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Abstract: The multi-objective optimization problem is difficult to solve with conventional optimiza-
tion methods and algorithms because there are conflicts among several optimization objectives and
functions. Through the efforts of researchers and experts from different fields for the last 30 years,
the research and application of multi-objective evolutionary algorithms (MOEA) have made excel-
lent progress in solving such problems. MOEA has become one of the primary used methods and
technologies in the realm of multi-objective optimization. It is also a hotspot in the evolutionary
computation research community. This survey provides a comprehensive investigation of MOEA
algorithms that have emerged in recent decades and summarizes and classifies the classical MOEAs
by evolutionary mechanism from the viewpoint of the search strategy. This paper divides them into
three categories considering the search strategy of MOEA, i.e., decomposition-based MOEA algo-
rithms, dominant relation-based MOEA algorithms, and evaluation index-based MOEA algorithms.
This paper selects the relevant representative algorithms for a detailed summary and analysis. As a
prospective research direction, we propose to combine the chaotic evolution algorithm with these
representative search strategies for improving the search capability of multi-objective optimization
algorithms. The capability of the new multi-objective evolutionary algorithm has been discussed,
which further proposes the future research direction of MOEA. It also lays a foundation for the
application and development of MOEA with these prospective works in the future.

Keywords: multi-objective evolutionary computation; multi-objective optimization problem; search
strategy; optimization; meta-heuristics

1. Introduction

As one of the heuristic search optimization algorithms using population, the evolu-
tionary computation algorithm is easy to apply and implement. It does not require highly
deterministic mathematical properties for both problems to be solved and the algorithms
to solve these. Its application field has expanded steadily up to this point, attracting the
interest of several academics and engineers [1]. Evolutionary multi-objective optimization
(EMO) has been used successfully in the field of multi-objective optimization problems,
and it has developed into a rather popular field of study [2]. EMO has gained widespread
attention and adoption in the scope of evolutionary computation research.

Optimization problems are a common type of problem encountered in engineering
applications and scientific research. These problems involve finding the optimal solution
or solutions to a particular problem [3]. The problems of single-objective optimization have
a single-objective function, while multi-objective optimization problems (MOP) involve
multiple-objective functions, and attempt to satisfy all objective functions simultaneously.
One solution may be enough for one objective, but it may not perform well on all objectives
at the same time. Therefore, there will be a set of compromise solutions, which is called the
Pareto optimal set in multi-objective optimization problems [4].
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Conventionally, by giving weights to the various objectives, the MOP was often con-
verted into single-objective problems. These single-objective problems can be solved using
mathematical programming techniques, which can only obtain the optimal solution under
the condition of one weight at one time. The conventional mathematical programming
approaches are frequently ineffective and more susceptible to the weight value or the order
provided by the objective because the objective function and constraint function of the MOP
may have discontinuous, nonlinear, or non-differentiable characteristics. The population of
potential solutions is preserved from generation to generation by an evolutionary compu-
tation algorithm to achieve the global optimum. By using this population-to-population
strategy, it is possible to find the Pareto optimal solutions set for the multi-objective opti-
mization problem. Schaffer introduced the vector evaluation genetic algorithm (VEGA) at
the beginning of 1985 [4], which is recognized as the evolutionary computation algorithm’s
groundbreaking contribution to resolving the MOP. The non-dominated sorting genetic
algorithm (NSGA) was presented by Srinivas and Deb [5], and the multi-objective genetic
algorithm (MOGA) was suggested by Fonseca and Fleming [6] The niched Pareto genetic
algorithm (NPGA) was propounded by Horn et al. [7]. These algorithms are the pioneer
works for MOEA in the evolutionary computation community.

The original evolutionary multi-objective optimization algorithm is the ordinary name
for these algorithms. Individual selection using the Pareto level and population diversity
maintenance using the fitness-sharing mechanism are features of the primitive genera-
tion of evolutionary multi-objective optimization algorithms [8]. The second-generation
evolutionary multi-objective optimization algorithm, which features an elite retention
mechanism, was sequentially proposed from 1998 to 2002. In 1998, the strength Pareto evo-
lutionary algorithm (SPEA) was first proposed by Zitzler and Thiele [9], and SPEA-SPEA2
was improved upon three years later [10]. The Pareto archived evolution strategy (PAES)
was proposed by Knowles and Corne in 2000 [11]; shortly after, they proposed enhanced
versions of the algorithm, the Pareto binary-based selection algorithm (PESA) [12] and
PESA-II [13]. An enhanced version of NPGA, NPGA2, was proposed by Erickson et al.
in 2001 [14]. A micro-genetic algorithm (MICRO-GA) was propounded by Coello and
Pulido [15]. In 2002, Deb et al. suggested a highly conventional algorithm by enhancing
NSGA, i.e., NSGA-II [16].

Since 2003, an EMO algorithm has been developing continuously, and study in the
frontier area of evolutionary multi-objective optimization has taken on new characteristics.
Several novel algorithm frameworks have been developed as a result of the introduction
of certain new evolutionary mechanisms to the discipline of evolutionary multi-objective
optimization to more efficiently handle the high-dimensional multi-objective optimization
issue [17]. For instance, the multi-objective particle swarm optimization (MOPSO) was
suggested by Coello and Lechuga using particle swarm optimization [18], and the non-
dominated neighbor immune algorithm (NNIA) was propounded by Gong et al. using
the immune algorithm [19] The multi-objective evolutionary algorithm using decompo-
sition (MOEA/D), which merges evolutionary algorithms with classical mathematical
programming techniques, was presented by Zhang and Li [20].

Any new technology arises and develops from its application, otherwise, the new
technology would be lifeless. To solve the problem of multiclass pattern discrimination
in machine learning, Schaffer designed and implemented LS2 based on LS1 using the
vector evaluation genetic algorithm in 1985 [4]. Since 1990, MOEA has been widely used in
various industries, such as environmental and resource allocation, electrical and electronic
engineering, communication and networking, robotics, aerospace, municipal construction,
transportation, mechanical design and manufacturing, management engineering, finance,
and other scientific research. As the use of MOEA becomes more widespread, its clas-
sification and applicability to engineering problems become increasingly important [21].
Nowadays, research on the application of MOEA is one of the most popular topics in the
research community. About 50% of the papers focus on solving real-world application
problems, which is one of the major research areas for the vitality of MOEA [22]. Some



Appl. Sci. 2023, 13, 4643 3 of 25

examples include multiobjective optimal control for the wastewater treatment process [23],
data mining [24,25], mechanical design [26], mobile network planning [27], portfolio man-
agement [28], design of central neural motion controllers for humanoid robots [29], optimal
design of perimeter rocket engines [30], QoS routing [31], logistics distribution [32,33], logic
circuit design [34], multi-sensor multi-objective tracking data association [35], underwater
robot motion planning [36], shop floor scheduling problems [37], design problems for urban
water management systems [38], and communication and network optimization [39,40].
The objective of studying MOEA is to apply MOEA to better solve practical problems.
Therefore, research on the application of MOEA in various fields is most valuable and
meaningful.

