module.

The PK module mimics the human habit of combining background knowledge when
reading, and uses the original semantic information without any training to give the model
more original information, prompting the generation of summaries that are more in line
with human reading habits. After removing the PK model, the Rouge score of the model
showed a decrease. The scores still decreased compared to the model with the WS module
removed, indicating that the PK module outperformed the WS module for the summary
generation task.

Based on previous studies on reinforcement learning, it is effective in improving
Rouge scores. For this experiment, we also remove the RL module separately to study it.
Removing the RL module resulted in a larger decrease in model scores than the model

Appl. Sci. 2023, 13, 4610 17 of 19

with the remaining modules removed, and we obtained the same conclusion as in pre-
vious studies. The effectiveness of the RL module for improving Rouge scores can also
be derived from the scores of the model with JAM + PK removed and the model with
JAM + PK + RL removed.

6. Conclusions

In this paper, we propose an abstractive summarization model based on the joint-
attention mechanism and a priori knowledge. On the encoding side, we incorporate a
weighted summation part to determine how well the encoder produces vectors that match
the original text on the one hand, and assign higher weights to important parts on the other.
On the decoding side, we first improve the pointer network using the word–sentence-level
joint-attention mechanism to make the decoder focus on the keywords and the sentences
where the keywords are located. The original text vector without any training is then used
as a priori knowledge to further improve the pointer network to generate a summary that
matches human reading habits. Finally, reinforcement learning is introduced to alleviate
the exposure bias problem and optimize the evaluation metrics. After experimenting on
two publicly available datasets, we find that the model in this paper shows good results
compared with existing publicly available models.

Although the model in this paper achieved good results, some other problems were
found in the text summary exploration phase: (1) Rouge, a commonly used evaluation
metric in the field of text summarization, itself judges the degree of matching between
the generated summary and the reference summary, ignoring the evaluation of coher-
ence, conciseness, etc. The introduction of manual evaluation can be time-consuming
and labor-intensive for large amounts of data. Therefore, effective improvement of eval-
uation indicators is crucial for both Chinese and English abstract studies. (2) The unin-
terpretability of deep learning also hinders the development of the text summarization
field to some extent. (3) Whether the introduction of pre-trained models will further im-
prove the model quality. In the future, we will further explore research from the above
three points.

Author Contributions: Writing—original draft preparation, Y.L.; writing—review and editing, Y.H.;
visualization, J.Y.; supervision, W.H.; project administration, Z.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ji, X.; Zhao, W. SKGSUM: Abstractive Document Summarization with Semantic Knowledge Graphs. In Proceedings of the 2021

International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021. [CrossRef]
2. Li, W.; Zhuge, H. Abstractive Multi-Document Summarization Based on Semantic Link Network. IEEE Trans. Knowl. Data Eng.

2021, 33, 43–54. [CrossRef]
3. Zhu, T.; Hua, W.; Qu, J.; Hosseini, S.; Zhou, X. Auto-regressive extractive summarization with replacement. World Wide Web 2022.

[CrossRef]
4. Li, W.; Xiao, X.; Liu, J.; Wu, H.; Du, J. Leveraging Graph to Improve Abstractive Multi-Document Summarization. arXiv 2020,

arXiv:2005.10043.
5. Banerjee, S.; Mitra, P.; Sugiyama, K. Multi-Document Abstractive Summarization Using ILP Based Multi-Sentence Compression.

In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina,
25–31 July 2015; pp. 1208–1214.

6. Durrett, G.; Berg-Kirkpatrick, T.; Klein, D. Learning-Based Single-Document Summarization with Compression and Anaphoric-
ity Constraints. arXiv 2016, arXiv:1603.08887.

http://doi.org/10.1109/IJCNN52387.2021.9533494
http://dx.doi.org/10.1109/TKDE.2019.2922957
http://dx.doi.org/10.1007/s11280-022-01108-0

Appl. Sci. 2023, 13, 4610 18 of 19

7. Dohare, S.; Gupta, V.; Karnick, H. Unsupervised Semantic Abstractive Summarization. In Proceedings of the Meeting of the
Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018.