Within the growing body of research on this field all over the world, many scholars
are writing summaries of the field of evolutionary computation algorithms. In recent
years, the rapid development of evolutionary multi-objective optimization has warranted
a comprehensive survey of this field, as well as analysis and summary [41]. Many other
surveys or reviews in the literature are very novel and worth learning from. These have
been organized and categorized into Table 1 for better analysis.

Table 1. The surveys in the references can be broadly divided into four categories and find the
differences between them.

Reference Subject Difference

[42] A review of algorithms based on differential evolution is presented These survey papers classify
algorithms as independent
of the specific techniques
they employ.

[21] A review of algorithms based on differential evolution is presented

[43] An integration and classification of continuous nonlinear multi-objective
optimization based on the articulation of preferences.

[44] A classification of MOEAs based on the key ideas used.
These survey papers classify
the algorithms differently
according to certain
characteristics.

[45]
An introduction of a methodology-based taxonomy that classifies
multi-optimization methods into hierarchically nested, fine-grained, and
specific classes.

[46] A discussion of Pareto-based methods and a popular class of decomposition
methods for multi-objective optimization.

[47] A comprehensive survey of stat-of-the-art MOEAs for solving large-scale
multi-objective optimization problems. These survey papers are

presentations of algorithms
depending on the problem
being solved.

[48] A review on multi-objective meta-heuristics for multi-objective discrete
optimization problems (MODOPs).

[49] A comprehensive survey of the research on MOPs with irregular Pareto fronts.

[1] A discussion of some of the most representative algorithms that have been
developed, and some of their applications. These survey papers provide

an introduction to the
algorithm based on temporal
development.

[41] A review of representative algorithms in each category and applications of
various multi-objective algorithms in various engineering fields.

[50] An overview of multi-objective evolutionary algorithms developed in
chronological order.

These surveys can be broadly classified into four categories. The first one is a spe-
cialized classification of algorithms that use specific techniques. The second one is a
classification of algorithms differently based on certain characteristics. The third one is a
survey of algorithms for the problem to be solved. The fourth is a survey of algorithms
developed according to time. Our survey can be classified as falling into the second cate-
gory because we classify representative MOEAs from different MOEA search strategies.
However, there is still some difference between them, and while classifying the algorithms,
we are also investigating the search strategy as a research direction.

This survey primarily selects some representative multi-objective optimization algo-
rithms in view of search strategies in MOEA. This can be considered one of the original
aspects of this current work. Their types are many and complex, so it is especially necessary
to classify them accordingly to summarize this research field. After analysis and classi-
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fication, the chaotic evolution can be designed. This is achieved by combining different
types of search strategies of multi-objective optimization algorithms to enrich this research
area as one of the promising research subjects. Currently, the main reason why the MOEA
algorithm is so popular is that it has a wide range of application areas and application
prospects. In real-world industry applications, problems often require optimizing many
objectives simultaneously, which are complex and nonlinear. Conventional methods may
struggle to effectively solve such problems [51]. MOEA is well-suited for tackling these
types of problems. In this work, we select and classify representative MOEA, especially
search strategies.

The remaining parts of the paper are structured as follows. A brief background on
multi-objective evolutionary algorithms is given in Section 2. Section 3 gives a systematic
classification and detailed introduction of current evolutionary multi-objective optimization
algorithms and their search strategies. In Section 4, evaluation metrics of MOEA are
introduced. Sections 5 and 6 summarize the whole paper and put forward our views on
the further development of evolutionary multi-objective optimization.

2. An Overview on Multi-Objective Optimization and Multi-Objective Evolutionary
Computation

The multi-objective optimization problem is a pervasive challenge in many areas
of practice. It may not be possible to fully achieve all objectives, so each objective must
be assigned a relative weight in a scoring method [52]. Determining these weights is a
primary issue in this research. Meanwhile, the genetic algorithm inspired by the principles
of biological evolution has also gained significant attention [53]. Combining these two
approaches allows the global search capabilities of the genetic algorithm to be exploited
while avoiding the risk of conventional multi-objective optimization methods becoming
stuck in local optima and maintaining population solution diversity. As a result, a genetic
algorithm-based multi-objective optimization strategy has been applied across various
fields.

The MOP is usually transformed into single-objective problems by weighting and
pre-processing, after which they can be solved by mathematical programming methods [47].
However, this method can only yield one optimal solution for a single set of weights per
return. Additionally, there is a probability that the objective and constraint functions of
problems are discontinuous and nonlinear and cannot be solved by conventional mathe-
matical programming methods. Conventional mathematical programming is ineffective
and susceptible to the weights or rankings provided by the objective [54]. A multi-objective
optimization solution is often composed through a series of equilibrium solutions, i.e., a
collection of optimal solutions organized into many sets of Pareto optimal solutions, with
each component being referred to as a Pareto optimal solution [55]. It aims to simultane-
ously achieve several objectives in each region as efficiently as possible. In multi-objective
optimization, since multiple sub-objectives are optimized simultaneously, and these sub-
objectives are often in conflict with each other, over-optimization of one sub-objective
will inevitably lead to less favorable optimization results for at least one of the other sub-
objectives. When dealing with the MOP, we do not try to find the single best solution [43].
In the multi-objective optimization algorithm, there are different optimization objectives
for different sub-objective functions. Generally, there are three cases, as follows:

• Minimize all sub-objective functions.
• Maximize all sub-objective functions.
• Minimize the sub-objective function and maximize other sub-objective functions.

2.1. Multi-Objective Problem

A MOP can be formulated as follows in Equation (1).

max F(x) = ( f1(x), · · · , fm(x))T x ∈ Ω. (1)
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In Equation (1), Ω is a decision space or a parameter space, is composed of m objective
functions, and is called the objective space. However, as most objectives tend to conflict
with each other, it is not possible to maximize all objectives simultaneously at any point in
Ω. Consequently, a balance was sought between these conflicting objectives.

As opposed to single-objective optimization problems, which typically have a single
optimal solution that can be found using standard deterministic mathematical methods,
MOP involves multiple competing objectives [45]. In these types of problems, finding a
single solution that optimizes all objectives at the same time is difficult because improving
the performance of one objective may come at the cost of decreasing the performance
of another. In contrast, the solution to a MOP is typically a Pareto solution set, which
represents weighing up conflicting objectives [56].

When there are multiple Pareto optimal solutions, it can be challenging to determine
which solution is more desirable without additional details. As a result, all Pareto optimal
solutions can be considered equally valid. Consequently, finding the most Pareto opti-
mum solutions to a given optimization problem is the primary subject of multi-objective
optimization [48]. To achieve this, multi-objective optimization typically focuses on the
following two tasks.

• Identify a set of solutions that are as near in terms of probability to the Pareto optimal
domain.

• Identify a set of solutions that are as diverse as possible.

The first task must be completed in any optimization task, and a convergence that is
not close to one of the real Pareto optimal solution sets is undesirable. Only when a group
of solutions has convergence that is close to the real Pareto optimal solution is the set of
solutions guaranteed to approach the optimal property [57].

In addition to converging to the approximate Pareto optimal region, the solutions
obtained through multi-objective optimization should also be uniformly and sparsely
distributed within that region. A good set of solutions for multiple objectives is represented
by a diverse set of solutions. In an MOEA, diversity can be defined in both the decision
variable space and the objective space [58]. For example, if the Euclidean distance between
two solutions is large in the decision variable space, they are considered different in that
space. Similarly, solutions that are far apart in the objective space are considered to be
diverse. However, for complex and nonlinear optimization problems, good diversity in one
space does not necessarily translate to good diversity in the other space. A set of solutions
with good diversity must be identified in the relevant space [49].

2.2. Multi-Objective Evolutionary Computation Algorithm

There are many types of multi-objective evolutionary computation algorithms. They
can be classified according to certain characteristics. In the existing research, the algo-
rithms based on differential evolution are reviewed, and the method of classification is
proposed [42]. In our paper, from the view of different MOEA search strategies, we can
classify them as follows:

1. Decomposition-based MOEA algorithms.
2. Dominant relationship-based MOEA algorithms.
3. Evaluation index-based MOEA algorithms.

To obtain a deeper understanding of the MOEA search process, we present the basic
flow of Pareto-based MOEA, as shown in Figure 1. First, population P is initialized, and
an evolutionary computation algorithm, such as a decomposition-based multi-objective
evolutionary algorithm, is selected to perform evolutionary operations on P to obtain the
new population R. Second, the optimal solution set of P ∪ R is constructed, and the size
of the optimal solution set is set to N. If the size of the current optimal solution set N is
inconsistent with the size of N, the size of N needs adjustment, and the adjusted N needs
to meet the requirements of distribution. It determines whether the algorithm termination
conditions have been met. The individuals in N will be copied to the population P to
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continue in the next round of evolution, otherwise, it will stop. The iteration count of the
algorithm is generally used to control its execution.

In MOEA, maintaining and incorporating the optimal solution set from the preceding
generation into the evolution process of the current generation is a critical requirement
for convergence [59]. This allows the evolutionary population’s optimal solution set to
converge to the real Pareto front, ultimately leading to a satisfactory evolutionary outcome.

Figure 1. The basic flow of Pareto-based MOEA. The optimal set of solutions from the previous
generation is retained and added to the new generation so that it continues to converge to the true
Pareto front. This figure is adopted from [6].

2.3. Multi-Objective Chaotic Evolution Algorithm
2.3.1. Chaos and Chaotic Systems

Chaos means disorder. A simple deterministic system can not only produce simple
deterministic behavior but also produce seemingly random uncertain behavior, namely
chaotic behavior [60]. Chaos refers to the uncertain or unpredictable random phenomena
presented by certain macroscopic nonlinear systems under certain conditions. It is the
phenomenon of the integration of certainty and uncertainty, regularity and non-regularity,
or orderliness and disorder. At present, there are different ways of understanding and
expressing chaos in different disciplines, which reflect the characteristics of its application
in their respective fields. Chaos is an aperiodic behavior of a nonlinear dynamic system
that is generated within a certain control parameter and has a keen reliance on preliminary
conditions. The system in this behavior state is called a chaotic system. Among these,
non-linearity is the most fundamental condition for the chaotic behavior of a dynamic
system and an inevitable factor for the system. There are four common chaotic systems,
namely, a logistic map [61], Hénon map [62], tent map [63], and Gauss map [64].

2.3.2. Multi-Objective Chaotic Evolution Algorithm

EMO algorithms can effectively solve the MOP. The effectiveness of EMO’s optimiza-
tion process depends on the search algorithm’s capacity to optimize results in addition to
Pareto dominance and solution diversity [65]. By including chaotic evolution in the EMO
algorithm, reference [66] proposed the multi-objective chaotic evolution algorithm (MOCE)
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with a powerful search capability. The MOCE algorithm combines the non-dominated
sorting and crowding distance methods with the search capacity of the traditional CE
algorithm. It does not only aim to maintain the number of Pareto solutions but also strives
to maintain their diversity.

2.4. Primary Challenges of Multi-Objective Optimization Study

Due to the close correlation between MOP and practical applications, MOP has become
the subject of many research topics.

• Most existing algorithms for solving MOP depend on evolutionary computation
algorithms, and a new algorithm framework with a powerful search capability needs
to be proposed urgently [67].

• An assessment technique that can objectively reflect the algorithm’s benefits and
drawbacks, as well as a collection of test cases, is necessary for the evaluation of a
multi-objective optimization algorithm. One of the most significant aspects of the
research is the choice and design of assessment techniques and test cases.

• Existing multi-objective optimization algorithms have strengths and weaknesses. An
algorithm is effective for solving one problem but may be ineffective for solving
other problems. Therefore, how to make the advantages and disadvantages of each
algorithm complementary is still a problem to be studied [68].

3. Classification of Multi-Objective Evolutionary Algorithms from the View of
Search Strategy
3.1. Decomposition-Based MOEA Algorithms
3.1.1. Weighted Summation Approach

The weighted sum approach is a commonly used linear multi-objective aggregation
method [69]. Assuming that the multi-objective problem to be optimized has m total
objectives, the function converts MOP into a single objective sub-vector by weighting
each objective with a non-negative weight vector λ = (λ1, λ2,..., λm). The mathematical
expression is as shown in Equation (2).

min gws(x |
→
λ) =

m

∑
i=1

λi fi(x) s.t.x ∈ Ω. (2)

The vector λ = (λ1, λ2,..., λm) is a set of weight vectors. Each weight component λi
corresponds to the i-th target vector, respectively, for λi ≥ 0 and the sum of λi is 1.

According to the mathematical expression, λi ? fi can be regarded as the projection
of point fi in the direction of λ, and finds the minimum value. From the fitness landscape
analysis, some contours can be drawn which are perpendicular to λ, so that we can see that
the distance from the origin to the right angle points is the projection of Fi in the direction
of λ. Consequently, discovering that point A is the shortest distance point is not difficult.
In the same way, the shortest distance points are found and together produce a different
set of Pareto optimal vectors. Nevertheless, the weight summation method has limitations.
The standard weight summation method cannot deal with non-convex problems, as shown
in Figure 2. For non-convex problems, the perpendicular of each reference vector cannot be
tangent to its front edge.
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Figure 2. The contour of weighted sum approach. Concerning convex problems, several isometries
can be drawn to discover the shortest distance points that together produce a different set of Pareto
optimal vectors. For non-convex problems, the vertical line of each reference vector cannot be tangent
to its leading edge. This figure is adopted from [20].