8. Wei, L. Abstractive Multi-document Summarization with Semantic Information Extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015.

9. Cao, Z.; Li, W.; Wei, F.; Li, S. Retrieve, Rerank and Rewrite: Soft Template Based Neural Summarization. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (ACL), Melbourne, Australia, 15–20 July 2018;
pp. 152–161.

10. Makino, T.; Iwakura, T.; Takamura, H.; Okumura, M. Global Optimization under Length Constraint for Neural Text Summariza-
tion. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy,
28 July–2 August 2019; pp. 1039–1048.

11. Luhn, H.P. The automatic creation of literature abstracts. IBM J. Res. Dev. 1958, 2, 159–165. [CrossRef]
12. Zhou, Q.; Yang, N.; Wei, F.; Zhou, M. Selective Encoding for Abstractive Sentence Summarization. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (ACL 2017), Vancouver, BC, Canada, 30 July–4 August 2017;
pp. 1095–1104. [CrossRef]

13. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the Advances in
Neural Information Processing Systems 27, Montreal, QC, Canada, 8–13 December 2014; Volume 2.

14. Rush, A.M.; Chopra, S.; Weston, J. A Neural Attention Model for Abstractive Sentence Summarization. Comput. Sci. 2015.
[CrossRef]

15. Chopra, S.; Auli, M.; Rush, A.M. Abstractive Sentence Summarization with Attentive Recurrent Neural Networks. In
Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego, CA, USA, 12–17 June 2016.

16. Nallapati, R.; Zhou, B.; Santos, C.; Gulcehre, C.; Bing, X. Abstractive Text Summarization Using Sequence-to-Sequence RNNs
and Beyond. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, Berlin, Germany,
11–12 August 2016.

17. Gehring, J.; Auil, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. In Proceedings of
the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70.

18. Paulus, R.; Xiong, C.; Socher, R. A Deep Reinforced Model for Abstractive Summarization. arXiv 2017, arXiv:1705.04304.
19. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. Comput. Sci. 2014.

[CrossRef]
20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You

Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017; Volume 30.

21. Zheng, X.; Sun, A.; Muthuswamy, K. Tweet-aware News Summarization with Dual-Attention Mechanism. In Proceedings of the
Web Conference 2021: Companion of the World Wide Web Conference, New York, NY, USA, 12–16 April 2021; pp. 473–480.

22. Hakami, N.A.; Mahmoud, H.A.H. A Dual Attention Encoder-Decoder Text Summarization Model. CMC Comput. Mater. Contin.
2023, 74, 3697–3710. [CrossRef]

23. Qiu, D.; Yang, B. Text summarization based on multi-head self-attention mechanism and pointer network. Complex Intell. Syst.
2022, 8, 555–567. [CrossRef]

24. Liu, S.; Yang, L.; Cai, X. SEASum: Syntax-Enriched Abstractive Summarization. Expert Syst. Appl. 2022, 199, 116819. [CrossRef]
25. Narayan, S.; Cohen, S.B.; Lapata, M. Ranking Sentences for Extractive Summarization with Reinforcement Learning. arXiv 2018,

arXiv:1802.08636
26. Chen, Y.C.; Bansal, M. Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (ACL), Melbourne, Australia, 15–20 July 2018; pp. 675–686.
27. Liang, Z.; Du, J.; Li, C. Abstractive social media text summarization using selective reinforced Seq2Seq attention model.

Neurocomputing 2020, 410, 432–440. [CrossRef]
28. Liao, W.; Ma, Y.; Yin, Y.; Ye, G.; Zuo, D. Improving abstractive summarization based on dynamic residual network with

reinforce dependency. Neurocomputing 2021, 448, 228–237. [CrossRef]
29. Kryscinski, W.; Paulus, R.; Xiong, C.; Socher, R. Improving Abstraction in Text Summarization. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing (EMNLP 2018), Brussels, Belgium, 31 October–4 November 2018;
pp. 1808–1817.

30. Kedzie, C.; Mckeown, K.; Hal, D., III. Content Selection in Deep Learning Models of Summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018.

31. Hermann, K.M.; Koisk, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P. Teaching Machines to Read
and Comprehend; MIT Press: Cambridge, MA, USA, 2015.

32. Over, P.; Dang, H.; Harman, D. DUC in context. Inf. Process. Manag. 2007, 43, 1506–1520. [CrossRef]
33. Lin, C.Y. ROUGE: A Package for Automatic Evaluation of summaries. In Proceedings of the In Proceedings of the Workshop on

Text Summarization Branches Out (WAS 2004), Barcelona, Spain, 25–26 July 2004.

http://dx.doi.org/10.1147/rd.22.0159
http://dx.doi.org/10.18653/v1/P17-1101
http://dx.doi.org/10.48550/arXiv.1509.00685
http://dx.doi.org/10.48550/arXiv.1409.0473
http://dx.doi.org/10.32604/cmc.2023.031525
http://dx.doi.org/10.1007/s40747-021-00527-2
http://dx.doi.org/10.1016/j.eswa.2022.116819
http://dx.doi.org/10.1016/j.neucom.2020.04.137
http://dx.doi.org/10.1016/j.neucom.2021.02.028
http://dx.doi.org/10.1016/j.ipm.2007.01.019

Appl. Sci. 2023, 13, 4610 19 of 19

34. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W. BLEU: A method for automatic evaluation of machine translation. In Proceedings of
the 40TH Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318.
[CrossRef]

35. Mihalcea, R.; Tarau, P. TextRank: Bringing Order into Texts. In Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing, Barcelona, Spain, 25–26 July 2004.

36. See, A.; Liu, P.J.; Manning, C.D. Get To The Point: Summarization with Pointer-Generator Networks. arXiv 2017, arXiv:1704.04368.
37. Zhu, C.; Hinthorn, W.; Xu, R.; Zeng, Q.; Zeng, M.; Huang, X.; Jiang, M. Enhancing Factual Consistency of Abstractive

Summarization. In Proceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Online, 6–11 June 2021.

38. Huh, T.; Ko, Y. Lightweight Meta-Learning for Low-Resource Abstractive Summarization. In Proceedings of the 45th International
ACM Sigir Conference on Research and Development in Information Retrieval, Madrid, Spain, 11–15 July 2022; pp. 2629–2633.
[CrossRef]

39. Yao, K.; Zhang, L.; Du, D.; Luo, T.; Tao, L.; Wu, Y. Dual Encoding for Abstractive Text Summarization. IEEE Trans. Cybern. 2020,
50, 985–996. [CrossRef] [PubMed]

40. Liu, Y.; Lapata, M. Text Summarization with Pretrained Encoders. arXiv 2019, arXiv:1908.08345.
41. Zhang, M.; Zhou, G.; Yu, W.; Liu, W.; Huang, N.; Yu, Z. FCSF-TABS: Two-stage abstractive summarization with fact-aware

reinforced content selection and fusion. Neural Comput. Appl. 2022, 34, 10547–10560. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3115/1073083.1073135
http://dx.doi.org/10.1145/3477495.3531908
http://dx.doi.org/10.1109/TCYB.2018.2876317
http://www.ncbi.nlm.nih.gov/pubmed/30403646
http://dx.doi.org/10.1007/s00521-021-06880-0

	Introduction
	Related Work
	Attentional Mechanism
	Reinforcement Learning

	Model
	Problem Formulation
	Encoding Side
	Joint-Attention Mechanism for Word-Sentence-Level Fusion
	Decoding Side
	Improvements to the Pointer Network
	Reinforcement Learning Based on Improved Pointer Networks

	Experiment
	Dataset
	Evaluation Metrics
	Comparison with Public Models
	Results on the Dataset CNN/DailyMail
	Results on the Dataset DUC 2004

	Discussion
	Conclusions
	References