3.1.2. MOEA/D Search Strategy

The MOEA/D algorithm leverages a collaborative optimization approach to solve a
single objective or a collection of multiple multi-objective sub-problems, which are derived
from the original MOP [70]. The algorithm simultaneously solves all of the sub-problems
to identify the entire Pareto front surface. Typically, weight vectors are used to define the
sub-problems, and the Euclidean distance between the weight vectors is used to determine
the neighborhood relations between sub-problems. The MOEA/D algorithm stands out
from other MOEA algorithms due to its focus on selecting parent individuals from the
neighborhood, producing new individuals through crossover operations, and carrying
out neighborhood population updates by predetermined regulations [71]. Therefore, the
neighborhood-based optimization strategy is an integral feature in guaranteeing the search
efficiency of MOEA/D. During the evolutionary process, once a high-quality solution for a
sub-problem is searched, its good genetic information is rapidly spread to the rest of the
individuals in the neighborhood, and it accelerates the rate of algorithm convergence.

The MOEA/D algorithm provides a basic framework using a decomposition strategy,
whose most important feature is decomposition and cooperation. Currently, many different
versions of the MOEA/D algorithm have been created to address MOP with different diffi-
culty characteristics. In this paper, fundamental MOEA/D algorithms using Chebyshev’s
method are presented [72], and its basic data structure is as follows.

1. The Chebyshev sub-problem is defined by the set of weight vectors
{

λ1, · · · , λN}
with reference points z.

2. Each sub-problem is assigned an individual, and all individuals
{

x1, · · · , xN} form a
current evolutionary population P.

3. The elite population used to save the Pareto solution is EP.
4. The sub-problem neighborhood is NS1, · · · , NSN .

Unlike other MOEA algorithms, MOEA/D represents an open class of decomposition-
based algorithms. Based on MOEA/D, it is easy to combine existing optimization tech-
niques to design efficient algorithms to deal with various problems [46]. For different levels
of difficulty that may occur in sub-problems, Zhang et al. presented MOEA/D-DRA with
the adaptation of computational resources [73]. MOEA/D considers the simultaneous
optimization of multiple single-objective sub-problems, and different sub-problems are
responsible for approximating different parts of the Pareto surface, so MOEA/D can be
easily parallelized. Nebro and Durillo developed a parallel line-based MOEA/D that
can be performed in parallel on multicore computers [74]. Combining the advantages
of different aggregation functions, Ishibuchi et al. proposed using different aggregation
functions in unused search phases [75]. When dealing with combinatorial optimization
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problems, optimization for sub-problems can be combined with classical heuristics, e.g.,
Ke et al. combined MOEA/D with ant colony optimization techniques and suggested the
MOEA/D-ACO [76].

3.2. Dominant Relation-Based MOEA Algorithms
3.2.1. Vector Evaluation Genetic Algorithm

To process the target vector, Schaffer proposed the VEGA in 1985 by extending the
simple genetic algorithm (SGA). He invented the multi-objective optimization genetic
algorithm and provided a Pareto non-inferior solution to the problem utilizing a parallel
approach, which resolved the challenging issue of multi-objective optimization that had
puzzled the operations research theoretical community [77]. It took the MOGA until the
middle and late 1990s to establish a research field and gain success in numerous engineering
applications due to computer hardware limitations.

Vector assessment of the genetic algorithm is considered the improved version of
the single objective genetic algorithm.It contains some original SGA operators using a
proportional selection mechanism. The objective function for each child is produced corre-
sponding to child groups, i.e., it is the objective function [78]. As we observe from Figure 3,
the k multi-objective problems need to be assigned into random k groups, and each group
size is N/k, where N scales for the whole group. Each sub-objective function evaluates and
selects independently in its corresponding sub-groups, and forms a new group to perform
crossover and mutation operations. In this way, the process of “segmentation, parallel,
evaluation, selection, and merger” proceeds in a cycle, resulting in a non-inferior solution
to the problem.

Figure 3. The operation mechanism of VEGA. The MOP is divided into groups, each sub-objective
function is evaluated and selected independently, then a new group is formed, crossover and variation
operations are performed, and this proceeds cyclically, resulting in non-inferior solutions to the
problem. This figure is adopted from [5].

3.2.2. Lexicographic Optimization Method

In the study of MOEA algorithms using dominance relation, lexicographic optimiza-
tion is a class of multi-objective optimization algorithms that identify the solution to the
Pareto front. It starts by considering an objective function and determines the feasible
domain of the objective space using other functions as constraints [79]. Depending on their
essentialness or significance, the objective functions are identified and optimization is car-
ried out iteratively. Single-objective optimization can more easily find the optimum because
only one objective function is considered. However, since multi-objective optimization
attempts to search for the Pareto optimal solutions, the use of lexicographic optimization
allows multiple objective functions simultaneously aiming for the Pareto optimal solutions.

Figure 4 presents an example of the lexicographic optimization process for a bi-
objective minimum optimization problem, where f1(x) and f2(x) are the objective functions
and f ′1 and f ′2 are the optimal solutions of two objective functions, respectively. To pre-
vent finding the weak Pareto optimum solution, the objective functions are minimized
in turn, while the solutions achieved are employed as constraints. The Pareto optimum
solution is discovered using the optimal value of one objective function as a constraint
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after the other objective functions have been minimized. In this way, if there are n objective
problems, n initial best solutions of each objective function can be available as the begin-
ning point for finding the next Pareto optimal solution of the objective function that is
currently optimized.

3.2.3. Niched Pareto Genetic Algorithm

Based on the Pareto dominance connection, Horn et al. propounded the NPGA [7]. It
randomly selects two individuals i and j from the population, randomly selects a compar-
ing set CS (whose size is larger than two and generally smaller than ten), and compares
individual i and individual j with the individuals in CS, respectively. If one of the individu-
als is dominated by the CS and the other is not dominated by the CS, the individual that is
not dominated by the CS will be chosen to be involved in the next generation of evolution,
and if both individuals i and j are not dominated by the CS or both are dominated by the
CS, then the individual with the greater shared fitness will be selected to participate in the
next generation of evolution using a sharing mechanism.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4. An example of the lexicographic optimization process for a bi-objective minimum op-
timization problem. Firstly, f1(x) is minimized, while the optimal value obtained is used as a
constraint. Secondly, after f2(x) has been minimized, its optimal value is used as a constraint for
cyclic optimization. Finally, Pareto optimal solutions are found. This figure is adopted from [80].

Fitness sharing is an effective way to achieve population diversity. Let the fitness of
individual i be f itness(i), the niche count of individual i be mi, and mi is calculated as
follows in Equation (3):

mi = ∑
i∈P

S[d(i, j)]. (3)

The P is the current evolutionary population, d(i, j) is the distance or similarity be-
tween individual i and individual j, the sharing function is S[d] , and S[d] is defined as
follows in Equation (4):
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S[d(i, j)] =
{

0, d > σshare
1− d/σshare, d < σshare

. (4)

The niche radius is σshare, usually determined by the user based on the minimum
desired spacing between individuals in the optimal solution set.

Define f itness(i)/mi as the shared fitness, where mi is essentially the degree of niche
aggregation of individual i. Individuals within the same niche reduce each other’s shared
fitness. The higher the degree of aggregation of an individual, the more its shared fitness
relative to its fitness is reduced. As shown in Figure 5, candidate solutions A and B are
both non-dominated, but A has a greater degree of aggregation than B, and therefore A
has a smaller shared fitness than B. The purpose of using shared fitness is to spread the
evolutionary population over distinct areas throughout the entire search space.

The main advantage of the NPGA is that it operates more efficiently and achieves
a better Pareto optimality boundary. The disadvantage is the difficulty in selecting and
adjusting the radius of the niche [81].

Figure 5. The niche sharing. Neither candidate A nor B is dominant, but A is more aggregated than
B, so A has less shared fitness than B and chooses B to participate in the next generation of evolution.
This figure is adopted from [7].

3.2.4. Non-Dominated Sorting Genetic Algorithm II

In 1993, Srinivas and Deb presented the NSGA. There are three key issues with the
NSGA. The first is the absence of an ideal individual retention mechanism. Studies of
relevance indicate that, for one thing, the performance of MOEA can be improved and
the loss of exceptional solutions can be avoided by using the best individual retention
mechanism. The issue of common parameters is the second issue. If shared parameters
are employed during the evolution process to preserve population distribution, it might
be challenging to estimate their size as well as dynamically modify and adapt parameters.
Thirdly, one challenge with the Pareto optimal solution set is that it requires a high time
complexity to construct, with a cost of O(R×N3), where R is the number of objectives
and N is the size of the evolutionary population. This can be problematic because each
generation of the evolution process involves constructing a non-dominated set, which can
be time-consuming when the size of the evolutionary group is large. To address this issue,
the NSGA-II algorithm is proposed as an improvement upon the NSGA algorithm [16].

The NSGA-II algorithm’s fundamental concept is as follows. Following non-dominated
sorting, the random preliminary population of size N is produced, and the three funda-
mental genetic algorithm processes of selection, crossover, and mutation are used to create
the first generation of the offspring population. Starting with the second generation, the
parental and child populations were mixed to accomplish a rapid non-dominant ranking.
The crowding distance of individuals in each non-dominant layer was also determined
at this time [82]. To create the new parent population, individuals are selected based on
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their non-dominant relationship and crowding distance. The standard genetic algorithm
operations are performed to produce the new child population. This process is repeated
until the end condition of the program is met. The program flow chart for this process is
depicted in Figure 6.

Fast Non-Dominated Sorting Algorithm

To perform non-dominant sorting, the algorithm must determine two parameters,
Np and Sp, for each individual p in the population P. Np represents individual accounts
that dominate individual p [83], and Sp is the group of individuals dominated by p in
the population. When traversing the entire population, the combined computational
complexity of these two parameters is O

(
MmN2

)
. The steps to implement the fundamental

and formal computational procedure for non-dominant sorting are as follows:

1. Select the first individual to be the current individual.
2. Compare the current individual’s objectives with all the other individual’s objectives.
3. Count the individual accounts that dominate the current individual, which is repre-

sented by Np.
4. Set the individuals who satisfy the condition Np = 0 as the first front and temporarily

delete them from the generation for the time being.

Figure 6. The fundamental concept of the NSGA-II algorithm. A random initial population, using
selection, crossover, and variation to produce a first generation of offspring populations. Parent
and offspring populations are mixed and individuals are selected for new parent populations based
on their non-dominance relationships and crowding levels, which in turn produce new offspring
populations. This figure is adopted from [16].

Adopt Congestion Degree and Congestion Comparison Operator

(1) Crowding degree estimation [84]: To assess the degree of crowding around a
solution in the population, the mean distance between the two dots on each side of a
particular point is computed according to each objective function. The vertex of the
cuboid is determined by its nearest neighbor, and the number is utilized to determine
its circumference (called the crowding factor). The length of the cuboid surrounding
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the i-th solution’s front surface is equal to the solution’s crowding coefficient (as shown
in the dotted box) in Figure 7. The calculation of the degree of crowding ensures that
the population is diverse. The population must be sorted for the crowding coefficient
computation using the values of each objective function in ascending sequence. As a result,
for each objective function, the infinite distance value is called the boundary solution, which
has the maximum and lowest values. The value for all other intermediate solutions is given
as the absolute difference between the normalized values of the two nearby solutions. The
other objectives have the same objectives. The distance values for each objective are added
to determine the crowding coefficient values. Every objective function is normalized before
the congestion factor is calculated.

Figure 7. The crowding distance about the i-th solution. The average distance between the two points
on either side of point i is calculated; based on each objective function, the vertices of the rectangle
are determined by their nearest neighbors, i.e., i− 1 and i + 1, and the length of the cube is equal to
the congestion factor of the solution in the graph. This figure is adopted from [16].

(2) Crowding comparison operator [85]: After performing the quick non-dominant
ranking and crowding calculation, each individual i has two properties. The non-dominant
ranking, i_{rank} (the rank) and the crowding, i_{d}. These properties can be used to de-
fine a congestion comparison operator for comparing individual i with another individual
j. Either of the following is true and will result in an individual i winning. If the non-
dominant stratum of individual i is higher in the ranking than the non-dominant stratum
of individual j, i_{rank} < j_{rank} If in the same non-dominant layer and the crowding
distance of individual i is greater than that of individual j, i.e., i_{rank} = j_{rank} and
i_{d} > j_{d}.

The first requirement is to ensure that the selected individuals have a higher non-
dominated rank. The second condition is to choose a region with low congestion when two
individuals are tied to the same non-dominant layer according to their crowding distance.
The winner can proceed to the next operation.

The NSGA-II algorithm introduces an elite strategy to retain good individuals to
eliminate the inferior ones. The elite strategy expands the screening range when generating
the next generation of individuals by mixing the parent and offspring individuals to form a
new population. Analyzing the example shown in Figure 8, where P denotes the parent
population, let the individual accounts in it be n, and the Q denotes the offspring population.
The steps are as follows.

Elitism

1. Create a new population by merging parental and child populations. After that, the
new population is sorted non-dominantly, and in this case, the population is divided
into six Pareto classes.

2. To generate a new parent population, non-dominated individuals having Pareto rank
1 are placed in a new parent collection, and then the individuals with Pareto rank 2
are added to the new parent population, and so on.
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3. The crowding degree is calculated for all the individuals with rank k + 1, if there
are fewer individual accounts in the set than n before all individuals with rank k
are added to the new parent set, but individual accounts in the set increase after all
individuals with rank k + 1 are added. All individuals with ranks more than k + 1
are deleted after these people are ranked according to how crowded they are. Since k
in this illustration is 2, one must determine the degree of crowding among those with
Pareto rank 3 before ranking them and excluding everyone with ranks 4 to 6.

4. Place the individuals in rank k + 1 in the new set of parents one by one in the order
ranked in step 2 until individual accounts in the parent set up to n and the remaining
individuals are eliminated.

P

Q

Figure 8. The implementation steps for NSGA-II’s elite strategy. The new population is ranked
non-dominantly; in this example, the population is divided into six Pareto ranks, and non-dominant
individuals with Pareto rank 1 and 2 are placed in a new set of parents, after which their crowding is
determined before ranking those with Pareto rank 3 and excluding all those with ranks 4 to 6. This
figure is adopted from [16].

3.3. Evaluation Index-Based MOEA Algorithms

Evaluation indexes are quantitative tools for assessing the performance of different
MOEAs, which can be divided into three categories: convergence, distribution, and com-
prehensiveness [86]. One immediate idea is to integrate metrics into MOEA to guide the
evolutionary search process of MOEA. Theoretically, any metrics can be incorporated into
MOEA in a variety of ways, but several metrics, such as spacing (SP) [87], generational
distance (GD) [88], and inverted generational distance (IGD) [89] can make the algorithm
more complex when integrated into MOEA. It may reduce the operating efficiency of
MOEA, but it cannot improve the distribution performance and convergence performance
of MOEA. Researchers embedded hypervolume(HV) into MOEA and proposed an S-Metric
selection-based evaluative multi-objective optimization algorithm (SMS-EMOA) which can
effectively solve MOP [90]. Zitzler and Künzli, successfully embedded a HV and binary
ε-indicator evaluation index into MOEA as a fitness evaluation method and proposed an
indicator-based evolution algorithm (IBEA) which improved the performance of MOP
solution [91].

3.3.1. S-Metric Selection Based Evaluative Multi-Objective Optimization Algorithm

We will introduce HV in Section 4. Zitzler and Thiele first suggested the HV metric,
also referred to as the S-metric, and they referred to it as the size of the coverage space or
the dominated space. As a crude approximation to the Pareto frontier, the EMO method
produces a set of points in the performance space. To calculate how close the predicted
data points are to the real Pareto front, quantitative measures are needed [92]. The HV
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indicator, which estimates the HV between the Pareto front (P) and the reference point (R),
is one of these measurements.

As shown in Figure 9, a key characteristic of SMS-EMOA is that it updates using a
steady-state strategy in which a single offspring is generated in each iteration and imme-
diately evaluated before being integrated into the evolution of the next generation. This
means that each generation only produces one new person. Algorithm 1 describes the
basic algorithm, starting from the initial population, using a random mutation operator to
generate a new individual [93]. Unlike some other methods for maintaining a collection
of non-dominant individuals, SMS-EMOA maintains a constant population size for both
dominant and non-dominant individuals. To decide which individuals are removed during
the selection process, it is necessary to set the parameter selection in the dominant solution.

Figure 9. The operation mechanism of the SMS-EMOA algorithm. An offspring is produced in each
iteration and evaluated immediately before integration into the next generation of evolution, with
poor individuals being eliminated as a new subpopulation. This figure is adopted from [90].

Algorithm 1 SMS-EMOA

1: Randomly initializes a population of µ individuals.
2: The number of evolutionary iterations t = 0.
3: A offspring qt+1 is generated by mutation operators.
4: Reduce one individual from (Pt ∪ {qt+1})
5: t = t + 1
6: End if the conditions for cessation are reached

Algorithm 2 describes a replacement program that reduces employment. To select the
individuals that make up the population, SMS-EMOA uses a ranking system based on the
Pareto frontier, a concept derived from the well-known NSGA-II algorithm.

1. The fast non-dominant sorting algorithm is used to calculate the Pareto front of the
non-dominant level until Ri cannot be put down in the population G (put the parent
generation (N individuals) and the offspring (N individuals) together, then selects the
first N better individuals).

2. After that, an individual is dropped from the worst ranking. If front Ri contains
|Ri| > 1 (domination of the individual is greater than an individual, then for s ∈ Ri Ri
layer included in the Pareto frontier s) of the individual will be eliminated, minimize
it.The4S (s, Ri) represents the HV of s. The smaller the HV, the smaller the role of
this individual should be removed. The point with the worst non-dominant leading
edge is selected in each of the two objective functions and ranks them by the original
objective function f1’s value. We then receive a second sequence that is arranged
according to f2, because none of these points dominates the others. 4S (s, Ri) is
calculated as follows in Equation (5). For Ri: Ri = {s1... s | Ri |}

4S(si, Ri) = ( f1(si+1)− f1(si)) · ( f2(si−1)− f2(si)). (5)

The SMS-EMOA algorithm is a promising Pareto optimization algorithm. It is es-
pecially useful when a few solutions are needed and a balanced solution is important.
However, it has a high selection time complexity and is typically only applied when there
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is only one layer of the non-dominant level [94]. Despite this, SMS-EMOA tends to produce
good results.

Algorithm 2 Reduce(Q)

1: {R1,· · · Rv}← fast non-dominated sort(Q), v is the number of layers
2: Detect one individual r with the lowest HV(4s) from Rv
3: Q′=Q\{r}
4: Return Q′

3.3.2. Indicator-Based Evolution Algorithm

Zitzler and Künzli proposed a generalized evolutionary model in 2004, which first
proposed IBEA by embedding the evaluation indicator function as an adaptation evaluation
method in MOEA. The rating indicator function is formally defined as a function that maps
a group of vectors to a group of real numbers. In other words, it is a mathematical function
that allocates a numerical value to a vector I, F→ R; using the all-order relationship on the
set of real numbers, it is possible to compare the quality between different sets of vectors in
F space. In IBEA, a simpler way of assigning fitness is specified as follows.

F
(

x1
)
= ∑

x2∈P\{x1}
−e−I({x2},{x1})/k. (6)

where k is a scaling factor greater than 0 and I is a real number function that maps the
group of Pareto approximation solutions in the objective space to a group of real numbers
in Equation (6). In this context, it is defined in Equation (7):

IHD(A, B) =

{
HV(B)− HV(A), if ∀x2 ∈ B∃x2 ∈ A : x1 > x2

HV(A + B)− HV(A), else
. (7)

As shown in Figure 10, A and B are two solution sets containing only one individual,
respectively. In (a), when the individuals in set A and the individuals in the group B are
not dominated by each other, the left yellow part indicates the area of the independently
dominated region of set A, then there is IHD(B, A) = HV(A + B) − HV(B) > 0. The
red part indicates the area of the independently dominated region of set B, and there is
IHD(A, B) = HV(A + B)− HV(A) > 0. In (b), the gray part of the figure indicates the
area of the independently dominated region of set B, then there is IHD(A, B) = HV(A +
B)− HV(A) > 0, IHD(B, A) = HV(A)− HV(B) < 0, and IHD(A, B) = −IHD(B, A).

(a) (b)

A

B

Figure 10. The illustrations of IHD indicator. In (a), when the individuals in the set A and the
individuals in the set B are not dominated by each other, the yellow and red parts on the left indicate
the areas of the independently dominated regions of A and B, respectively. In (b), when A is
dominated by B, the gray part of the figure indicates the area of the independently dominated region
of B. This figure is adopted from [91].
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By iteratively eliminating the most poorly performing individuals in the population
and adjusting the fitness values of the remainder, Algorithm 3 performs mating selection
and environmental selection.

Algorithm 3 IBEA

1: Initialize the population P with evolutionary iteration number t = 0, termination
condition T, and initialization parameter k

2: Calculate the fitness value of individuals in P
3: While |P| > N do
4: Select the least adapted from population P and remove it from population P;
5: Recalculate the fitness values of individuals in population P
6: End if t > T or other termination conditions are met.
7: Select individuals from P into the mating pool Q using binary pennant selection and

crossover and mutation operations are performed on Q to produce a new population
Q′.

8: P = P ∪ R
9: t = t + 1, turn back to step 2

3.4. High-Dimensional MOEA

In multi-objective optimization studies, the difficulty of optimization increases expo-
nentially with the increasing number of objective dimensions. Usually, optimization prob-
lems with four or more objectives are called high-dimensional multi-objective optimization
problems. In recent years, high-dimensional MOEA has become a highly popular research
topic in the field of evolutionary multi-objective optimization. Classical MOEAs, such as
NSGA-II and SPEA2, have good results in solving two-dimensional or three-dimensional
optimization problems. However, as the number of objective dimensions increases, these
classical MOEAs based on Pareto dominance relations face many difficulties.

1. Degradation of the search capability. As the number of objective dimensions increases,
the number of non-dominated individuals in the population increases exponentially,
thus reducing the selection pressure of the evolutionary process.

2. The number of non-dominated solutions used to cover the entire Pareto front increases
exponentially.

3. Difficulties in visualizing the optimal solution set.
4. The computational overhead for evaluating the distributivity of the solution set increases.
5. The efficiency of the recombination operation decreases. In a larger high-dimensional

space, the children resulting from the recombination of two distant parents may be
far away from the parents, making the ability of the local search of the population
weaker. Therefore, designing and implementing algorithms that can efficiently solve
high-dimensional multi-objective optimization problems is one of the current and
future challenges in the field of evolutionary multi-objective optimization.

In recent years, scholars have proposed some effective methods for solving high-
dimensional multi-objective optimization problems. One type of algorithm is based on
Pareto dominance relations, which reduce the number of non-dominated individuals by
extending the Pareto dominance region, such as ε-MOEA [95] and control the dominance
area of solutions (CDAS) [96]. An aggregation function can also be used to aggregate
multiple objectives into a single objective for optimization, such as MOEA/D, NSGA-
III [97], and MSOPS-II [98]. Finally, there are metric-based algorithms that use performance
evaluation metrics to compare the merits of two populations or between two individuals,
such as IBEA, SMS-EMOA, and Hyp [99]. In 2013, Li Miqing proposed a shift-based density
estimation method (SDE) from the perspective of a diversity retention mechanism and
integrated it into SPEA2 with good results [100]. In addition, one scholar dealt with the
high-dimensional multi-objective optimization problem by trying to reduce the number of
objectives, and the treatment methods mainly include the principal component analysis
method [101], the redundant objective elimination algorithm based on the minimum
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objective subset [102]. Reducing redundant objectives or unimportant objectives is also an
important direction for high-dimensional MOEA research.

4. Evaluation Metrics of MOEA
4.1. Evaluation Settings

In the design and implementation process of MOEA, efforts should not only be
put into determining appropriate tests and designing appropriate experiments but also
selecting reliable test tools, as well as performing corresponding statistical evaluation
and comparative judgment. To assess the capability of MOEA algorithms and, at some
level, facilitate the search for optimal solutions, researchers often use certain standard
test functions. Comprehensive evaluation indices, such as HV and IGD, are commonly
employed to gauge the convergence, uniformity, and diversity of the Pareto solutions
generated by an EMO algorithm. These indices provide a scalar value that reflects both the
convergence and distribution of the solutions simultaneously. The number and variety of
Pareto solutions resulting from the algorithm are also important factors to consider.

4.2. Multi-Objective Optimization Benchmark Problems

Multi-objective algorithms require a test function to test the capability of the algorithm
when it is improved. The test function needs to be capable of reflecting or containing
the basic features of the MOP, such as continuous or discontinuous, derivable or non-
derivable, convex or concave, single-peaked or multi-peaked, deception problem or non-
deception problem, etc. The widely used benchmark multi-objective test functions are
MOP1~MOP7, MOP-C1~MOP-C5 with bias constraints, ZDT1~ZDT6, and DTLZ1~DTLZ7,
etc. [103]. This paper focuses on the ZDT test functions that are extensively employed in the
evaluation of multi-objective algorithms. To assess the optimization capabilities of MOEA,
we consistently employ five multi-objective benchmark problems known as ZDT functions,
as demonstrated in Table 2, to evaluate its performance.

Table 2. Evaluation is conducted using a multi-objective benchmark function. g(x) = 1 for the whole
Pareto frontier.

Functions Dimension Definition Search Range

ZDT1 30

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) ]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

xi ∈ [0, 1]

ZDT2 30

f1(x) = x1
f2(x) = g(x)[1− ( x1

g(x) )
2]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

xi ∈ [0, 1]

ZDT3 30

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) −

x1
g(x) sin(10πx1)]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

xi ∈ [0, 1]

ZDT4 10

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) ]

g(x) = 1 + 10(n− 1) + ∑( i = 2)n[x2
i − 10 cos(4πxi)]

x1 ∈ [0, 1],
xi ∈ [−5, 5],

i = 2, 3, . . . , 10a

ZDT6 10
f1(x) = 1− exp(−4πx1) sin6(6πx1)
f2(x) = g(x)[1− ( x1

g(x) )
2]

g(x) = 1 + 9[∑n
i=2 xi
n−1 ]0.25

xi ∈ [0, 1]

Zitzler et al. proposed the set of ZDT test functions in 2000, which is currently the
most widely used set of multi-objective test functions [103]. It includes DZT1~DZT6, six
different forms of test functions. They are characterized by the following two points:
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(1) All of the functions have two objective functions, f1(xi), f2(xi). Additionally, the
plotted graph is straightforward to grasp because the form and position of the Pareto
optimal frontier are known.

(2) The number of decision variables is highly flexible and can be varied as needed.

4.3. Hyper-Volume Indicator

The application of the HV index in the scope of evolutionary algorithms is widespread
due to its strong theoretical foundation. By calculating the HV value of the space bounded
by the reference point and the non-dominated solution set, the overall performance of
MOEA was assessed. The non-dominated solution set and the reference point of the
multi-objective optimization algorithm measure the volume of the objective space, and this
volume is measured by the HV index. The HV as shown in Equation (8) is a measure of
quality that is strictly monotonic for Pareto dominance. In this equation, the volume is
measured using the Lebesgue measure, represented by the δ. The count of elements of the
non-dominated solution set is represented by the symbol |S|, and the hypercube created by
the reference point z∗ and the i-th solution in the solution set is represented by the vi. A
higher HV value indicates an algorithm with superior performance.

HV = δ(
⋃|S|

i=1 vi). (8)

However, there are two defects with HV. First, the HV index is calculated over a
long period. Second, the choice of reference points influences the HV index’s accuracy to
some amount.

4.4. Inverted Generational Distance Indicator

The generation distance is the average distance between all individuals in the al-
gorithm’s non-dominated solution set and the Pareto-optimal solution set, whereas the
inversion generation distance is the generation distance’s reverse mapping [104]. The IGD
index, as shown in Equation (9), is a measure of the overall capability of the algorithm. It
primarily determines the smallest distance sum between each point on the actual Pareto
frontier and the particular set that the algorithm produced. It is employed to assess the
algorithm’s capability in respect to convergence and distribution. The overall performance
improves as the value decreases. In this equation, the group of point p is evenly distributed
across the actual Pareto surface. The quantity of points dispersed across the actual Pareto
surface is denoted by |p|. The procedure yielded the optimal Pareto solution set Q, and the
minimum Euclidean distance d(v, Q) between individual v and population Q.

IGD =
∑v∈p d(v, Q)

|p| . (9)

The IGD index cannot only evaluate the convergence of MOEA but also assess its
distribution uniformity and universality.

5. Discussions on Perspective Studies

Multi-objective optimization aims to discover all Pareto optimal solutions. The multi-
objective optimization is generally considered an NP-complete problem. To successfully
optimize using evolutionary computation [105], there are three main challenges:

(1) Ensuring that the population moves toward the real Pareto-optimal front.
(2) Giving the developed solutions a fitness rating and choosing which ones should take

part in mating to produce the population of the following generation. Due to the
existence of non-comparable individuals, this is a challenging task.

(3) A fairly decentralized trade-off front is achieved by maintaining the diversity of the
population and preventing premature convergence. This should be ensured up until
the algorithm converges by approaching the Pareto front, as population diversity
allows for the retention of potentially efficient solutions.
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In our prior study, we examined the MOCE algorithm’s performance during optimiza-
tion utilizing several chaotic system implementations [106]. The evaluation’s findings show
that various chaotic systems do indeed affect optimization performance, and this work
shows that the MOCE using the logistic map outperforms the others in this regard.

In the evolution process of the population, the genetic algorithm adopts a completely
random search method. Moreover, there is almost no necessary connection between gener-
ations except for the control of parameters like crossover and mutation probability [107].
Although this model is useful in practical applications, it has problems of low efficiency,
such as premature convergence and slow convergence. On the other hand, from the per-
spective of chaos, the mode of biological evolution is “random + feedback”, in which the
randomness is caused by the inside of the system and is the feature of the system itself, and
chaos is the source of system evolution and information. Compared with the traditional
model, this biological evolution model is closer to the real biological evolution model.
Therefore, the genetic algorithm that introduces chaos will have better results. We present
a newly population-based optimization approach called chaotic evolution that makes
use of the traversal characteristics of chaos for the exploration and utilization functions
of evolutionary algorithms. Through the use of straightforward concepts, CE replicates
ergodic motion in the search space and adds mathematical processes to the iterative evo-
lution process. A general search capability exists in the general genetic algorithm. By
incorporating different chaotic systems into the CE algorithm architecture, it is simple to
increase its search capacity. Compared to certain other evolutionary computing algorithms,
CE is more scalable [108]. To evaluate the qualities of the suggestions, many surveys
and comparative evaluations were carried out. Our findings can improve optimization
performance as compared to the evolutionary algorithm itself by optimizing the chaotic
evolutionary algorithm.

On the other hand, it is the visualization research algorithm of the chaotic evolutionary
algorithm [109]. Algorithm visualization abstracts the code, operation, and semantics of
the program, and displays these abstractions dynamically. Taking the sorting algorithm as
an example, the algorithm visualization system will first combine and abstract the code in
the program, convert assignment and loop statements into element exchange and insertion
operations in the sorting algorithm, and then when the program executes these statements,
the system will for the corresponding operation and display the corresponding animation
in the sorting algorithm. Algorithm visualization does not visualize each statement and it
focuses on the logic and algorithm expressed by the statement as a whole. Algorithms have
knowledge-based concepts such as algorithm ideas and algorithm processes. One task of
algorithm visualization is to visualize the knowledge involved in the algorithm to make
it easier to understand, disseminate and communicate. As for our chaotic evolutionary
algorithm, its visualization research is also essential to work. Through visualization,
researchers can quickly establish the connection between the algorithm and the code, and
improve their programming ability.

Finally, a systemic optimization approach called interactive evolutionary computation
(IEC) uses the subjective of a real human evaluation to accelerate optimization [110]. There
are numerous tasks whose performance can be assessed by humans, but is difficult to gauge,
or nearly impossible to quantify by machines. In some real-world system optimization
problems, it may not be easy to devise a fitness function that accurately reflects the sub-
jective evaluation of a real person. To address this challenge, a real person is used instead
of the fitness function, allowing the problem to converge to the subjective evaluation of
the real person. IEC searches in two different places. By the distance of F mental space
between the objective and the system output, human users assess the output of the objective
system. Meanwhile, the evolutionary algorithm searches in the parameter space. IEC can
be thought of as an optimization strategy that relies on the mapping between these two
spaces, where manual search and evolutionary algorithms are combined.
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6. Conclusions and Future Works

In this study, three categories of MOEA algorithms are described in depth. Decom-
posed multi-objective optimization methods fall under the first category. These algorithms
divide the original MOP into a few simpler MOP or single-objective optimization prob-
lems that can be solved in a group setting. The MOEA based on Pareto domination is
the second type, which uses a Pareto-dominated mechanism based on which candidate
solutions are distinguished and selected [50]. The third category is index-based MOEA,
which uses the performance index of solution quality measures as the choice criterion in
the environment options. Each of these three MOEA algorithms has its advantages and
disadvantages. We believe that it is our research direction to try to combine them in order
to see if chaotic evolutionary algorithms can improve the optimization capabilities of each
of these algorithms.

In our previous studies, we have thoroughly examined a range of algorithms for
solving the MOP, and have provided explanations and analyses of several solutions. Our
future research will primarily concentrate on the following aspects:

(1) Each representative algorithm mentioned in this paper is coded in conjunction with
chaotic evolution, and then the results are compared and analyzed under the same
experimental conditions, and finally summarized.

(2) The visualization research of chaotic evolutionary algorithms is also one of the most
important works in this field [111]. To carry out better visualization research, enough
knowledge of the content and core of the algorithm is necessary. Based on this previous
research, we can visualize it in order to make it intuitive and easier to understand,
disseminate, and communicate. In addition, visual research is also related to the
interaction of MOCE for displaying and interacting with users.

(3) Any population-based evolutionary algorithm that does not rely on exploring spatial
information can be used as an algorithmic framework for interactive evolutionary
computation. Each of the different algorithms has its algorithmic properties. For
interactive evolutionary calculations with few evolutionary iterations and limited
population size, the algorithm to show high optimization performance is ideal for
applications with interactive evolutionary computing [112]. Therefore, one of the
directions of our research is to explore the potential of interactive MOCE. In future
studies, it would be good to investigate whether the interactive MOCE algorithm
would have better optimization capabilities using these search strategies investigated
in this paper.
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